L. M. De-angelis, Brain Tumors, New England Journal of Medicine, vol.344, issue.2, pp.114-123, 2001.
DOI : 10.1056/NEJM200101113440207

A. Drevelegas and N. Papanikolaou, Imaging of Brain Tumors with Histological Correlations, Imaging Modalities in Brain Tumors, pp.13-33

P. Y. Wen, D. R. Macdonald, D. A. Reardon, T. F. Cloughesy, A. G. Sorensen et al., Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group, Journal of Clinical Oncology, vol.28, issue.11, pp.1963-1972, 2010.
DOI : 10.1200/JCO.2009.26.3541

O. Wu, R. M. Dijkhuizen, and A. G. Sorensen, Multiparametric Magnetic Resonance Imaging of Brain Disorders, Topics in Magnetic Resonance Imaging, vol.21, issue.2, pp.129-138, 2010.
DOI : 10.1097/RMR.0b013e31821e56c2

C. Pierpaoli, Quantitative Brain MRI, Topics in Magnetic Resonance Imaging, vol.21, issue.2, p.63, 2010.
DOI : 10.1097/RMR.0b013e31821e56f8

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-cramer, K. Farahani et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), pp.1993-2024, 2015.
DOI : 10.1109/TMI.2014.2377694

URL : https://hal.archives-ouvertes.fr/hal-00935640

S. J. Hectors, I. Jacobs, G. J. Strijkers, and K. Nicolay, Automatic segmentation of subcutaneous mouse tumors by multiparametric MR analysis based on endogenous contrast, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.67, issue.4, pp.363-375, 2015.
DOI : 10.1002/mrm.22951

C. Weltens, J. Menten, M. Feron, E. Bellon, P. Demaerel et al., Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging, Radiotherapy and Oncology, vol.60, issue.1, pp.49-59, 2001.
DOI : 10.1016/S0167-8140(01)00371-1

N. Coquery, O. François, B. Lemasson, C. Debacker, R. Farion et al., Microvascular MRI and Unsupervised Clustering Yields Histology-Resembling Images in Two Rat Models of Glioma, Journal of Cerebral Blood Flow & Metabolism, vol.24, issue.8, pp.1354-1362, 2014.
DOI : 10.1002/nbm.1263

URL : https://hal.archives-ouvertes.fr/hal-01119666

J. K. Boult, M. Borri, A. Jury, S. Popov, G. Box et al., Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging, NMR in Biomedicine, vol.21, issue.11, pp.1608-1617, 2016.
DOI : 10.1016/S0933-3657(00)00073-7

URL : http://onlinelibrary.wiley.com/doi/10.1002/nbm.3594/pdf

P. Katiyar, M. R. Divine, U. Kohlhofer, L. Quintanilla-martinez, B. Schölkopf et al., A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation, Molecular Imaging and Biology, vol.21, issue.3, pp.391-397, 2017.
DOI : 10.1158/1078-0432.CCR-14-0990

M. Law, S. Yang, J. Babb, E. Knopp, J. Golfinos et al., Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade, American Journal of Neuroradiology, vol.25, issue.5, pp.746-755, 2004.

I. Kosmidis and D. Karlis, Model-based clustering using copulas with applications, Statistics and Computing, vol.24, issue.1, pp.1079-1099, 2016.
DOI : 10.1198/073500105000000153

URL : http://arxiv.org/pdf/1404.4077

F. Forbes and D. Wraith, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering, Statistics and Computing, vol.94, issue.1, pp.971-984, 2014.
DOI : 10.1016/S0378-3758(00)00208-1

Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions, Journal of Digital Imaging, vol.35, issue.5, pp.449-459, 2017.
DOI : 10.1109/ISBI.2015.7163869

G. Litjens, T. Kooi, B. E. Bejnordi, A. Arindra-adiyoso-setio, F. Ciompi et al., A survey on deep learning in medical image analysis, Medical Image Analysis, vol.42, pp.60-88, 2017.
DOI : 10.1016/j.media.2017.07.005

D. Shen, G. Wu, and H. Suk, Deep Learning in Medical Image Analysis, Annual Review of Biomedical Engineering, vol.19, issue.1, pp.221-248, 2017.
DOI : 10.1146/annurev-bioeng-071516-044442

I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, pp.2672-2680, 2014.

K. Van-leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.677-688, 2001.
DOI : 10.1109/42.938237

I. D. Gebru, X. Alameda-pineda, F. Forbes, and R. Horaud, EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.12, pp.2402-2415, 2016.
DOI : 10.1109/TPAMI.2016.2522425

URL : https://hal.archives-ouvertes.fr/hal-01261374

J. A. Cuesta-albertos, C. Matran, and A. Mayo-iscar, Robust estimation in the normal mixture model based on robust clustering, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.39, issue.4, pp.779-802, 2008.
DOI : 10.1007/978-1-4757-2545-2

F. Forbes, S. Doyle, D. Garcia-lorenzo, C. Barillot, and M. Dojat, A Weighted Multi-Sequence Markov Model For Brain Lesion Segmentation, 13th International Conference on Artificial Intelligence and Statistics, AISTATS 2010 ser. JMLR Workshop and Conference Proceedings, pp.225-232, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00723808

P. S. Tofts, Quantitative MRI of the Brain, Concepts: Measurement and MR, pp.1-15, 2004.
DOI : 10.1002/0470869526

J. Baudry, C. Maugis, and B. Michel, Slope heuristics: overview and implementation, Statistics and Computing, vol.6, issue.2, pp.455-470, 2012.
DOI : 10.1214/aos/1176344136

URL : https://hal.archives-ouvertes.fr/hal-00461639

C. Kilkenny, W. J. Browne, I. C. Cuthill, M. Emerson, and D. G. Altman, Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research, PLOS Biology, vol.8, issue.6, pp.1-5, 2010.

W. M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, vol.15, issue.336, pp.846-850, 1971.
DOI : 10.1080/01621459.1963.10500845

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.78, issue.1, pp.193-218, 1985.
DOI : 10.1007/978-3-642-69024-2_27

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

L. Bergé, C. Bouveyron, and S. Girard, Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data, Journal of Statistical Software, vol.46, issue.6, pp.1-29, 2012.
DOI : 10.18637/jss.v046.i06

C. Fraley, A. E. Raftery, T. B. Murphy, and L. Scrucca, mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation, 2012.
DOI : 10.21236/ada456562

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA456562&Location=U2&doc=GetTRDoc.pdf

B. Lemasson, N. Pannetier, N. Coquery, L. S. Boisserand, N. Collomb et al., MR Vascular Fingerprinting in Stroke and Brain Tumors Models, Scientific Reports, vol.18, issue.1, p.37071, 2016.
DOI : 10.1145/361002.361007

URL : http://www.nature.com/articles/srep37071.pdf

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth et al., study, NMR in Biomedicine, vol.90, issue.3, pp.1043-1056, 2008.
DOI : 10.1038/jcbfm.1994.108

URL : https://hal.archives-ouvertes.fr/hal-01575547

M. Beaumont, B. Lemasson, R. Farion, C. Segebarth, C. Remy et al., Characterization of Tumor Angiogenesis in Rat Brain Using Iron-Based Vessel Size Index MRI in Combination with Gadolinium-Based Dynamic Contrast-Enhanced MRI, Journal of Cerebral Blood Flow & Metabolism, vol.131, issue.10, pp.1714-1726, 2009.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00410316

D. N. Louis, A. Perry, G. Reifenberger, A. Von-deimling, D. Figarella-branger et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathologica, vol.45, issue.6, pp.803-820, 2016.
DOI : 10.1038/ng.2611

URL : https://hal.archives-ouvertes.fr/hal-01479018

D. G. Barone, T. A. Lawrie, and M. G. Hart, Image guided surgery for the resection of brain tumours, Cochrane Database of Systematic Reviews, vol.115, issue.2, 2014.
DOI : 10.3171/2011.3.JNS101333

A. Du, N. Schuff, J. H. Kramer, H. J. Rosen, M. L. Gorno-tempini et al., Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia, Brain, vol.130, issue.4, pp.1159-1166, 2007.
DOI : 10.1093/brain/awm016

J. Juan-albarracín, E. Fuster-garcia, J. V. Manjón, M. Robles, F. Aparici et al., Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification, PLOS ONE, vol.12, issue.5, pp.1-20, 2015.
DOI : 10.1371/journal.pone.0125143.t005

R. Gillies, P. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data, Radiology, vol.278, issue.2, pp.563-577, 2016.
DOI : 10.1148/radiol.2015151169

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734157/pdf

L. G. Nyul and J. Udupa, On standardizing the MR image intensity scale, Magnetic Resonance in Medicine, vol.7, issue.6, pp.1072-1081, 1999.
DOI : 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M

J. Fortin, E. Sweeney, J. Muschelli, C. Crainiceanu, and R. Shinohara, Removing inter-subject technical variability in magnetic resonance imaging studies, NeuroImage, vol.132, pp.198-212, 2016.
DOI : 10.1016/j.neuroimage.2016.02.036

R. Ghassemi, R. Brown, S. Narayanan, B. Banwell, K. Nakamura et al., Normalization of White Matter Intensity on T1-Weighted Images of Patients with Acquired Central Nervous System Demyelination, Journal of Neuroimaging, vol.50, issue.Pt 1, pp.184-190, 2015.
DOI : 10.1016/j.neuroimage.2009.12.059

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling Extremal Events: for Insurance and Finance, 1st ed., ser. Stochastic Modelling and Applied Probability, 1997.
DOI : 10.1007/978-3-642-33483-2

A. G. Stephenson, evd: Extreme Value Distributions, pp.31-32, 2002.