Sensitivity analysis via Karhunen-Loève expansion of a random field model: estimation of Sobol' indices and experimental design

Abstract : We use the Karhunen-Loève expansion of a random-field model to construct a tensorised Bayesian linear model from which Sobol' sensitivity indices can be estimated straightforwardly. The method combines the advantages of models built from families of orthonormal functions, which facilitate computations, and Gaussian-process models, which offer a lot of flexibility. The posterior distribution of the indices can be derived, and its normal approximation can be used to design experiments especially adapted to their estimation. Implementation details are provided, and values of tuning parameters are indicated that yield precise estimation from a small number of function evaluations. Several illustrative examples are included that show the good performance of the method, in particular in comparison with estimation based on polynomial chaos expansion.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01545604
Contributeur : Luc Pronzato <>
Soumis le : jeudi 22 juin 2017 - 17:46:16
Dernière modification le : mercredi 28 juin 2017 - 01:13:20

Fichier

Sensitivity-RESS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01545604, version 1

Collections

Citation

Luc Pronzato. Sensitivity analysis via Karhunen-Loève expansion of a random field model: estimation of Sobol' indices and experimental design. 2017. <hal-01545604>

Partager

Métriques

Consultations de
la notice

88

Téléchargements du document

70