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Sensitivity analysis via Karhunen-Loève expansion of a random
�eld model: estimation of Sobol' indices and experimental design

Luc Pronzato *„
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Abstract

We use the Karhunen-Loève expansion of a random-�eld model to construct a tensorised
Bayesian linear model from which Sobol' sensitivity indices can be estimated straightforwardly.
The method combines the advantages of models built from families of orthonormal functions,
which facilitate computations, and Gaussian-process models, which o�er a lot of �exibility.
The posterior distribution of the indices can be derived, and its normal approximation can
be used to design experiments especially adapted to their estimation. Implementation details
are provided, and values of tuning parameters are indicated that yield precise estimation from
a small number of function evaluations. Several illustrative examples are included that show
the good performance of the method, in particular in comparison with estimation based on
polynomial chaos expansion.

Keywords: sensitivity analysis, Sobol' indices, random-�eld model, Karhunen-Loève expansion,
Bayesian linear model, polynomial chaos, optimal design of experiments.

1 Introduction and problem statement

We consider global sensitivity analysis for a functionf(�) depending ond real input variables x =
(x1; : : : ; xd). Uncertainty on the inputs is accounted for by treating them as random variables.
We shall denoteX = ( X 1; : : : ; X d) the corresponding random vector, the probability measure� of
which is supposed to have the tensor-product form

d� (x) = d� 1(x1) � � � � � d� d(xd) ; (1.1)

with � i a probability measure over X i � R, i = 1 ; : : : ; d. Global sensitivity analysis aims at
identifying important variables, and possibly important interactions between groups of variables, in
the sense that they are the most in�uential on the global behaviour off(�) with respect to � . The
calculation of Sobol' indices, which quantify the portion of the variance off(X ) explained by each
input, or combination of di�erent inputs, see Section 2.1, has become a standard tool in sensitivity
analysis for measuring the importance of (groups of) variables; see in particular the recent overview
[26].

Commonly used estimation methods of Sobol' indices include the Fourier Amplitude Sensitivity
Test (FAST) [6, 32, 7], see also [31]; the model-free pick-and-freeze methods [33, 30] based on QMC
sampling designs, Latin hypercubes (Lh) or orthogonal arrays, see in particular [22, 36, 15, 16].

* Luc.Pronzato@cnrs.fr (corresponding author)
„ Université Côte d'Azur, CNRS, I3S, France
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In case of functionsf(�) of computationally expensive evaluation, the use of metamodels, possibly
combined with Monte-Carlo sampling, allows estimation of indices from a reduced number of data
points; see e.g., [25, 23, 20]. The calculation of Sobol' indices is then considerably facilitated when
the metamodel used has a particular form, which is especially adapted to the underlying Sobol'-
Hoe�ding decomposition.

(i ) Polynomial Chaos Expansions (PCE) correspond to tensor products of univariate polynomial
modelsPi (x i ), eachPi (�) belonging to a family of orthogonal polynomials with respect to� i , and
provide an easy evaluation of Sobol' indices. Indeed, the indices are given by ratios of quadratic
forms in estimated parameters for the linear regression model de�ned by the PCE; see [35, 3, 1]. The
precision of the estimated indices can be related to the information matrix for the linear regression
model, which allows the construction of e�cient designs adapted to the estimation of Sobol' indices;
see [5]. Families of orthogonal polynomials are known for particular distributions (e.g., Hermite for
the standard normal, Legendre for the uniform distribution, etc.), but transformations or calculation
via moment matrices can be used in more general situations, see Section 4.1.

(ii ) To a given Random-Field (RF) model with tensor-product covariance (see [34, p. 54]) and a
tensorised probability measure� , one can associate a particular ANOVA kernel that yields a simple
expression for the Sobol' indices, see [9]. The construction of the ANOVA kernel is explicit for some
particular RF covariances and measures� only, but numerical integration can be used otherwise.
See also [17] for the ANOVA decomposition of a kernel, with some insights into the consequence of
enforcing sparsity through the choice of a sparse kernel.

On the other hand, both approaches su�er from some limitations. The number of monomials
to be considered in a PCE model grows very fast with the numberd of variables, so that many
observations (function evaluations) are required to get an estimate of the indices, even for moderate
values of d. Moreover, the polynomial model seems to o�er less �exibility than a RF model with
covariance chosen in a suitable family (for instance the Matérn class, see [34, Chap. 2]) that speci�es
the regularity of the RF realisations (i.e., of the function to be approximated). In the approach
based on ANOVA kernels, no simple characterisation of the precision of the estimation, which could
be used for experimental design, is available (see [17, Remark 5]). Moreover, no simple recursive
calculation of the indices seems possible in the case where data are collected successively.

The objective of the paper is to present a method that combines the positive aspects of (i ) and
(ii ): starting with an arbitrary Gaussian RF model with covariance in the tensor-product form,
following the approach in [14], we construct a Bayesian Linear Model (BLM) through a particular
Karhunen-Loève expansion of the �eld associated with the tensor-product measure� ; see also [12].
Like in a PCE model, the regression functions of variablei are orthogonal for � i , i = 1 ; : : : ; d (they
may possibly also include a few polynomial terms), but in addition to a PCE model the parameters
have here a particular joint prior normal distribution, with diagonal covariance governed by the
covariance function of the RF. The Sobol' indices (of any order) are obtained straightforwardly
from the estimated parameters in the BLM, and the presence of a prior allows estimation from a
few observations only. Like in [5], the linearity of the model facilitates the recursive estimation of the
indices in case of sequential data collection. The sequential selection of observation points (sequential
design) ensuring a precise estimation of the indices can easily be implemented, and various selection
rules can be considered depending on which characterisation of precision is preferred. Approximate
design theory can also be used to construct an optimal design measure for the estimation of Sobol'
indices through the solution of a convex problem, from which an exact design (without repetitions
of observations) can be extracted.

The computation of Sobol' indices via the Karhunen-Loève expansion of a covariance operator
is also considered in [13], but in a di�erent framework. The authors consider an additive model with
functional inputs and, using properties of U-statistics, they investigate the asymptotic properties of
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an estimator of �rst-order indices when the truncation level N of the expansion grows at suitable rate
as a function of the numbern of observations. The situation is much di�erent in the present paper:
we consider a general nonlinear functionf(�) of scalar inputs and our Karhunen-Loève expansion
concerns a random-�eld model off(�). The number N of regression functions in the obtained BLM
and the regression functions themselves are �xed, withN of the same order of magnitude as the
number n of observations. We shall not investigate the asymptotic properties of our estimator of
Sobol' indices asN and n tend to in�nity. For �xed N , i.e., for a �xed BLM, the estimated indices
tend to the true indices of that BLM as n tends to in�nity and satisfy a central limit theorem (under
standard assumptions concerning Bayesian estimation in a linear regression model). However, since
N is �xed, the estimated indices do not converge to the true indices off(�) as n tends to in�nity.
Note that we are mainly interested in the case wheren is small, a prerequisite whenf(�) is expensive
to evaluate, and we are more concerned with the choice of then design points ensuring a precise
estimation of the indices than with asymptotic properties for largen, when N = N (n) grows with
n at suitable rate.

Section 2 gives a brief overview of the Sobol'-Hoe�ding decomposition and the estimation of
Sobol' indices in models given by tensor products of orthonormal functions. The tensorised BLM
is introduced in Section 3 for a product measure� . Its practical implementation relies on �nitely
supported measures, typically quadrature approximations, and is detailed in Section 4 with some
numerical illustrations. Section 5 considers the estimation of Sobol' indices in the BLM, together
with the construction of posterior distributions and credible intervals. In Section 6, the normal
approximation of the posterior distribution is used to design experiments adapted to the estimation
of Sobol' indices. The examples in Section 7 illustrate the performance of the method, in particular
in comparison with PCE. The construction of optimal (non-adaptive) designs is considered in an
Appendix.

2 Sobol' sensitivity indices

2.1 The Sobol'-Hoe�ding decomposition and Sobol' indices

Let f (�) be a function depending ond input variables x = ( x1; : : : ; xd) 2 X � Rd and � denote a
probability measure on X . We assume that� has the tensor-product form (1.1) and that f (�) is
square integrable for� , which we shall abusively denote byf 2 L 2(X ; � ), with L 2(X ; � ) the Hilbert
space of real-valued functions onX square integrable for� . (Note that elements of L 2(X ; � ) are
in fact equivalence classes of functions that coincide� -almost everywhere.) We denote byE� f�g and
var� f�g the expectation and variance for� , respectively. Then, f (�) admits the following Sobol'-
Hoe�ding decomposition of f (�) in 2d terms, see [10, 33],

f (x) = f 0 +
dX

i =1

f i (x i ) +
X

i � j � d

f i;j (x i ; x j ) +
X

i � j � k� d

f i;j;k (x i ; x j ; xk ) + � � � + f 1;:::;d (x1; : : : ; xd) : (2.1)

For U an index set,U � f 1; : : : ; dg, denote byxU the vector with componentsx i for i 2 U and by
f U (xU ) the corresponding term in the decomposition above (without further indication, we shall
only consider ordered index sets). For a �xedf 0, when we impose that

8i 2 U ;
Z

X
f U (xU ) d� i (x i ) = 0 ; (2.2)

then the decomposition (2.1) is unique. Moreover, we have the orthogonality property

8U 6= V ; U ; V � f 1; : : : ; dg; E� f f U (X U )f V (X V )g = 0 ;
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together with f 0 = E� f f (X )g. This orthogonality property implies that we can decompose the
variance of f (X ) as

V = var� f f (X )g =
dX

i =1

var� f f i (X i )g +
X

i � j � d

var� f f i;j (X i ; X j )g + � � � + var� f f 1;:::;d (X 1; : : : ; X d)g

=
X

U �f 1;:::;dg

VU ;

where we have denotedVU = var� f f U (X U )g. For any U � f 1; : : : ; dg, (2.2) implies that

E� f f (X )jX U ) = f 0 +
X

V � U

f V (X V ) ;

so that VU = var� f E� f f (X )jX U )g �
P

V � U VV ; where the inclusion is strict on the right-hand
side. The Sobol' sensitivity index associated with the index setU is de�ned by

SU =
VU

V
:

Notice that
P

U �f 1;:::;dg SU = 1 . The d �rst-order indices Si (the d(d � 1)=2 second-order indices
Si;j , respectively) correspond toU = f ig, i = 1 ; : : : ; d (U = f i; j g, (i; j ) 2 f 1; : : : ; dg2, i < j ,
respectively). The closed index associated withU is de�ned by

SU =
var� f E� f f (X )jX U )g

V
=

X

V � U

SV : (2.3)

Also of interest are the so-called total-e�ect indices,

SU =
X

V \ U 6= ;

SV = 1 �
X

V \ U = ;

SV = 1 �
var� f E� f f (X )jX f 1;:::;dgnU gg

V
=

E� f var� f f (X )jX f 1;:::;dgnU gg

V
;

among which in particular the d �rst-order total-e�ect indices Si = Sf i g, i = 1 ; : : : ; d. A group of
variablesxU such that SU � 0 can be considered are having negligible e�ect on the global behaviour
of f (�), which thus allows dimension reduction.

2.2 Sobol' indices for tensor products of linear combinations of � i -orthonormal
functions

For all i = 1 ; : : : ; d, let f � i;` (�) ; ` = 0 ; : : : ; pi g denote a collection ofpi + 1 orthornormal functions
for � i ; that is, such that

Z

X i

� 2
i;` (x) d� i (x) = 1 for all ` and

Z

X i

� i;` (x)� j;` 0(x) d� i (x) = 0 for all `0 6= ` : (2.4)

We suppose moreover that� i; 0(x) � 1 for all i . Consider the tensor-product function de�ned by

f (x) =
dY

i =1

" piX

`=0

� i;` � i;` (x)

#

: (2.5)
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It can be rewritten in the form of a linear regression model having
Q d

i =1 (pi + 1) parameters� ` ,

f (x) =
X

`

� `  ` (x) ;

where ` = f `1; : : : ; `dg denotes a multi index, with ` i 2 f 0; : : : ; pi g for all i = 1 ; : : : ; d, and where
� ` =

Q d
i =1 � i;` i and  ` (x) =

Q d
i =1 � i;` i (x i ).

For any index set U � f 1; : : : ; dg, sinceE� i f � i;` (X i )g = 0 for all i and all ` 6= 0 , we have

E� f f (X )jX U )g = � 0 +
X

`2 L(U )

� `  ` (X ) ;

where0 = f 0; : : : ; 0g and L(U ) = f ` 6= 0 : ` i = 0 for all i =2 U g. Next, the orthonormality property
(2.4) givesvar� f  ` (X )g = 1 for ` 6= 0 and

SU =

P
`2 L(U ) � 2

`P
`6=0 � 2

`
;

from which we can easily computeSV and SV for any index set V , see Section 2.1. In particular,

Si = Sf i g and Si =

P
` :` i 6=0 � 2

`P
`6=0 � 2

`
for all i = 1 : : : ; d ; Si;j = Sf i;j g � Si � Sj for all i; j = 1 : : : ; d :

When the � i;` (�) in (2.5) are univariate polynomials Pi;` (�) of degreè in a family of orthonormal
polynomials for � i , the construction of Section 2.2 corresponds to the PCE approach in [35, 3, 1, 5].

3 A tensorised Bayesian linear model: theoretical construction

We shall construct a linear approximation model for f(�), with orthonormal regression functions
that satisfy the properties of Section 2.2, together with a prior on the parameters that will allow
estimation from less observations than parameters. The construction relies on Gaussian RF models
with a parametric trend given by orthonormal polynomials.

3.1 Construction of univariate models

We use the univariate orthonormal polynomials of the PCE model as trend functions for a univariate
RF model; that is, for each i = 1 ; : : : ; d we consider

Yi;x =
piX

`=0

� i;` Pi;` (x) + Z i;x ; (3.1)

where(Z i;x )x2 X i denotes a Gaussian RF indexed byX i , with zero mean (Ef Z i;x g = 0 for all x) and
covarianceEf Z i;x Z i;x 0g = K i (x; x 0) for x; x 0 2 X i . We suppose thatK i (�; �) is � i � � i -measurable and
that E� i f K i (X; X )g < + 1 for all i , and denote byTi;� i the following linear operator onL 2(X i ; � i ):

8f 2 L 2(X i ; � i ); 8t 2 X i ; Ti;� i [f ](t) =
Z

X i

f (x)K i (t; x ) d� i (x) = E� i f f (X )K i (t; X )g:

For f a vector of functions f j in L 2(X ; � i ), j = 1 ; : : : ; p, with f (x) = ( f 1(x); : : : ; f p(x))T for all
x 2 X i , Ti;� i [f ] will denote the vectorized function with componentsTi;� i [f j ].
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Lemma 3.1. The model (3.1) can be rewritten in the form of a linear regression model, as

Yi;x =
piX

`=0

~� i;` Pi;` (x) +
X

k� 1

� 0
i;k ' 0

i;k (x) + " i; 0;x ; (3.2)

where the~� i;` , ` = 0 ; : : : ; pi , form a set of pi + 1 trend parameters, the� 0
i;k , k � 1, are independent

centred normal random variables, and where" i; 0;x is a centred RF that satis�es Ef � 0
i;k " i; 0;x g = 0

for all x 2 X i . The regression functions ' 0
i;k (x) are orthonormal in L 2(X i ; � i ) and satisfy the

orthogonality property E� i f ' 0
i;k (X )Pi;` (X )g = 0 for all ` = 1 ; : : : ; pi and all k � 1.

Proof. Following [14, Sect. 5.4], for eachi = 1 ; : : : ; d, we consider the orthogonal projectionpi of
L 2(X i ; � i ) onto the linear subspaceTi spanned by thePi;` (�), ` = 0 ; : : : ; pi and denoteqi = id L 2 � pi .
In matrix notation, we write gi (x) = ( Pi; 0(x); : : : ; Pi;p i (x))T and � i = ( � i; 0; : : : ; � i;p i )

T . From the
orthonormality of the Pi;` (�), we can write, for x 2 X i ,

pi Z i;x = gT
i (x)E� i f gi (X )Z i;X g; (3.3)

with Ef piZ i;x g = 0 and, for y 2 X i , Ef (piZ i;x )(piZ i;y )g = gT
i (x)E� i f Ti;� i [gi ](X )gT

i (X )ggi (y) and
Ef (piZ i;x )Z i;y g = gT

i (x)Ti;� i [gi ](y). The model (3.1) can thus be written as

Yi;x = gT
i (x)� i + pi Z i;x + qi Z i;x = gT

i (x) ~� i + qi Z i;x ; (3.4)

with ~� i = � i + E� i f gi (X )Z i;X g. The covariance kernel of(qi Z i;x )x2 X i in (3.4) is equal to

eK i (x; y) = Ef (qi Z i;x )(qi Z i;y )g = K i (x; y) + gT
i (x)E� i f Ti;� i [gi ](X )gT

i (X )ggi (y)

� Ti;� i [g
T
i ](x)gi (y) � gT

i (x)Ti;� i [gi ](y) : (3.5)

Note that in (3.4) we have orthogonality in L 2(X i ; � i ) between the realisations of(qi Z i;x )x2 X i and
the trend subspaceTi , with pi Z i;x 2 Ti .

Consider now the integral operator associated witheK i (�; �):

8f 2 L 2(X i ; � i ); 8t 2 X i ; eTi;� i [f ](t) = E� i f f (X ) eK i (t; X )g:

By construction, eTi;� i satis�es eTi;� i [Pi;` ] = 0 for all ` 2 f 0; � � � ; pi g. It can be diagonalised, and
we denote byf  i; 1;  i; 2; : : :g the set (at most countable) of its strictly positive eigenvalues, assumed
to be ordered by decreasing values, and by' i;k 2 L 2(X i ; � i ) the associated eigenfunctions. They
satisfy eTi;� i [' i;k ] =  i;k ' i;k for all k > 0 and can be chosen orthonormal inL 2(X i ; � i ). Denote by
' 0

i;k their canonical extensions,

8x 2 X i ; ' 0
i;k (x) =

1
 i;k

eTi;� i [' i;k ](x) ; k � 1 : (3.6)

The ' 0
i;k (�) are de�ned over the wholeX i , with ' 0

i;k = ' i;k � i -almost everywhere, and satisfy the
orthogonality property E� i f ' 0

i;k (X )Pi;` (X )g = 0 for all ` = 1 ; : : : ; pi and all k � 1.
The Karhunen-Loève expansion ofqi Z i;x in (3.4) gives 8x 2 X i ; qi Z i;x =

P
k� 1 � 0

i;k ' 0
i;k (x) +

" i; 0;x ; where the� 0
i;k , k � 1, are mutually orthogonal normal random variablesN (0;  i;k ) and where

" i; 0;x is a centred RF satisfyingEf � 0
i;k " i; 0;x g = 0 for all x 2 X i . This concludes the proof of the

lemma. (Note that " i; 0;x has covarianceeK i (x; x 0) �
P

k� 1  i;k ' 0
i;k (x)' 0

i;k (x0), and cannot be ignored
when � i is replaced by a �nitely supported measureb� i and Yi;x is used out of the support ofb� i , see
Section 4.)
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3.2 Construction of a tensorised BLM

We set a prior on the ~� i;` in (3.2), and suppose that ~� i = (~� i; 0; : : : ; ~� i;p i )
T is normally distributed

N (0; D i ), with D i = diag f #i;` ; ` = 0 ; : : : ; pi g, for all i = 1 ; : : : ; d. The choice of the#i;` is discussed
in Section 4.3. Consider the separable kernel de�ned byK 0(x ; y ) =

Q d
i =1 K 0

i (x i ; yi ), where

K 0
i (x; y) = eK i (x; y) +

piX

`=0

#i;` Pi;` (x)Pi;` (y) ; (3.7)

with eK i (x; y) given by (3.5). The eigenvalues and eigenfunctions of the operatorT� [f ], de�ned by
T� [f ](t ) = E� f f (X )K 0(t ; X )g, f 2 L 2(X ; � ), t 2 X , are products of eigenvalues and eigenfunctions
of the operators associated with theK 0

i (�; �). The Karhunen-Loève expansion of the centred Gaussian
RF with covariance K 0(�; �) yields the following tensorised version of model (3.2):

Yx =
X

`2 N d

� `  ` (x) + "0;x ; (3.8)

where` = f `1; : : : ; `dg with ` i 2 N for all i , the � ` are independent random variablesN (0; � ` ), and
where "0;x is a centred RF with covarianceEf "0;x "0;y g =

Q d
i =1 K 0

i (x i ; yi ) �
P

`2 N d � `  ` (x) ` (y ),
with

� ` =
Q d

i =1 � i;` i ;  ` (x) =
Q d

i =1 � i;` i (x i ) for any x 2 X ;

� i;` (�) =
�

Pi;` (�) for ` = 0 ; : : : ; pi ;
' 0

i;` � pi
(�) for ` � pi + 1 ;

� i;` (�) =
�

#i;` for ` = 0 ; : : : ; pi ;
 i;` � pi for ` � pi + 1 ;

(3.9)

and  i; 1 �  i; 2 � : : : the eigenvalues de�ned in the proof of Lemma 3.1. When truncating the sum in
(3.8) to ` in a given �nite subset L of Nd, we obtain the modelYx =

P
`2 L � `  ` (x) + " x , where now

Ef " x " y g =
Q d

i =1 K 0
i (x i ; yi ) �

P
`2 L � `  ` (x) ` (y ). The choice ofL will be discussed in Section 4.4.

Finally, the BLM we shall use for sensitivity analysis is given by

Yx =
X

`2 L

� `  ` (x) + "0
x ; (3.10)

where we have replaced the errors" x by uncorrelated ones"0
x , such that Ef "0

x "0
y g = 0 for x 6= y and

8x 2 X ; s2(x) = Ef ("0
x )2g = Ef (" x )2g =

dY

i =1

K 0
i (x i ; x i ) �

X

`2 L

� `  2
` (x) : (3.11)

Following the results in Section 2.1, the estimation of the parameters� ` in (3.10) from evaluations
of f(�) at a given set of design points will provide estimates of Sobol' indices; see Section 5.

Remark 3.1. We may also consider the estimation of� ` in the model with correlated errors
" x . Estimation from a n-point design then requires the calculation and manipulation of an � n
correlation matrix, whereas only itsn diagonal terms need to be used for the model (3.10). Numerical
experiments indicate that the gain in precision is negligible when considering correlations. Moreover,
the approximate model with uncorrelated errors allows the selection of observation points adapted
to the estimation of Sobol' indices by classical approaches for optimal design, see Section 6. /
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4 Practical implementation via quadrature approximation

The ' 0
i;k (�) and associated eigenvalues i;k in (3.2) are usually unknown, and we need to resort to

numerical approximations. A convenient practical implementation consists in replacing the measures
� i by quadrature approximations

b� i =
qiX

j =1

wi;j � x i;j :

For all i = 1 ; : : : ; d, denote W i = diag f wi;j ; j = 1 ; : : : ; qi g and Q i (respectively, eQ i ) the matrix
with j; k term f Q i gj;k = K i (x i;j ; x i;k ) (respectively, f eQ i gj;k = eK i (x i;j ; x i;k )) for j; k = 1 ; : : : ; qi . We
assume that

Q d
i =1 qi � n, the projected number of evaluations off(�).

Remark 4.1. The substitution of b� i for � i has the consequence that the basis functions� i;` used in
(3.9) are orthonormal for b� i ; Sobol' indices will therefore be estimated for the measureb� =

N d
i =1 b� i .

However, sinceb� has
Q d

i =1 qi support points, the qi do not need to be very large to be able to neglect
this quadrature e�ect, and qi � 100 seems to be enough in most cases, see Sections 4.6 and 7. On
the other hand, the b� i may also correspond to empirical measures obtained from historical data, a
situation where qi may naturally take large values. /

4.1 Construction of eQ i

For each i = 1 ; : : : ; d we must construct polynomials Pi;` (�), of degreesl = 0 ; : : : ; pi � qi � 1,
orthonormal for the measure b� i . Direct calculation shows that orthonormality implies (up to an
arbitrary sign change)

Pi; 0(x) = 1 and Pi;` (x) =

det

0

B
B
B
B
B
@

1 mi; 1 � � � mi;`

mi; 1 mi; 2 � � � mi;` +1
...

...
. . .

...
mi;` � 1 mi;` � � � mi; 2` � 1

1 x � � � x`

1

C
C
C
C
C
A

det1=2(M i;` ) det1=2(M i;` � 1)
for ` � 1 ;

where, for any` 2 N, M i;` is the (` +1) � (` +1) moment matrix with j; k term f M i;` gj;k = mi;j + k� 2

and mi;k = Eb� i f X kg for all k. Denote by G i the qi � (pi + 1) matrix with j; ` term Pi;` (x i;j ). It
satis�es G T

i W i G i = I pi +1 and we have, from the de�nition (3.5) of eK i (�; �),

eQ i = Q i + G i G T
i W i Q i W i G i G T

i � G i G T
i W i Q i � Q i W i G i G T

i ; (4.1)

from which we can readily check that eQ i W i G i = Oqi ;(pi +1) , the qi � (pi + 1) null matrix.

4.2 Calculation of  ` (x) and s2(x)

To calculate  ` (x) in (3.10) we need to compute the' 0
i;k (x i ) and the  i;k in (3.9). Also, the

calculation of the variance s2(x) of "0
x requires the computation of the K 0

i (x i ; x i ), see (3.11). As
shown below, the use of quadrature approximationsb� i reduces these computations to a few matrices
and vectors manipulations.
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Diagonalisation of qi � qi matrices The diagonalisation of W 1=2
i

eQ i W
1=2
i yields a matrix e� i

of eigenvectors and a diagonal matrix� i of associated eigenvalues (sorted by decreasing values)

that satisfy W 1=2
i

eQ i W
1=2
i = e� i � i e�

T
i , with e�

T
i

e� i = I qi , the qi � qi identity matrix. Denote � i =

W � 1=2
i

e� i ; it satis�es � T
i W i � i = I qi , eQ i = � i � i � T

i and eQ i W i � i = � i � i , so that G T
i W i � i =

O (pi +1) ;qi . The columns of � i correspond to the eigenfunctions' i;k in the proof of Lemma 3.1.

Quadrature designs Following [14], we call quadrature design of size n a collection Dn =
f x1; : : : ; xng of n points of X such that f x `gi is included in the support of b� i for all ` = 1 ; : : : ; n
and i = 1 ; : : : ; d. When x belongs to a quadrature design, itsi th component x i is therefore thej th
support point of � i , for somej 2 f 1; : : : ; qi g; ' 0

i;k (x i ) and  i;k in (3.9) are then respectively given
by f � i gj;k and by the kth diagonal element of� i . Also, from (3.7), K 0

i (x i ; x i ) in (3.11) is given by

K 0
i (x i ; x i ) = f eQ i gj;j +

piX

`=0

#i;` P2
i;` (x i ) =

qiX

`=1

 i;` f � i g2
j;` +

piX

`=0

#i;` P2
i;` (x i ) :

General designs When x is an arbitrary point in X , x i is generally not in the support of b� i . To
calculate  ` (x), see (3.9), we therefore need to compute the canonical extensions' 0

i;` (x i ) de�ned by
(3.6). Denote

k i (x) = [ K i (x; x i; 1); : : : ; K i (x; x i;q i )]
T and ek i (x) = [ eK i (x; x i; 1); : : : ; eK i (x; x i;q i )]

T :

From (3.6), ' 0
i;` (x i ) corresponds to the`th component of � 0

i (x i ) = � � 1
i � T

i W i ek i (x i ), where

ek i (x) = k i (x) + G i G T
i W i Q i W i G i gi (x) � Q i W i G i gi (x) � G i G T

i W i k i (x) ;

for all i = 1 ; : : : ; d and all x 2 X i ; see (3.5). Since� T
i W i G i = Oqi ;(pi +1) , the expression of� 0

i (x i )
simpli�es into

� 0
i (x i ) = � � 1

i � T
i W i k i (x i ) � � � 1

i � T
i W i Q i W i G i gi (x i ) : (4.2)

From (3.7), we also get

K 0
i (x i ; x i ) = K i (x i ; x i ) + gT

i (x i )G T
i W i Q i W i G i gi (x i ) � 2gT

i (x i )G T
i W i k i (x i ) +

piX

`=0

#i;` P2
i;` (x i ) :

(4.3)

Remark 4.2. When pi � 1, if orthogonal polynomials P0
i;` (�) for � i are known, it is tempting to

directly use f G i gj;` = P0
i;` (x i;j ) to avoid the construction in Section 4.1. The orthogonal projection

(3.3) must then be modi�ed into pi Z i;x = gT
i (x)M � 1

g i
E� i f gi (X )Z i;X g, with M g i the pi � pi Gram

matrix E� i f gi (X )gT
i (X )g. (We suppose that � i is such that M g i is invertible.) The expression of

eK i (x; y) must be modi�ed accordingly, into

eK i (x; y) = K i (x; y) + gT
i (x)M � 1

g i
E� i f Ti;� i [gi ](X )gT

i (X )gM � 1
g i

gi (y)

� Ti;� i [g
T
i ](x)M � 1

g i
gi (y) � gT

i (x)M � 1
g i

Ti;� i [gi ](y) ;

and (4.1) becomes

eQ i = Q i + G i M � 1
g i

G T
i W i Q i W i G i M � 1

g i
G T

i � G i M � 1
g i

G T
i W i Q i � Q i W i G i M � 1

g i
G T

i :
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Also, when x is not a quadrature point, (4.2) and (4.3) must be respectively modi�ed into

� 0
i (x i ) = � � 1

i � T
i W i k i (x i ) � � � 1

i � T
i W i Q i W i G i M � 1

g i
gi (x i ) (4.4)

and K 0
i (x i ; x i ) = K i (x i ; x i ) + gT

i (x i )M � 1
g i

G T
i W i Q i W i G i M � 1

g i
gi (x i ) � 2gT

i (x i )M � 1
g i

G T
i W i k i (x i ) +P pi

`=0 #i;` [P0
i;` (x i )]2. Note, however, that the P0

i;` (�) being not orthonormal for b� i , contrarily to the
eigenfunctions' 0

i;` (x i ), this may perturb the estimation of Sobol' indices and this approach is not
recommended. /

4.3 Choice of #i;` ; ` = 0; : : : ; pi

The selection of eigenfunctions ` (�) in (3.10) will rely on the energy of each component, measured by
the associated eigenvalues, see Section 4.4. It is therefore important to choose values of#i;` in (3.9)
large enough to ensure that important polynomial trend functions will be kept in the model, but
not too large to allow the preference of other eigenfunctions if necessary. There is some arbitrariness
in this construction, but we think the suggestion below is suitable in most situations.

Using stationary kernelsK i (�; �), we can assume (without any loss of generality) thatK i (x; x ) = 1
for all x 2 X i and eachi = 1 ; : : : ; d. Indeed, in (3.10), we can write the variance of� ` as� 2� ` and the

variance of"0
x ass2(x) = � 2

hQ d
i =1 K 0

i (x i ; x i ) �
P

`2 L � `  2
` (x)

i
for some positive scalar� 2, and then

estimate � 2 from the data; see Section 5.2. Since
P

k� 1  i;k = E� i f eK i (X; X )g � E� i f K i (X; X )g,
see [14], we have

P
k� 1  i;k � 1, and we can take#i; 0 = 1 for all i . When pi � 1, in order to favour

the selection of low degree polynomials, we suggest to take#i;` = � `
i with � i =  1=(1+ pi )

i; 1 , so that
#i;` >  i;k for all ` = 0 ; : : : ; pi and all k � 1.

4.4 Choice of the truncation set L

In PCE, when considering the tensor product of polynomials up to degreepi in variable x i , the
model can have up to

Q d
i =1 (1 + pi ) terms. A rather usual approach consists in favouring simple

models by setting a constraint on the total degreeD of the polynomial in d variables; the resulting
model has then

� d+ D
d

�
parameters (the cardinality of the set f ` = f `1; : : : ; `dg 2 Nd :

P d
`=1 � Dg).

Here we suggest to base the selection of terms in (3.10) on the ranking of the eigenvalues� ` .
We �rst choose a numberN � N =

Q d
i =1 (pi + qi + 1) that speci�es the size of the model; that is,

the number of functions we want to consider � a value of N of the same order of magnitude as the
projected number of evaluations off(�) seems reasonable. Let� `1

� � � � � � `k
� � `k +1

� � � � denote

the ordered sequence of the� ` =
Q d

i =1 � i;` i , with ` = f `1; : : : ; `dg 2 Nd, where we set� f `1 ;:::;` d g = 0
when ` i > p i + qi + 1 for somei . Note that `1 = 0 = f 0; : : : ; 0g and � `1

= 1 ; see Section 4.3. The
truncation set is then

LN = f `1; : : : ; `M 2 Nd; with M the smaller integer � N such that � `M
< � `M +1

g: (4.5)

Remark 4.3. We do not need to compute all theN values� `k
, and the construction of LN can be

sequential since the� i;k are ordered (by decreasing values) for eachi . Also, due to the truncation
operated in the construction of LN , in theory we do not need to compute allqi eigenpairs in the
spectral decomposition of Section 4.2. The resulting computational gain may be marginal when
each approximation b� i has a small numbersqi of components, but may be signi�cant when theb� i

correspond to empirical data; see Remark 4.1. /

Remark 4.4. In the special case where allb� i are identical and are supported onq points, and
pi = p for all i , all matrices Q i are identical, and the same is true foreQ i , � i , � i , etc. (a single
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diagonalisation is thus required, see Section 4.2). The model (3.10) hasmd terms at most, with
m = p + q + 1 . Each � ` can be written as

� ` = � a0
0 � � � � � � am � 1

m� 1 ; (4.6)

with ak = j f i : ` i = kg j and
P m� 1

k=0 ak = d. The � ` can thus take
� d+ m� 1

m� 1

�
di�erent values at most;

there are at leastd!=(a0! � � � � am� 1!) di�erent  ` (�) associated with the same� ` given by (4.6). /

4.5 The special case pi = 0

In absence of reliable prior information on the behaviour off(�), we recommend to only use a constant
term for the trend; that is, to take pi = 0 for all i . Then, gi (x) = 1 for all i and x, and the reduced
kernel eK i (x; y) is given by eK i (x; y) = K i (x; y) + E� i f K i (X; Y )g � E� i f K i (x; X )g � E� i f K i (y; X )g;
(4.1) becomeseQ i = Q i + 1qi (1

T
qi

W i Q i W i 1qi )1
T
qi

� 1qi 1
T
qi

W i Q i � Q i W i 1qi 1
T
qi

; with 1qi the qi -
dimensional vector of ones, and (4.2) and (4.3) respectively become� 0

i (x) = � � 1
i � T

i W i k i (x) �
� � 1

i � T
i W i Q i W i 1qi and K 0

i (x; x ) = K i (x; x ) + 1T
qi

W i Q i W i 1qi � 2k i (x)T W i 1qi +
P pi

`=0 #i;` P2
i;` (x) :

We only need to choose#i; 0 in (3.9), and we can take#i; 0 = 1 for all i ; see Section 4.3.

4.6 Numerical illustrations

Consider the Matérn 3/2 covariance function, given byK 3=2(x; y; � ) = (1+
p

3� jx � yj) exp(�
p

3� jx �
yj); see [34, Chap. 2]. A zero-mean Gaussian process with this covariance is once mean-square
di�erentiable and has di�erentiable sample paths almost surely. Suppose that� 1 is the uniform
measure on[0; 1], and consider the discrete approximationb� 1(q1) that puts weight 1=q1 on each of
the q1 points x1;j = ( j � 1)=(q1 � 1), j = 1 ; : : : ; q1. We take p1 = 2 , and the polynomials P1;j (�),
orthonormal for � 1, are P1;0(x) = 1 , P1;1(x) =

p
3(2x � 1) and P1;2(x) =

p
5(6x2 � 6x + 1) .

Figure 1-left shows the values of the components of the �rst three eigenvectors' 1;` (x1;j ) =
f � 1gj;` , j = 1 ; : : : ; q1 = 20, of the reduced kernel for` = 1 (triangles), ` = 2 (circles) and ` = 3
(crosses), when� = 2 (top) and � = 20 (bottom). Their canonical extensions ' 0

1;` (x), x 2 [0; 1],
obtained from (4.4), are plotted in blue dashed line. They are orthonormal forb� 1(20), and close
to being orthonormal and orthogonal to the Pi;` (x) (plotted in red solid line) for � 1; see Table 1.
The components of the �rst three eigenvectors obtained whenq1 = 100 are indicated by dots. One
may notice the good agreement with the canonical extensions' 0

1;` (x) based on 20 points only. We
shall useqi = 100 in the examples of Section 7 to ensure quasi-orthonormality of the ` (�) for � 1 in
(3.10), see Table 1.

Figure 1-right shows the values of the� 1;` in (3.9), ` = 0 ; : : : ; 10, for q1 = 20. The eigenvalues

 1;` associated with the ' 0
1;` are indicated by stars; the values of#1;` =  `=(1+ p1 )

1;1 =  `=3
1;1 in (3.9)

(see Section 4.3) for̀ = 0 ; 1; 2 are indicated by triangles. We can see that� (the inverse of the
correlation length) has a moderate in�uence on the �rst eigenfunctions of the decomposition, but
the decrease of eigenvalues is signi�cantly slower for� = 20 (bottom) than for � = 2 (top), which
has a noticeable impact on the prior distribution of Sobol' indices; see Section 7. The choice of�
should preferably agree with prior information on the �uctuations of f(�). In absence of such prior
knowledge, a possible guideline is to select a value of� compatible with the projected number n
of function evaluations: a model with about n components should be able to capture the global
behaviour of f(�) over X . Suppose that a unique kernel is used for all dimensions, and de�ne

� (� ) =

P n
k=1 � `kP

k � `k

=

P n
k=1 � `k

Q d
i =1

� P pi + qi +1
`=1 � i;`

� ; (4.7)
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qi = 20 qi = 100

' 0
1;1 ' 0

1;2 ' 0
1;3 ' 0

1;1 ' 0
1;2 ' 0

1;3

P1;0 � 0 0.0803 � 0 � 0 -0.0180 � 0
P1;1 -0.1468 � 0 0.1447 0.0304 � 0 0.0322
P1;2 � 0 0.1879 � 0 � 0 -0.0408 � 0
' 0

1;1 0.9208 � 0 0.1295 0.9799 � 0 -0.0320
' 0

1;2 � 0.9314 � 0 � 0.9779 � 0
' 0

1;3 � � 0.9247 � � 0.9762

Table 1: Inner products h� 1;` ; � 1;` 0i L 2 (X ;� ) , computed by numerical integration, between regression func-
tions used in (3.2). The canonical extensions' 0

1;j (�) are based on aqi -point quadrature approximation of �
uniform on [0; 1] and the covarianceK 3=2(x; y; 2); � 0 means an absolute value less than10� 15.

Figure 1: First eigenfunctions (left) and eigenvalues (right) for the univariate model with uniform measure
on [0; 1] and Matérn covarianceK 3=2(�; �; � ), for � = 2 (top) and � = 20 (bottom).

see (3.9). A value of� such that � (� ) is close to one then seems reasonable. For instance, when
q1 = 100, n = 64 and pi = 2 for all i , we obtain here � (2) ' 0:9993 and � (20) ' 0:8290 for
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d = 2 , and � (2) ' 0:9845 and � (20) ' 0:5083 for d = 3 , suggesting that 64 evaluations of a
function of three variables may not be enough to reproduce its behaviour with a tensorised model
based on Matérn 3/2 covariance with� = 20 and second-degree polynomials in each variable. The
posterior distributions of the model parameters � ` and Sobol' indices depend on� and rely on
strong assumptions on the underlying model; they should thus be taken with caution. As Section 7
will illustrate, they can, however, be used as guidelines for designing experiments adapted to the
estimation of Sobol' indices.

Remark 4.5. Although a rule based on the value of� (� ) could also be applied when di�erent
covariance functionsK i (�; �; � i ) are used for di�erent input variables, the choice of� = ( � 1; : : : ; � d)
may quickly become cumbersome. On the other hand, when no prior information onf(�) is available,
it makes sense to take the same covariance and correlation length for all dimensions; see the examples
in Section 7. Another option, which we shall not develop in this paper due to space-limitation, is to
estimate � from the data, by maximum likelihood or cross validation, in another (simpler) tensor-
product model, prior to the eigendecomposition. For instance, whenpi = 0 for all i and all K i (�; �)
coincide, we can estimate covariance parameters� in a RF model with unknown mean and covariance

K (a) (x ; y ; � ) =
dY

i =1

K i (x i ; yi ; � ) ; or K (b) (x ; y ; � ) =
dY

i =1

[1 + eK i (x i ; yi ; � )] ; (4.8)

see [9]. An example is presented in Section 7.1. /

The Matérn 5/2 covariance function, K 5=2(x; y; � ) = (1+
p

5� jx� yj+5 � 2jx� yj2=3) exp(�
p

5� jx�
yj), with the same values of� as above, yields plots hardly distinguishable from those presented
in Figure 1. Similar experiments with other covariance functions con�rm the intuition that the
choice of the kernel among a class of smooth enough stationary kernels has little in�uence when
considering only a few terms of the eigendecomposition. Note that once evaluations off(�) have
been obtained, one can easily repeat estimations of Sobol' indices for di�erent covariance kernels
(using various smoothness assumptions and/or correlation lengths), di�erent values ofqi and N ,
etc., thereby assessing the impact of these choices on the estimation.

Suppose now thatd = 2 , with � 1 = � 2 uniform on [0; 1], and consider the tensorised model
(3.10). We take p1 = p2 = 2 and use the covarianceK 3=2(x; y; 2) in each dimension, with the
100-point quadrature approximation b� 1(100). For N = 25, the truncation set LN de�ned by (4.5)
is equal to

L25 =
�

0 0 1 1 0 2 1 2 0 3 0 4 2 1 3 0 5 1 4 2 3 0 6 1 5
0 1 0 1 2 0 2 1 3 0 4 0 2 3 1 5 0 4 1 3 2 6 0 5 1

�

The corresponding values of (log of) � ` are shown in Figure 2, see (4.6). The construction of the

#i;` i in Section 4.3 implies that � 1;` � 2;`0 =  (`+ `0)=3
1;1 for `; ` 0 2 f 0; : : : ; 3g, which explains the presence

of two triples and a quadruple of identical� ` ; pairs of identical values are simply due to an exchange
between dimension indices, i.e.,� 1;` � 2;`0 = � 2;` � 1;`0.

Besides the 9 polynomial componentsP1;` (x1)P2;`0(x2), `; ` 0 2 f 0; 1; 2g, the model (3.10) with
L = L25 also contains 16 components that involve (canonical extensions of) eigenfunctions' 0

i;j (�),
for i = 1 ; 2 and j 2 f 1; : : : ; 6g. IncreasingN in LN allows modelling thinner details in the behaviour
of f(�), but this more precise modelling calls for a larger number of observations. This is why we
suggest to chooseN of the same order of magnitude as the projected number of evaluations off(�).
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Figure 2: Eigenvalues� ` (log scale) in the tensorised model.

5 Estimation of Sobol' indices and credible intervals

Suppose thatn evaluations of f(�) at Dn = f x1; : : : ; xng � X n have been performed, and denote

Y n = [ f(x1); : : : ; f(xn )]T :

Also, in the BLM (3.10) with L = LN given by (4.5), denote� = diag f � `k
; k = 1 ; : : : ; M g, 	 n the

n � M matrix with j; k term  `k
(x j ), for j = 1 ; : : : ; n, k = 1 ; : : : ; M , and � n = diag f s2(x j ); j =

1; : : : ; ng with s2(x) given by (3.11). The parameters� = ( � `1
; : : : ; � `M

)T have the normal prior
N (0; � 2� ) and the errors " 0

n = [ "0(x1); : : : ; "0(xn )] are normally distributed N (0; � 2� n ), see Sec-
tion 4.3. However, the introduction of a prior on the trend parameters in Section 3.2 was only
motivated by the construction of the tensorised model, and when estimating� we shall put an im-
proper prior on the � `k

that correspond to pure trend components in (3.10); that is, we set� � 1
`k

= 0
for all k such that `k;i � pi for all i = 1 ; : : : ; d. We denote by� 0 the corresponding diagonal matrix
(it will only appear through its inverse, which is always �nite). We also denote by K the set of
such k, with jK j = K , and � 0 = diag f � `k

: k 2 f 1; : : : ; M g nKg; R n is the matrix formed by the
columns of 	 n with indices in K and 	 0

n is formed by the remaining columns to	 n ; � is formed
by the K components of� with indices in K and � 0 by the other components of� , having the prior
distribution N (0; � 2� 0).

5.1 Estimation of indices

We estimate � by its posterior mean

�̂
n

= M � 1
n 	 T

n � � 1
n Y n ;

with M n the Bayesian information matrix

M n = 	 T
n � � 1

n 	 n + � � 1
0 : (5.1)

Note that when the data f xk ; f(xk )g arrive sequentially, classical recursive least squares formulae
can be used to avoid repetitions of matrix inversion. Following the developments in Section 2.2, for
any index setU � f 1; : : : ; dg we estimateSU , de�ned in (2.3), by

bS
n
U =

P
`2 LN (U ) (�̂

n
` )2

P
`2 L �

N
(�̂ n

` )2
; (5.2)
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where L �
N = f `k 2 LN : `k 6= 0g = f `2; : : : ; `M g and LN (U ) = f `k 2 L �

N : `k;i = 0 for all i =2 U g,
with LN given by (4.5). This allows us to estimate all Sobol' indicesSV and SV for any index set
V , see Section 2. Any such estimate has the form

bSn =

P
`k 2 eLN

(�̂ n
`k

)2

P M
k=2 (�̂ n

`k
)2

;

for some subseteLN of L �
N , and is thus given by the ratio of two (simple) quadratic forms in �̂

n
.

Note that bSn does not depend on the value of� 2.

5.2 Estimation of � 2

The marginal distribution of Y n given � and � 2 is normal N (R n � ; � 2(� n + 	 0
n � 0	 0

n
T )) . With

an improper prior on � 2 (with density proportional to 1=� 2), its posterior distribution is inverse
chi-square with n � K degrees of freedom and such thatEf 1=� 2jY ng = 1=�̂ 2

n , with

�̂ 2
n =

1
n � K

(Y n � R n �̂ n )T (� n + 	 0
n � 0	 0

n
T ) � 1(Y n � R n �̂ n )

(the restricted maximum likelihood estimator; see [34, p. 170]), wherê� n corresponds to theK
components of�̂

n
with indices in K.

Given � 2, the posterior distribution � (� jY n ; � 2) of � is normal N (�̂
n
; � 2 M � 1

n ), with M n given
by (5.1). When the number of degrees of freedom,n � K , of the posterior distribution of � 2 is large
enough (note that K = 1 when all pi equal zero, see Section 4.5), we may consider that the posterior
� (� jY n ) is normal N (�̂

n
; �̂ 2

n M � 1
n ), and we shall make this approximation in the following.

5.3 Distribution of Sobol' indices

Take any index given by

SeLN
(� ) =

P
`k 2 eLN

� 2
`kP M

k=2 � 2
`k

(5.3)

for some eLN � L �
N (which is well de�ned when � `k

6= 0 for at least one k > 1). We consider two
di�erent approximations of its posterior distribution.

Remark 5.1. The value of SeLN
(� ) is invariant by a scale transformation of the � `k

, with the
consequence that when� has the normal prior N (0; � 2� ), the prior distribution of SeLN

(� ) does
not depend on the value of� 2. /

5.3.1 Normal approximation

Consider the ratio (5.3). Since� has the normal posteriorN (�̂
n
; �̂ 2

n M � 1
n ), we approximate the

posterior distribution � (SeLN
(� )jY n ) by the normal distribution with mean SeLN

(�̂
n
) and variance

V n
eLN

= �̂ 2
n

@SeLN
(� )

@� T

�
�
�
�
�̂

n
M � 1

n

@SeLN
(� )

@�

�
�
�
�
�̂

n
:

Direct calculation gives
@SeLN

(� )

@�
=

2

� T J�
� eLN

� ; (5.4)
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with � eLN
the diagonal matrix

� eLN
= U eLN

� SeLN
J ; (5.5)

where U eLN
= diag f u`k

; k = 1 ; : : : ; M g, u`k
= 1 if `k 2 eLN and is zero otherwise, andJ is the

M � M diagonal matrix diagf 0; 1; : : : ; 1g. We thus obtain

V n
eLN

=
4 �̂ 2

n

[(�̂
n
)T J �̂

n
]2

(�̂
n
)T � eLN

M � 1
n � eLN

�̂
n

: (5.6)

Critical values for the normal distribution N (SeLN
(�̂

n
); V n

eLN
), truncated to [0; 1], provide approxi-

mate credible intervals for SeLN
(� ). Notice that the estimation of SeLN

(� ) and the construction of
these credible intervals can be data-recursive; see also [15, 16] for another data-recursive approach
for �rst and second-order indices.

5.3.2 Exact posterior distribution of Sobol' indices for normal parameters

We use the results in [19] and [4] to derive the exact distribution ofSeLN
(� ) de�ned by (5.3) when

� is normal N (�̂
n
; �̂ 2

n M � 1
n ). Denoting A = �̂ 2

n M � 1=2
n U eLN

M � 1=2
n and B = �̂ 2

n M � 1=2
n JM � 1=2

n , we
get

FeLN
(r ) = Probf SeLN

(� ) � r g = Probf t T (A � r B )t � 0g;

where t � N (0; I M ). Next, we construct the spectral decompositionA � r B = PDP T , with
D = diag f � 1; : : : ; � M g, and compute ! = ( ! 1; : : : ; ! M )T = �̂ � 1

n PT M 1=2
n �̂

n
. Then,

FeLN
(r ) =

1
2

�
1
�

Z 1

0

sin � (u)
u (u)

du ; (5.7)

where

� (u) =
1
2

MX

k=1

�
arctan(� ku) +

! 2
k � ku

1 + � 2
ku2

�
and  (u) = exp

(
1
2

MX

k=1

�
! 2

k � 2
ku2

1 + � 2
ku2 +

1
2

log(1 + � 2
ku2)

� )

;

see [19]. The density ofSeLN
(� ) is given by

f eLN
(r ) =

1
�

Z 1

0

� (u) cos� (u) � u� (u) sin � (u)
2 (u)

du ; (5.8)

where � (u) and  (u) are de�ned above and

� (u) = trace[ HF � 1] + ! T F � 1(H � u2DHD )F � 1! ; � (u) = trace[ HDF � 1] + 2 ! T F � 1HDF � 1! ;

with H = PT BP and F = I M + u2D 2; see [4].
Using the expressions (5.7) and (5.8) ofFeLN

(r ) and f eLN
(r ), we can easily construct credible

intervals of minimum length for SeLN
(� ), e.g. via dichotomy search. For a given� 2 (0; 1), e.g.,

� = 0 :05, we �nd b 2 [0; 1] such that FeLN
(b) � FeLN

[a(b)] = 1 � � , where a(b) < b is such that
f eLN

[a(b)] = f eLN
(b) and is also determined by dichotomy search. An illustration is given in Figure 4-

left. Of course, the required integral computations make this construction signi�cantly heavier than
the derivation of approximate intervals based on the normal approximation of Section 5.3.1.
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6 Experimental design

We consider the usual situation where we want to simultaneously estimateJ di�erent indices
SeLN; 1;:::;J

(� ) = ( SeLN; 1
(� ); : : : ; SeLN;J

(� ))T corresponding to di�erent sets eLN;j = eLN (U j ) in (5.3).

For instance, to estimate the d �rst-order total indices Si , i = 1 ; : : : ; d, we should consider thed
sets eLN;i = f `k 2 L �

N : `k;i 6= 0g; see Section 2.2. Denote byV (� ) the M � J matrix formed from
the derivatives (5.4) of the J indices of interest,

V (� ) =
2

� T J�

h
� eLN; 1

� j � � � j � eLN;J
�

i
: (6.1)

Following developments similar to those in Section 5.3.1, we can approximate the posterior joint dis-
tribution of SeLN; 1

; : : : ; SeLN;J
by the normal distribution N (SeLN; 1;:::;J

(�̂
n
); �̂ 2

n 
 n (� n )) , with 
 n (� )
the J � J matrix


 n (� ) = V T (� )M � 1
n V (� ) ;

and construct experimental designsDn that minimise a scalar function of 
 n . We suppose that
Dn � X Q = f x (1) ; : : : ; x (Q)g, a given �nite set of candidate points; for instance, X Q may be
given by the �rst Q points of a low discrepancy sequence inX . Notice that it is computationally
advantageous to compute all� 0

i (f x (j )gi ) given by (4.2) and all K 0
i (f x (j )gi ; f x (j )gi ) given by (4.3) in

advance, for j = 1 ; : : : ; Q and i = 1 ; : : : ; d. We only present the construction of adaptive designs;
optimal (non-adaptive) designs are brie�y considered in the Appendix.

The choice of suitable design criteria depends on which aspect of precision we consider more
appealing. Assuming that the indices of interest are approximately normally distributed, the D-
optimality criterion det(
 n ) is related to the (squared) volume of joint con�dence ellipsoids; the
A-optimality criterion trace(
 n ) is related to the sum of squared lengths of the principal axes
of these ellipsoids; the MV-optimality criterion max[diag(
 n )] is related to the maximum of the
variances of individual indices, see [21].

D-optimality for the estimation of �rst-order Sobol' indices in PCE models is considered in [5],
and we follow the same line in the more general framework considered here. We suppose thatn0

evaluations off(�) have been performed, such thatM n0 is nonsingular. Then, for eachn � n0, after
estimation of �̂

n
from n evaluations of f(�), we choose the next design pointxn+1 that yields the

largest decrease ofC[
 n+1 (�̂
n
)], with C(�) one of the criteria above.

Straightforward calculations indicate that

xn+1 2 Arg max
x 2 X Q

 T (x)M � 1
n V (�̂

n
)[V T (�̂

n
)M � 1

n V (�̂
n
)] � 1V T (�̂

n
)M � 1

n  (x)

s2(x) +  T (x)M � 1
n  (x)

(6.2)

when minimising det[
 n+1 (�̂
n
)],

xn+1 2 Arg max
x 2 X Q

 T (x)M � 1
n V (�̂

n
)V T (�̂

n
)M � 1

n  (x)

s2(x) +  T (x)M � 1
n  (x)

(6.3)

when minimising trace[
 n+1 (�̂
n
)], and

xn+1 2 Arg max
x 2 X Q

min
j =1 ;:::;J

(
[ T (x)M � 1

n V (�̂
n
)ej ]2

s2(x) +  T (x)M � 1
n  (x)

� eT
j V T (�̂

n
)M � 1

n V (�̂
n
)ej

)

(6.4)

when minimising maxf diag[
 n+1 (�̂
n
)]g, with  (x) = [  `1

(x); : : : ;  `M
(x)]T and ej the j th canon-

ical basis vector ofRJ (any of the maximisers can be chosen forxn+1 in case there are several).
Weighed versions oftrace(
 ) and max[diag(
 )] might also be considered, for instance in order to
consider individual relative precision of theJ indices, by introducing weights alongdiag(
 ).
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Remark 6.1. The presence of independent errors in the model (3.10) has the consequence that
the sequential construction above may yield repetitions of observations at the same design point.
When this happens, it may be interpreted as an indication that the approximations involved are
too rough for the number of observations considered and should be re�ned by (i ) considering a �ner
set X Q and/or ( ii ) enlarging the number of components in (3.10), that is, the value ofN in (4.5);
see Figure 11 for an illustration. Note that repetitions can always be avoided by considering that
s2(x) is in�nite for any x already selected. /

7 Numerical examples

7.1 Ishigami function

This function depends on three variables and is frequently used as a test-case in sensitivity analysis.
It is given by f(x) = sin( x1)+ a sin2(x2)+ bx4

3 sin(x1), x being uniformly distributed in X = [ � �; � ]3.
We shall use the valuesa = 7 and b = 0 :1. The �rst-order indices are equal to

S1 = ( b� 4=5 + b2� 8=50 + 1=2)=� ; S2 = a2=(8�) ; S3 = 0

where � = a2=8 + b� 4=5 + b2� 8=18 + 1=2, the second-order indices are all zero exceptedS1;3 =
8b2� 8=(225�) . We have, by de�nition, see Section 2.1,

S1 = S1 + S1;3 ; S2 = S2 ; S3 = S1;3 ; S1;2 = S1 + S2 ; S1;3 = S1;3 + S1 and S2;3 = S2 :

We approximate each marginal of� by the discrete uniform measure that puts weight 1/100 at
each of the points(j � 1)=99, j = 1 ; : : : ; q = 100, and use the covarianceK 3=2(x; y; � ), see Section 4.6.
We set pi = 0 for i = 1 ; 2; 3 (we have observed that the performances are signi�cantly deteriorated
when setting the polynomial degreespi to positive values). We estimate the indices by evaluating
f(�) at the �rst n points of Sobol' low-discrepancy sequence in[0; 1]3, and take N = n in (4.5).

Figure 3-left shows the density (5.8) of the prior distribution of �rst-order indices Si (the same
for i = 1 ; 2; 3) for � = 2 (solid line) and � = 20 (dashed line). Figure 3-right shows the two posterior
distributions obtained for S1 when n = 64, � = 2 (solid line) and � = 20 (dashed line), � having the
normal distribution N (�̂

n
; �̂ 2

n M � 1
n ); see Section 5.3.2. The true value ofS1 is indicated by a star.

The model with � = 2 seems able to adequately capture the global behaviour off(�), whereas prior
weights on components with fast variations are exaggeratedly large when� = 20, see the discussion
in Section 4.6, which renders the estimation less precise.

Figure 4-left shows the posterior density (5.8) forS1 (solid line, same as in Figure 3-right),
the minimum-length 95% credible interval, and the normal approximation of the posterior (dashed
line), all for � = 2 . The estimator (5.2) gives bS64

1 ' 0:3337, reasonably close to the true value
S1 ' 0:3139. Figure 4-right shows the posterior density (5.8) ofS1;2 (solid line) and its normal
approximation (dashed line). Figure 5 presents the same information forS1;3, when n = 64 (left)
and n = 256 (right). The estimation of second-order indices is clearly more di�cult: when n = 64,
S1;2 tends to be over-estimated (Figure 4-right) andS1;3 underestimated (Figure 5-left). However,
the situation improves when increasingn, with bS256

1;2 ' 7: 10� 4 and bS256
1;3 ' 0:2408, see Figure 5-right.

We obtain slightly better results when we �rst estimate � in the RF model with unknown mean and
covarianceK (a) (�; �; � ) in (4.8) from the same data, and then plug the estimated�̂ n into K i (�; �; � ).
Estimation of � by leave-one-out cross validation, see [8], giveŝ� 64

LV O ' 1:32 and bS64
1 ' 0:3188;

�̂ 256
LV O ' 1:25 and bS256

1;2 ' 9: 10� 4, bS256
1;3 ' 0:2448. Estimating each � i separately in the covariance

Q 3
i =1 K i (x i ; yi ; � i ) does not improve performance; the results are slightly worse when estimating� in
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Figure 3: Ishigami function. Left: density (5.8) for Si (�rst-order indices) when � has the prior distribution
N (0; � 2� ) (see Remark 5.1). Right: density ofS1 when � has the posterior distribution N (�̂

n
; �̂ 2

n M � 1
n ),

n = 64. The covariance for univariate models isK 3=2(x; y; 2) (red solid line) or K 3=2(x; y; 20) (blue dashed
line); S1 ' 0:3139is indicated by a star.

Figure 4: Ishigami function: posterior distributions for n = 64 with covariance K 3=2(x; y; 2). Left: posterior
density (5.8) for S1 (red solid line) and minimum-length 95% credible interval; normal approximation (blue
dashed line); S1 ' 0:3139 (star). Right: posterior density (5.8) for S1;2 (red solid line) and its normal
approximation (blue dashed line); the true value is zero.

K (b) (�; �; � ) compared with those for� = 2 . Although this con�rms the intuition that estimation of
� may improve performance, we shall always useK i (x; y) = K 3=2(x; y; 2) in the rest of the section.

Figure 6-left presents the evolution of the �rst order-index bSn
1 , see (5.2), with�̂

n
estimated from

evaluations at successive points of Sobol' sequence. After a batch ofn0 = 10 evaluations, we use a
recursive construction for �̂

n
, and thus for bSn

1 , for n = 11; : : : ; 256 (dashed line). The 95% credible
intervals for the normal approximation (Section 5.3.1) are shown in dotted line; the true value ofS1

corresponds to the horizontal solid line. Figure 6-right presents the same information forS2 (top)
and S3 (bottom). We have taken N = 256 in (4.5) and pi = 0 for i = 1 ; 2; 3.

The function f(�) is �xed, but we may consider the variability of estimated indices when using
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Figure 5: Ishigami function: posterior density (5.8) for S1;3 (red solid line) and its normal approximation
(blue dashed line) with covarianceK 3=2(x; y; 2). Left: n = 64; Right: n = 256; S1;3 ' 0:2437is indicated by
a star.

Figure 6: Ishigami function: estimated �rst-order indices (dashed line) and normal approximation of 95%
credible intervals (dotted lines) with a tensorised BLM using K 3=2(x; y; 2) and N = 256; the solid line
indicates the true value. Left: S1; right: S2 (top) and S3 (bottom).

di�erent designs. We take N = n in (4.5), pi = 0 for all i and evaluatef(�) at 100 di�erent n-point
Lh designsD (k)

n constructed as follows. We �rst generate 10,000 random Lh designs inX , and then
select the 100 designs having the smallest value ofJq(�) de�ned by

Jq(Dn ) =
nX

i =1

min
j 6= i

kx j � x i kq ; q < 0;

with Dn = f x1; : : : ; xng. J 1=q
q (Dn ) tends to JMm (Dn ) = min i 6= j kx j � x i k as q tends to �1 ,

but its value depends on the respective positions of all points, contrary to the maximin criterion
JMm (�). A design optimal for Jq(�) is n1=q-e�cient for JMm (�) in the design family considered
[27]; we take q = � 20 to select designs having good space-�lling properties. The left column

20



of Figure 7 presents box-plots (median, 25th and 75th percentiles and minimum and maximum
values) of the errors bSn � S, for n = 64 (top), 128 (middle) and 256 (bottom) respectively, for
�rst-order, total, second-order and closed-second-order indices. We can see that the estimation
is already reasonably accurate for smalln (the results do not improve when we estimate� by
cross validation). Table 2 gives the empirical coverage probabilities (in %), for the 100 random
Lh designs, of approximate2� credible intervals constructed with the varianceV n

eLN
given by (5.6),

for �rst-order indices (S1; S2; S3), total indices (S1; S2; S3), second-order indices(S1;2; S1;3; S2;3)
and closed-second-order indices(S1;2; S1;3; S2;3). Although V n

eLN
accounts for uncertainty due to

the possible variability of f(�) conditional on evaluations at a �xed design, by considering di�erent
designs of the same type (they are all space-�lling and have the same one-dimensional projections)
we try to mimic the behaviour of di�erent f(�) for the same design. The coverage probabilities in
Table 2 are acceptable in most cases. The small coverage probabilities observed forS1;3 can be
explained by the presence of a small estimation bias, see Figure 7, which may be related to the fact
that the 100 designs considered are not particularly adapted to the estimation of indices. For the
design used in Figure 6 (256 points of Sobol' sequence), we obtainbS256

1;3 � S1;3 ' � 0:0029; for the

design in Figure 9 (adaptive MV-optimal) we get bS256
1;3 � S1;3 ' 0:0013.

Si Si Si;j Si;j

n = 64 92 98 100 97
98 99 67 99
99 97 100 98

n = 128 100 93 99 78
95 95 59 93
97 78 96 93

n = 256 99 96 99 85
97 96 73 96
89 85 65 96

Table 2: Empirical coverage probabilities (in %), for 100 random Lh designs, of approximate2� credible
intervals for (S1; S2; S3), (S1; S2; S3), (S1;2; S1;3; S2;3) and (S1;2; S1;3; S2;3) (BLM with K 3=2(x; y; 2)).

We now consider estimation of indices via (Legendre) polynomial-chaos expansion. When the
total polynomial degree is D , the model containsM =

� D + d
d

�
parameters. Figure 8 presents the

same information as Figure 6, using the same design points. We takeD = 5 , which gives a model
with M = 56 parameters. We start with a batch of n0 = 64 observations and then estimate�̂

n

by recursive least-squares, forn = 65; : : : ; 256. When the number of observations is small, we are
over-con�dent in the model, although it is not �exible enough to estimate the indices correctly;
when n increases, con�dence in the model decreases due to a bad �tting with 56 tuning parameters
only. Next, using the same random Lh designs as in Figure 7-left, we select the total degreeD that
gives the best estimation (which is possible here since we know the true value of indices). When
n = 64 (128 and 256, respectively), this gives a model of degree 4 (6 and 8, respectively), with 35
(84 and 165, respectively) parameters. The results (box-plots) are presented in the right column
of Figure 7. Although we have adapted the total degree of the model to the sample size (which
is not an easy task in practice), comparison with the left column indicates that performance are
signi�cantly worse than with the tensorised BLM.

Finally; we consider the adaptive designs of Section 6. Figure 9 shows the evolution of estimated
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Figure 7: Ishigami function: box-plots of estimation errors of �rst-order, total, second-order and closed-
second-order indices for 100 random Lh designs withn = 64 (top), n = 128 (middle), n = 256 (bottom).
Left column: tensorised BLM; right-column: polynomial-chaos model with D = 5 (top), D = 6 , (middle)
and D = 8 (bottom).

�rst-order indices bSn
1 for the tensorised BLM, like in Figure 6, but when the design pointsxn for

n = 11; : : : ; 256are obtained from (6.4) with X Q formed by the �rst 1,024 points of Sobol' sequence.
We observe that convergence to the true values (solid lines) is faster than with the �rst 256 points
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Figure 8: Ishigami function: estimated �rst-order indices (dashed line) and normal approximation of 95%
con�dence intervals (dotted lines) with a polynomial-chaos model of total degreeD = 5 ; the solid line
indicates the true value. Left: S1; right: S2 (top) and S3 (bottom).

of Sobol' sequence used in Figure 6. Figure 10-left shows the evolution of variances (5.6) (used to
build the 95% credible intervals in Figure 9); on Figure 10-right the design pointsx11; : : : ; x256 are
obtained from (6.2).

Figure 9: Ishigami function: estimated �rst-order indices (dashed line) and normal approximation of 95%
credible intervals (dotted lines) with a tensorised BLM using K 3=2(x; y; 2), N = 256, and design points given
by (6.4); the solid line indicates the true value. Left: S1; right: S2 (top) and S3 (bottom).

7.2 Sobol' g-function

The function is given by f(x) =
Q d

i =1 fi (x i ) with fi (x) = ( j4x � 2j + ai )=(ai + 1) for all i and x
uniformly distributed in the unit cube X = [0 ; 1]d; the number d of input variables is arbitrary.
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Figure 10: Ishigami function: estimated variances (5.6) of �rst-order indices S1 (red solid line), S2 (black
dashed line) andS3 (blue dotted line) as functions of n, for the design sequences (6.4) (left) and (6.2) (right).

The index corresponding to any index setU = f i 1; i 2; : : : ; i sg � f 1; : : : ; dg is equal to

SU =
1
D

sY

j =1

1
3

(ai j + 1) � 2 ;

where D =
Q d

i =1

�
1 + 1

3 (ai + 1) � 2
�

� 1. We use ai = i in the example. Note that f(�) is not
di�erentiable. We take pi = 0 for all i and K 3=2(x; y; 2) for the construction of the BLM.

Consider �rst the case d = 2 . The design spaceX Q is formed by the �rst 1,024 points of Sobol'
sequence. Figure 11-left (respectively, right) shows the adaptive designx11; : : : ; x128 produced by
(6.3) for the estimation of �rst-order indices S1 and S2 (respectively, of S1;2), when x1; : : : ; x10

correspond to the �rst 10 points of Sobol' sequence andN = 20 in (4.5). Here, we sets(x) = + 1
after the evaluation of f(x) to avoid repetitions, see Remark 6.1. The formation of clusters is an
indication that N is too small (N = 20 whereasn = 128). When we do not enforce avoidance of
repetitions, we only get 78 (respectively, 53) di�erent design points in Figure 11-left (respectively,
right).

Next, using the approach presented in the Appendix, we construct an initial optimal design for
the minimisation of the criterion (A.5) with $ = N = 20. Note that the construction is independent
of the function f(�) considered. The� -optimal measure� � (� = 10 � 5) is supported on 44 points, and
Algorithm 1 with � = 1 :1 suggests to remove 26 points from� � , see Figure 12-right. The design
� 18 extracted is shown on Figure 12-left, where the disk areas are proportional to the weightswj

of � 18. Similar behaviours are observed in other situations (with di�erent covariance functions for
the BLM, di�erent choices for N and $ , estimation of di�erent indices, etc.): the designs obtained
are typically well spread overX , suggesting that the improvement in terms of the precision of the
estimation of indices with respect to a more standard space-�lling design is doubtful.

Consider �nally the case d = 10. Figure 13 shows box-plots of the estimation errorsbSn � S of
�rst-order and total indices obtained for 100 random Lh designs withn = 512 points generated as in
Section 7.1. The estimation is much more precise with the BLM model (left) than with polynomial-
chaos expansion with total degreeD = 3 (right) � the model has 286 parameters, the model for
D = 4 would have 1001 parameters. The true value of the indices are given in Table 3, inspection
of Figure 13-left indicates that the estimation of �rst-order and total indices is already reasonably
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Figure 11: Adaptive designs (dots) constructed with (6.3) (without repetitions, see Remark 6.1) for the
estimation of S1 and S2 (left) and S1;2 (right) in Example 7.2 with d = 2 ; n = 128, the �rst 10 points (stars)
correspond to Sobol' sequence.

Figure 12: Exact design (18 points) produced by the method in the Appendix for the estimation of �rst-
order indices in Example 7.2 with d = 2 and $ = N = 20. Left: design extracted from the � -optimal design
measure� � (� = 10 � 5); � � has s� = 44 support points (not shown), the disk areas are proportional to the
weights wj of � 18. Right: evolution of %s� � k as a function of k (see line 5 of Algorithm 1).

accurate for n = 512 when using the BLM model (although we only have� (� ) ' 0:6130 for � = 2 ,
see (4.7), and althoughf(�) is not di�erentiable). The empirical coverage probabilities, computed
as in Section 7.1, are at least 99% for all �rst-order and total indices.

8 Conclusions and further developments

A metamodelling approach has been proposed for the estimation of Sobol' indices. It relies on
Karhunen-Loève expansions and combines the �exibility provided by Gaussian-process models with
the easy calculations o�ered by models based on families of orthonormal functions. The computa-
tional cost is moderate (it mainly corresponds to the diagonalisation of a few matrices of limited
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Figure 13: Sobol' g-function for d = 10 and n = 512: box-plots of estimation errors of �rst-order and total
indices for 100 random Lh designs. Left: tensorised BLM withK 3=2(x; y; 2), pi = 0 for all i and N = n in
(4.5); right: polynomial-chaos model with total degreeD = 3 .

i 1 2 3 4 5 6 7 8 9 10
Si 0.4183 0.1859 0.1046 0.0669 0.0465 0.0342 0.0261 0.0207 0.0167 0.0138
Si 0.4631 0.2150 0.1229 0.0792 0.0552 0.0407 0.0312 0.0247 0.0200 0.0165

Table 3: First-order and total indices for Sobol' g-function with d = 10 and ai = i for all i .

dimension), and a normal approximation of the posterior distribution of indices is readily available.
It can be used to construct experiments adapted to the estimation of Sobol' indices, and various
approaches can be considered: sequential, batch sequential, construction of an initial design.

Several points deserve further investigations. The examples shown indicate that the method is
e�cient for estimating the indices accurately from a moderate number n of function evaluations,
but we have not investigated its convergence properties. Consistent estimation can be obtained
by letting N (the number of regression functions in the model) and theqi (number of points in
the one-dimensional quadrature approximations) grow fast enough withn, but we do not know the
optimal growth rate. The suboptimal choice made in the paper (qi constant and N = n) could
surely be improved, and being able to control the quadrature and truncation errors, under suitable
assumptions, would be of major interest. We observed that the inclusion of orthonormal polynomial
terms in the model (i.e., taking pi � 1) deteriorates the performance of the method. A general con-
�rmation of this phenomenon would be useful, especially as computations are signi�cantly simpler
when all pi equal zero. We have used a unique covariance function with a �xed value of the range
parameter � , with a suggestion for choosing� in agreement with the projected value ofn, see (4.7).
The estimation of � based on function evaluations seems a reasonable alternative; see Remark 4.5
and the example in Section 7.1. It would also be interesting to consider Bayesian Model Averaging,
see [18, 29], using a (small) set ofT di�erent covariance models K (t )

i (�; �), and possibly di�erent

polynomial degreesp(t )
i , t = 1 ; : : : ; T , in each dimension. Finally, the construction of optimal ex-

periments adjusted to the estimation of Sobol' indices has been considered in Section 6. Adaptive
constructions seem promising, in the sense that they provide (slightly) faster convergence of the
estimated indices than more usual low-discrepancy sequences. The choice of indices (�rst or second
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order, total, closed. . . ) on which adaptive designs should focus remains an open issue. On the other
hand, (initial, o�-line) optimal designs exhibit a rather classical space-�lling property, and therefore
do not seem superior to standard uniform designs.
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A Appendix: optimal design

We only consider A-optimal design and minimisetrace[
 n (� 0)] for some � 0. Direct calculation
shows that trace[
 n (� 0)] is proportional to trace

�
C(� 0)M � 1

n

�
=(� T

0 J� 0)2, where

C(� ) =
JX

j =1

� eLN;j
(� ) �� T � eLN;j

(� ) ; (A.1)

and where the � eLN;j
(� ) are given by (5.5) (they depend on� through the indices SeLN;i

(� ) =

(� T U eLN;i
� )=(� T J� ), see (5.3)). Note that f C(� )g1;1 = 0 .

Consider �rst batch sequential design, whenn0 evaluations of f(�) are available and the next
n design points Dn have to be chosen, with�̂

n0 the current estimated value of � . We then set
� 0 = �̂

n0 , substitute M n0 for � � 1
0 in (5.1), and chooseDn that minimises trace

h
C(�̂

n0 )M � 1
n

i
.

(Note that one may also re-estimate the covariance parameters� and construct a new BLM based
on �̂ n0 .)

For the construction of an initial design (that is, prior to any evaluation of f(�), when no nominal
value � 0 is available), we suggest to replace each quadratic form in� that appears in trace[
 n (� )]
by its expectation, with � normally distributed N (0; � 2� ). The criterion to be minimised is then
trace[eCM � 1

n ], with eC the diagonal matrix

eC = �
JX

j =1

� 2
eLN;j

(e� ) ; (A.2)

where e� = (� 1=2
`1

; : : : ; � 1=2
`M

)T . Note that f eCg1;1 = 0 and f eCgk;k > 0 for k � 2 (since SeLN;i
(e� ) > 0

for all i , so that f � eLN;i
(e� )gk;k 6= 0 for all k � 2, see (5.5)).

An exchange algorithm for exact design We consider the minimisation oftrace[CM � 1
n ] with

respect toDn , whereC = C(�̂
n0 ) given by (A.1) in batch sequential design, orC = eC given by (A.2)

in the construction of an initial design, using an exchange-type algorithm, similar to the DETMAX
algorithm of [24]. Let Dn = D (k)

n denote the current design at iterationk of the algorithm and M n

denote the corresponding Bayesian information matrix. We suppose thatDn is such that M n is
nonsingular. Each iteration comprises two steps. We only consider excursions through(n +1) -point
designs, but excursions through designs of size larger thann + 1 could be considered as well.
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First, we consider an optimal design augmentation, obtained by adding a point

xn+1 2 Arg max
x 2 X Q

 T (x)M � 1
n CM � 1

n  (x)

s2(x) +  T (x)M � 1
n  (x)

(A.3)

to Dn , where we sets2(x i ) = + 1 for all x i 2 Dn to avoid repetitions of observations at the same
point. Second, we return to ann-point design by removing a point fromD +

n = Dn [ f xn+1 g. Denote
by M +

n the Bayesian information matrix corresponding toD +
n . It satis�es

(M +
n ) � 1 = M � 1

n �
M � 1

n  (xn+1 ) T (xn+1 )M � 1
n

s2(xn+1 ) +  T (xn+1 )M � 1
n  (xn+1 )

;

and elementary calculation shows that the optimal choice for a pointx � to be removed is given by

x � 2 Arg min
x 2 D +

n

 T (x)(M +
n ) � 1C(M +

n ) � 1 (x)

s2(x) �  T (x)(M +
n ) � 1 (x)

:

The designD (k+1)
n for next iteration is then Dn [ f xn+1 g n fx � g. The algorithm is stopped when

the criterion value does not decrease between two successive iterations, which generally means that
x � = xn+1 . Fedorov's exchange algorithm [11, Chap. 3] could be considered as well, at the expense
of heavier computations at each iteration. See also [2, Chap. 12].

Construction of an optimal design measure Let � denote the set of probability measures on
X Q , a �nite subset of X . Consider the construction of an optimal initial design. For any � in �
and any $ 2 R+ , de�ne

M $ (� ) =
Z

X Q

1
s2(x)

 (x) T (x) d� (x) +
� � 1

0

$
; (A.4)

so that n M n (� n ) = M n given by (5.1) when� n = (1 =n)
P n

k=1 � x i is the empirical measure associ-
ated with the design Dn . An optimal design measure� � is obtained by minimising the L-optimality
criterion (L for linear)

C$ (� ) = trace
�
CM � 1

$ (� )
�

; (A.5)

with C = eC given by (A.2), with respect to � 2 � . In batch sequential design, we would take
C = C(�̂

n0 ) given by (A.1) for the current estimated value �̂
n0 and substitute M n0 for � � 1

0 in
(A.4). Since X Q is �nite, the minimisation of C$ (� ) forms a �nite-dimensional convex optimisation
problem, for which many e�cient algorithms are available; see, e.g., [28, Chap. 9]. Iterationk of a
vertex-direction algorithm transfers some mass tox � 2 X Q that minimises the current directional
derivative F$ (� k ; x), here given by

F$ (� k ; x) = lim
 ! 0+

C$ [(1 �  )� k + � x ] � C $ (� k )


= �
 T (x)M � 1

$ (� k )CM � 1
$ (� k ) (x)

s2(x)
+ trace

�
M � 1

$ (� k )[M $ (� k ) �
� � 1

0

$
]M � 1

$ (� k )C
�

:

This gives x � 2 Arg maxx 2 X Q [ T (x)M � 1
$ (� k )CM � 1

$ (� k ) (x)]=s2(x), compare with (A.3). Note
that we have assumed thatM $ (� k ) is nonsingular. This can always be achieved trough regulari-
sation, by re-introducing a weakly informative prior N (0;  2 I K ) on the K parameters � , with a
large  , so that all diagonal terms of � � 1

0 become strictly positive in (A.4), see Section 5.
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Extraction of an exact design Let � � denote an� -optimal design measure, satisfyingminx 2 X Q

F$ (� � ; x) > � � , with � a small positive number. The measure� � has a �nite number s� of support
points, and can be written as

� � = � s� =
s�X

k=1

wk:s� � x k ;

where we assume that the weights are ordered by decreasing values:w1:s� � w2:s� � � � � � ws� :s� .
Our extraction procedure consists in sequentially reducing the support by transferring the smallest
current weight to another support point, suitably chosen (see also Algorithm 1 of [14] for an alter-
native approach). The sizen of the design extracted is not seta priori , but is in some sense adapted
to the truncation level used to construct the set LN , see (4.5). The value of$ used to construct
� � should be of the same order of magnitude asN , but this choice is not critical. For � s a discrete
measure of the form� s =

P s
k=1 wk � x k , we denote by � s;u the uniform measure having the same

support; that is, � s;u = (1 =s)
P s

k=1 � x k . The matrix sM s(� s;u) thus corresponds to the Bayesian
information matrix M s for the designDs formed by the support of � s, see (5.1). The construction
is described in Algorithm 1.

Algorithm 1 Greedy algorithm for merging support points

Require: � s� , an � -optimal design measure forC$ (�), a threshold � > 1;
1: set s = s� ;
2: while s > 1 do
3: compute k� 2 Arg maxk=1 ;:::;s� 1[ T (xk )M � 1

$ (� s)CM � 1
$ (� s) (xk )]=s2(xk );

4: Compute � s� 1 =
P s� 1

k=1 wk;s � x k wherewk;s = wk:s for k 6= k� and wk � ;s = wk � :s+ ws:s; reorder
the weights of � s� 1 by decreasing values, i.e., write� s� 1 =

P s� 1
k=1 wk:s� 1� x k , with w1:s� 1 �

w2:s� 1 � � � � � ws� 1:s� 1; s  s � 1;
5: if %s = trace f C[sM s(� s;u)] � 1g=tracef C[(s + 1) M s+1 ([s=(s + 1)] � s+1 ;u )] � 1g > � , stop;
6: end while
7: return n = s + 1 and Dn given by the support of � s+1 .

We rescale� s+1 ;u into [s=(s+ 1)] � s+1 ;u in the test at line 5 of the algorithm, since � s+1 ;u has one
more point than � s;u , so that tracef C[sM s(� s;u)] � 1g > tracef C[(s + 1) M s+1 (� s+1 ;u )] � 1g for all s,
whereas%s usually �uctuates around 1 in the �rst steps when s is close tos� ; see Figure 12-right
in Section 7 for an illustration. We can also base the selection of an optimalk� at line 3 on the
comparison between the values ofC$ (�), or Cs(�), achieved for all thes � 1 possible mass transfers,
at the expense of a signi�cantly larger computational cost whens� is large.

References

[1] A. Alexanderian. On spectral methods for variance based sensitivity analysis.Probability
Surveys, 10:51�68, 2013.

[2] A.C. Atkinson, A.N. Donev, and R.D. Tobias. Optimum Experimental Designs, with SAS.
Oxford University Press, 2007.

[3] G. Blatman and B. Sudret. E�cient computation of global sensitivity indices using sparse
polynomial chaos expansions.Reliability Engineering & System Safety, 95(11):1216�1229, 2010.

[4] S. Broda and M.S. Paolella. Evaluating the density of ratios of noncentral quadratic forms in
normal variables. Comput. Statist. Data Anal., 53:1264�1270, 2009.

29



[5] E. Burnaev, I. Panin, and B. Sudret. E�ective design for Sobol indices estimation based on
polynomial chaos expansions. InSymposium on Conformal and Probabilistic Prediction with
Applications, pages 165�184. Springer, 2016.

[6] R.I. Cukier, C.M. Fortuin, K.E. Shuler, A.G. Petschek, and J.H. Schaibly. Study of the sensi-
tivity of coupled reaction systems to uncertainties in rate coe�cients. I Theory. The Journal
of Chemical Physics, 59(8):3873�3878, 1973.

[7] R.I. Cukier, J.H. Schaibly, and K.E. Shuler. Study of the sensitivity of coupled reaction systems
to uncertainties in rate coe�cients. III Analysis of the approximations. The Journal of Chemical
Physics, 63(3):1140�1149, 1975.

[8] O. Dubrule. Cross validation of kriging in a unique neighborhood.Journal of the International
Association for Mathematical Geology, 15(6):687�699, 1983.

[9] N. Durrande, D. Ginsbourger, O. Roustant, and L. Carraro. Anova kernels and RKHS of
zero mean functions for model-based sensitivity analysis.Journal of Multivariate Analysis,
115:57�67, 2013.

[10] B. Efron and C. Stein. The jackknife estimate of variance.The Annals of Statistics, 9(3):586�
596, 1981.

[11] V.V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

[12] V.V. Fedorov. Design of spatial experiments: model �tting and prediction. In S. Gosh and C.R.
Rao, editors, Handbook of Statistics, vol. 13, chapter 16, pages 515�553. Elsevier, Amsterdam,
1996.

[13] J.-C. Fort, T. Klein, A. Lagnoux, and B. Laurent. Estimation of the Sobol indices in a linear
functional multidimensional model. Journal of Statistical Planning and Inference, 143(9):1590�
1605, 2013.

[14] B. Gauthier and L. Pronzato. Convex relaxation for IMSE optimal design in random �eld
models. Computational Statistics and Data Analysis, 113:375�394, 2017.

[15] L. Gilquin, E. Arnaud, C. Prieur, and H. Monod. Recursive estimation procedure of Sobol'
indices based on replicated designs. 2016. Preprint hal-01291769.

[16] L. Gilquin, L.A.J. Rugama, E. Arnaud, F.J. Hickernell, H. Monod, and C. Prieur. Iterative
construction of replicated designs based on Sobol'sequences.Comptes Rendus Mathematique,
355(1):10�14, 2017.

[17] D. Ginsbourger, O. Roustant, D. Schuhmacher, N. Durrande, and N. Lenz. On ANOVA
decompositions of kernels and Gaussian random �eld paths. InMonte Carlo and Quasi-Monte
Carlo Methods, pages 315�330. Springer, 2016.

[18] J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian model averaging: a
tutorial. Statistical Science, 14(4):382�417, 1999.

[19] J.P. Imhof. Computing the distribution of quadratic forms in normal variables. Biometrika,
48(3 and 4):419�426, 1961.

30



[20] L. Le Gratiet, C. Cannamela, and B. Iooss. A Bayesian approach for global sensitivity analysis
of (multi�delity) computer codes. SIAM/ASA Journal on Uncertainty Quanti�cation , 2(1):336�
363, 2014.

[21] J. López-Fidalgo, B. Torsney, and R. Ardanuy. MV-optimisation in weighted linear regression.
In A.C. Atkinson, L. Pronzato, and H.P. Wynn, editors, Advances in Model�Oriented Data
Analysis and Experimental Design, Proceedings of MODA'5, Marseilles, June 22�26, 1998,
pages 39�50. Physica Verlag, Heidelberg, 1998.

[22] T.A. Mara and O.R. Joseph. Comparison of some e�cient methods to evaluate the main e�ect
of computer model factors.Journal of Statistical Computation and Simulation, 78(2):167�178,
2008.

[23] A. Marrel, B. Iooss, B. Laurent, and O. Roustant. Calculations of Sobol indices for the Gaussian
process metamodel.Reliability Engineering & System Safety, 94(3):742�751, 2009.

[24] T.J. Mitchell. An algorithm for the construction of � D -optimal� experimental designs. Tech-
nometrics, 16:203�210, 1974.

[25] J.E. Oakley and A. O'Hagan. Probabilistic sensitivity analysis of complex models: a
Bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 66(3):751�769, 2004.

[26] C. Prieur and S. Tarantola. Variance-based sensitivity analysis: theory and estimation algo-
rithms. In R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty Quan-
ti�cation , pages 1�23. Springer, 2016.

[27] L. Pronzato. Minimax and maximin space-�lling designs: some properties and methods for
construction. Journal de la Société Française de Statistique, 158(1):7�36, 2017.

[28] L. Pronzato and A. Pázman.Design of Experiments in Nonlinear Models. Asymptotic Normal-
ity, Optimality Criteria and Small-Sample Properties. Springer, LNS 212, New York, 2013.

[29] L. Pronzato and M.-J. Rendas. Bayesian local kriging.Technometrics, 59(3):293�304, 2017.

[30] A. Saltelli. Making best use of model evaluations to compute sensitivity indices.Computer
Physics Communications, 145(2):280�297, 2002.

[31] A. Saltelli, S. Tarantola, and K.P.-S. Chan. A quantitative model-independent method for
global sensitivity analysis of model output. Technometrics, 41(1):39�56, 1999.

[32] J.H. Schaibly and K.E. Shuler. Study of the sensitivity of coupled reaction systems to uncer-
tainties in rate coe�cients. II Applications. The Journal of Chemical Physics, 59(8):3879�3888,
1973.

[33] I.M. Sobol'. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comp.
Exp., 1(4):407�414, 1993.

[34] M.L. Stein. Interpolation of Spatial Data. Some Theory for Kriging. Springer, Heidelberg,
1999.

[35] B. Sudret. Global sensitivity analysis using polynomial chaos expansions.Reliability Engineer-
ing & System Safety, 93(7):964�979, 2008.

31



[36] J.-Y. Tissot and C. Prieur. A randomized orthogonal array-based procedure for the estimation
of �rst-and second-order Sobol' indices. Journal of Statistical Computation and Simulation,
85(7):1358�1381, 2015.

32


