
HAL Id: hal-01544859
https://hal.science/hal-01544859v2

Submitted on 12 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gestural Human-Robot Interaction
Insaf Ajili, Malik Mallem, Jean-Yves Didier

To cite this version:
Insaf Ajili, Malik Mallem, Jean-Yves Didier. Gestural Human-Robot Interaction. 11ème journées de
l’AFRV, Oct 2016, Brest, France. �hal-01544859v2�

https://hal.science/hal-01544859v2
https://hal.archives-ouvertes.fr

Gestural Human-Robot Interaction
Ajili Insaf, Mallem Malik, Jean-Yves Didier

Laboratoire d’Informatique, Biologie Intégrative et Systèmes Complexes (IBISC)
e-mail: (Insaf.Ajili, Malik.Mallem, Jean-Yves.Didier)@ufrst.univ-evry.fr

Abstract— Interactive robotics is a vast and expanding research
field. Interactions must be sufficiently natural, with robots having
socially acceptable behavior for humans, adaptable to user
expectations, thus allowing easy integration in our daily lives
in various fields (science, industry, domestic, health ...). In this
context, we will achieve a system that involves the interaction
between the human and the NAO robot. This system is based
on gesture recognition via Kinect sensor. We choose the Hidden
Markov Model (HMM) to recognize four gestures (move forward,
move back, turn, and stop) in order to teleoperate the NAO
robot. To improve recognition rate, data are extracted with
Kinect depth camera under ROS, which provides a node that
tracks human skeleton. We tried to choose a feature vector as
relevant as possible to be the input of the HMM. We performed
3 different experiments with two types of features extracted from
human skeleton. Experimental results indicates that the average
recognition accuracy is near 100%.

Keywords— Human-Robot Interaction, Gesture Recognition,
Skeleton Tracking, Kinect, HMM, ROS.

I. INTRODUCTION

New human-robot interaction techniques are regularly pro-
posed in the scientific literature in order to improve it and
make it more effective and more natural, especially gestural
interaction, which is one of the key components of a true
interaction. Indeed 65% of the information in communication
acts is non-verbal and this type of communication makes
the interaction more robust. A gesture is a movement of
body parts having a particular meaning. For this, gesture
recognition presents one of the many challenges in human-
robot interactions field. Dynamic gesture recognition systems
typically includes three stages, detection, tracking and finally
recognition. For the first phase ”detection”, there are methods
based on the features, the best known is the skin color [1].
However, this method is not robust enough to deal with
dynamic conditions. In fact it requires a uniform lighting and
background. Other methods based on matching have been
developed by [2]. They have some drawbacks since they are
very sensitive to rotation and scaling, hence are not reliable
for dynamic characteristics. Therefore, recent studies tend to
use a new information that is the depth. This information is
relevant in any interaction. During the recent years this field
gained from the growing use of 3D sensors to improve the
performance of gesture detection and tracking. Among these
sensors, there is the stereo camera used in [3] to track two
hands. However these stereoscopic systems work only for
textured scenes, require contrast and visual texture in the scene
for stereo matching. They can fail segmentation in several
occasions such as when an object and a background share the
same texture. After that, a new 3D camera model appeared,

Swiss Ranger SR-2. It is an active sensor that provides depth
frames in real time. In contrast to stereo camera which was
subject to geometric constraints imposing a minimum size,
these Time-Of-Flight (TOF) 3D cameras can be designed with
compact size. Therefore some researchers used this camera for
detecting and tracking gestures [4]. But this type of camera
also has some limitations when using it such as interference
due to lighting conditions. In such cases depth information
will be noisier in the exposed areas to direct light so this
drastically limits its use. Then, the Kinect sensor appeared with
a high VGA resolution 640 × 480 pixels as opposed to TOF
camera which still have a very limited resolution of 200×200
pixels also provides a good depth range and frame-rate at 30
fps. Several studies have been based on this sensor, to track
hand gestures [5]. Some researchers combined color and depth
information for segmentation and tracking body members as
in [6] for hand tracking. Recently the founding company of
the sensor has released a development kit for body tracking. It
contains a skeleton tracking algorithm to track the human body
through the Kinect sensor. Then many researchers used this
algorithm which consists in projecting a skeleton on the human
body image so that each joint of the body will be related to a
joint of the skeleton and labelled with identifier which will be
subsequently used as information for the gesture recognition
system. Now for the final step of gesture recognition, the
hidden Markov model (HMM) has been widely used in the
community for modeling dynamic movements. This approach
was widely in use for speech recognition and has already
been exploited in gestures recognition. In order to achieve the
highest recognition rate one should find the most appropriate
features to describe a set of gestures. Some works have used
HMM and choose the orientation between two successive hand
frames as a feature vector to recognize geometric shapes [7].
In [8] they kept the same feature vector to recognize a set of
gestures such as (up, down, left, right) and three characters.
Another way is to combine orientation with location and
velocity features in order to recognize alphanumeric characters
[9]. Others took the advantage of the Kinect in skeleton
tracking, for example in [10], the feature vector that they
choose is composed of distance feature from the left/right
elbow/hand to the spine. In [11] they used HMM to recognize
four command gestures to control a robot and they choose as
feature vector the central hand detected in 3D by the Kinect
and projected in 2D space. In [12] they recognized ten gestures
chosen from the army visual signals to control a mobile robot.
Gesture recognition was performed by neural network (NN)
classifiers, they extracted two types of features (quaternions
and angles) and compared between them to obtain a high

recognition rate. In [13] they used weighted Dynamic Time
Warping method to recognize two gestures. Two features had
been extracted for wave gesture (euclidean distance between
the hand and the neck joints and the angle in the elbow joint)
and three features for the point at one gesture (angle in the
elbow joint, distance between the hip and the hand joints, and
the position of the hand joint), in order to interact with Nao
robot. In [14] they integrated the Euler angle to recognize left
arm gestures to control the pionner robot with five gestures
(come, go, wave, rise up and sit down). Their features are
four joint angles (left elbow yaw and roll, left shoulder yaw
and pitch).

In our work, we use four gestures (go forward, go back, turn
around and stop) to command Nao robot. Gesture recognition
is performed with HMM approach, then we tried to find
relevant features that adapt to different persons. So we selected
joint orientations features as [12] to be independent of person
characteristics and then allow any person to control the robot
without the need of normalization. We tried to improve the
recognition result with combining two types of orientation
features (quaternions and angles). Features were provided
by skeleton tracking algorithm using Microsoft Kinect under
ROS, to be the input to HMM to classify gestures. The rest of
the paper is organized as follows: in section II, we define our
recognition system as well as its various stages. In section III
we present the experiment result, and we will finally conclude
with some perspectives.

II. PROPOSED PROCESS

Our proposed system consists of three stages. The first is
the data acquisition and feature extraction that will be made
by the Kinect camera. Here we seek the most relevant feature
vector as possible to have an important recognition rate. The
second step is the tracking performed under ROS (Robot
Operating System) which was created to facilitate writing
software for robotic task. This one will set up a human tracking
node created by the OpenNI driver of Kinect. Finally, for
gesture recognition step, we will use the HMM formalism and
therefore we will implement the Baum-welch algorithm for
training phase and Forward-Backward algorithm for gesture
classification.

1) Data acquisition: The first step in our recognition sys-
tem is the data acquisition by the Kinect that records gesture
motion in the space under ROS. Kinect camera is a device
that works as a webcam (Fig.1). To use this sensor we have
installed three drivers, the sensor Kinect module, the NITE
middleware, and the OpenNI driver [15]. The Microsoft Kinect
is integrated into the ROS environment, an operating system
for robotic service. The basic principle of ROS is to run in
parallel a large number of executables (called nodes) that
need to exchange information synchronously via topics or
asynchronously via services. An OpenNI package under ROS
contains launch files allowing to use the Kinect sensor in ROS
system. This package provides a node called “openni tracker“
which requires user calibration (Fig.2) in order to achieve

full body tracking. Once the calibrating step is performed we
launch the openni tracker node for Skeleton tracking and thus
publish the OpenNI skeleton frames in a specific topic called
“tf“(transformation) (Fig.3).

Fig. 1. Depth-RGB camera Kinect.

Fig. 2. Kinect calibration.

Fig. 3. Skeleton frames.

2) Feature extraction: In our work it is desired to select
a set of gestures to teleoperate robot, so we need the fol-
lowing gestures: move forward, move back, turn around and
stop. Commands are performed with the left arm. For the
choice of the feature vector we tried to find the most robust
features without integrating normalization. So features were
independent of the height and position of the person. For this
reason, we choose rotation features. We compared two types
of orientation quaternion and angle. Under ROS, there is an
“openni tracker“ node which presents a rigid transformation
stored as a rotation quaternion and a 3d translation of each
joint skeleton. For the rotation part we were interested by the
quaternions of the left elbow and shoulder joints to describe
3D rotation of the left arm. A quaternion q is presented as
follows: q = a+ bi+ cj+dk where a, b, c, d are real numbers
and i, j, k imaginary units. It presents a rotation through an
angle α around the axis given by a unit vector (x, y, z).
With α = 2arccos(a) = 2 arcsin

√
b2 + c2 + d2 and the axis

(x, y, z) = 1
sin(α/2) (b, c, d). So the input of HMM model will

be the descriptor vector which composed by 8 features (four
quaternions of shoulder joint (sh) and elbow joint (el)) for
each frame: (ash, bsh, csh, dsh, ael, bel, cel, del).

After that we will choose another feature vector extracted
from the translation part, this descriptor vector present three
joint angles (θ1, θ2, θ3) of the left arm (Fig.4).

θ1 = L̂hLeLs ; θ2 = L̂eLsRs ; θ3 = ̂LeLsLhi

Where Lh: Left hand joint, Le: Left elbow joint, Ls: Left
shoulder joint, Rs: Right shoulder joint and Lhi: Left hip
joint.

Then we compare between the two vectors, and we try to
create a feature that provides the highest recognition rate. The
result is described in the experimental part.

Fig. 4. Skeleton tracking, second feature vector (θ1, θ2, θ3).

3) Discretization: Once we turned raw data into relevant
features, we should sample these data to make sequences of
frames with the same length. For this, we implemented a C++
program that consists in sampling data. We suppose that a
feature vector is composed by N features (X1, X2, . . . , XN).
And d is the distance between two points (two successive

feature vectors): d =
√∑N

i=1((Xt)i − (Xt+1)i)2 .

(Xt)
i is the ith feature of the current frame.

(Xt+1)
i: is the ith feature of the next frame.

N is the size of feature vector (the number of features in a
descriptor vector).
The discretization algorithm is implemented as follows:

1) Delete similar points. If d the distance between two
successive points p1 and p2 is less or equal than ε delete
p2 (the second feature vector).

2) Set length gesture (number of frames T).
3) Compute the average distance: d′= N ′

T , N ′ is number
of points (feature vectors) after removing noises.

4) Discretize points with average distance. Get points after
every d′ points pi+1 = pi + d′.

4) Vector quantization: Once we sampled data, we pass to
the quantization step to translate feature vectors into finite
symbols, to be subsequently accepted by HMMs as input.
For this quantization we use K-means [16] as a clustering
algorithm which is based on minimum distance between the
center of each cluster and the feature point. So given an integer
K, we separate a set of points in K clusters. This task is

implemented for both training phase to partition training and
testing data into k clusters.

5) Hidden Markov Model: Hidden Markov model is a
statistical Markov model which defines two properties. First it
supposes that each observation was issued by a hidden state.
Second it supposes that given the value of st−1, the current
state st is independent of all the states prior to t−1. A hidden
Markov model consists of the following elements:

• {s1, . . . , sN} a finite set of states, N is the number of
states.

• {v1, . . . , vM} a finite observation symbols, M is the
number of symbols.

• A = {aij} an N × N matrix which represents the
state transition probabilities, also called transition matrix,
where aij represents the transition probability from the
state si to the states sj . aij =P (qt+1 = sj |qt = si)
1 ≤ i, j ≤ N , qt indicates the state at time t.

• B = {bjk} an N ×M matrix represents the observation
probability distribution. bj(k) = P (ot = vk|qt = sj)
1 ≤ j ≤ N and 1 ≤ k ≤ M , is the probability of
generating the kth observation symbol at time t in the
state sj .

• πi = {πi} initial state distribution (when t = 1), πi =
P (q1 = si) is the probability that the state si is the initial
state.

Therefore we can use the compact notation λ = (A,B, π)
to define an HMM.

6) Initializing HMM parameters: In the initialization step
we should first choose HMM topology. In fact there are three
variations of HMMs: the first variation is the ergodic model
which has more transitions than the others. Any state in this
model can be reached from any other state. It is a fully
connected model. The second topology is the left-right model
where the states proceed from left to right (each state can
transition to itself or to the following states). The third model
is the left-right banded model (Fig.5), where each state can go
back to itself or to the next state. We choose this type which
restricts transition between states. It is the simplest model
which make easier matching of the data to the model, and
fits well our gestures that evolve over time, thus do not need
backward transition.

Fig. 5. Left-Right Banded model with nine states.

We propose four gestures for robot teleoperation, so we need
four HMMs. The first step to do in the HMM formalism is
the initialization. This phase requires a good choice of state
number. So we compared the results found in each gesture at
each change of state number. After many tests by changing
the number of states from 4 to 11, it was concluded that the
best state number for recognition gesture was 9. So for an
HMM with 9 states we need to define the initial vector π =

(1 0 0 0 0 0 0 0 0)T . Second, we define the transition matrix as
follows:

aii r 0 0 0 0 0 0 0
0 aii r 0 0 0 0 0 0
0 0 aii r 0 0 0 0 0
0 0 0 aii r 0 0 0 0
0 0 0 0 aii r 0 0 0
0 0 0 0 0 aii r 0 0
0 0 0 0 0 0 aii r 0
0 0 0 0 0 0 0 aii r
0 0 0 0 0 0 0 0 1

Such that, aii = 1 − N

T , r = 1 − aii , N is the number of
states (9 states) and T the length of gesture path, we choose
60 frames. And finally the emission matrix B = {bim} = 1

M ,
M being the number of symbols, in our case we choose 12
symbols.

7) Training phase: We have used an iterative algorithm
[17] to train each HMM through training data (Fig.6). It
adjusts each initial model parameters in such a way that they
achieve the maximum likelihood P (O|λ) for the given training
data. So given a hidden Markov model with fixed architecture
(initial probability vector, transition probability matrix and
emission probability matrix), we must iteratively reestimate
model parameters to have a maximum probability of generat-
ing all training sequences. To compute these new parameters,
the Baum-Welch algorithm uses two new probability matrices:
εt(i, j) = P (qt = si, qt+1 = sj |O, λ)
γt(i) =

∑N
j=1 εt(i, j).

The coefficient εt(i, j) represents the probability to switch
from state si at time t to the state sj at time t + 1 given
the model and the observation sequence. The second coeffi-
cient γt(i) represents the probability to be in the state si at
time t given the model and the observation sequence. Then
reestimation parameters will be denoted as:

aij =
∑T−1

t=1 εt(i,j)∑T−1
t=1 γt(i)

; bj(k) =
∑T−1

t=1,Ot=vk
γt(j)∑T−1

t=1 γt(i)
; π = γ1(i)

After training we get the new parameters λ = (π,A,B)
for each gesture. This provides P (O|λ) ≥ P (O|λ). These
new parameters will be the inputs of the Forward-Backward
algorithm for tests.

8) Recognition phase: We have used Forward-Backward
algorithm [17] to classify input gestures with the trained
models (Fig.7). It is the most efficient algorithm to address
this problem. We note that the observation can be done in two
stages. First the emission from the beginning of observation
O(1 : T) leading to the state qi at time t then the emission
from the end of the observation O(t + 1 : T) starting
from qi at time t. So the probability of the observation
is equal to: P (O|λ) =

∑n
i=1 αT (i)βT (i) , with αT (i) =

P (o1, o2, . . . , ot, qt = si|λ) is the probability of transmitting
the observation sequence O(1 : T) and end up to qt at
time t and βt(i) = P (ot+1, ot+2, . . . , oT |qt = si, λ) is the
probability of transmitting the observations from time t+1 up

Fig. 6. Training phase.

to T knowing that we part from qt at time t. After evaluating
the probability of generating the sequence observation by each
HMM, we can determine the model that gives the highest
probability λ∗ = argmaxP (O|λ)

allλ

.

Fig. 7. Recognition phase.

III. EXPERIMENTAL RESULTS

Our proposed gesture recognition system was applied to
a database composed of 400 sequences from ten subjects.
Each subject was asked to make each gesture ten times (move
forward, move back, turn around, stop). After that we divided
them into two sets, 200 samples for training set and 200 for
testing set. Discretization algorithm was applied to fix the
number of frames for each gesture repetition, we choose 60
as the length of gesture. Once we defined this vector, we
quantify it into discrete values (we choose 12 as the number
of symbols) to be the input to HMM model for the training

and classification phases. We used the Forward-Backward
algorithm to classify every input gesture, then we consider
probabilities of belonging to each model. The highest one
is considered as the recognition result. Recognition rate was
defined as the ratio of the number of recognized gestures over
the number of input gestures.

Recognition rate(%) = number of recognized gestures
number of input gestures × 100.

We conducted three experiments:
In the first experiment every gesture is defined by an

HMM model, for the feature vector we choose quaternions
of left elbow and shoulder joints for each frame F1 =
[ash1, bsh1, csh1, dsh1, ael1, bel1, cel1, del1, . . . , ashT , bshT , cshT
, dshT , aelT , belT , celT , delT], T presents the number of
frames. We choose a duration of 2 seconds between two
successive frames. el means elbow joint and sh shoulder
joint. We found a recognition rate which reached 100% for
move back gesture, 98% for turn around gesture. Then three
unrecognized gestures for stop gesture and two for move
forward gesture (Tab.1).

For the second test we used joint angles as a feature vector
F2 = (θ1,1, θ2,1, θ3,1, θ1,2, θ2,2, θ3,2, . . . , θ1,T , θ2,T , θ3,T). θi,j
means the angle i at frame j. We have displayed these angles
to show their variation for each gesture. It was noted that with
the first gesture “move forward“ the most variating angle is θ1
ranging from 160 to 20 degree (Fig.8). For the “move back“
gesture the same angle varies the most in the opposite direction
on average from 20 to 160 degree (Fig.9). For the “turn
around“ gesture, θ2 is the angle that varies the most from 90 to
160 degree (Fig.10). And finally in “stop“ gesture, θ3 changes
in a remarkable way from 15 to 100 degree (Fig.11). With this
second choice of descriptor vector, we found the same result
as quaternions feature for move back and turn around gestures,
but a recognition rate of 92% for move forward gesture and
98% for stop gesture (Tab.2).

In the final test we combined the two results. Figure 12
describes the idea of the final experiment. Each gesture was
presented with two HMMs, the first with the joint angles
descriptor (λ1i ; 1 ≤ i ≤ 4) and the second with the
quaternions features (λ2i ; 1 ≤ i ≤ 4). In the training
phase, we trained 8 HMMs (2 HMMs by gesture) and in
the recognition phase, we computed the maximum likelihood
of each sequence given the two types of feature vectors
of each HMM model. In this case we obtain four optimal
HMMs (λ∗1, λ

∗
2, λ
∗
3, λ
∗
4). We can determine the gesture class

from the maximum likelihood between this four models. By
applying this algorithm, we found the same result with the
two types of feature vector for turn around (98%) and move
back (100%) gestures. For stop gesture we found three errors
with the quaternions features and one error with the joint
angles features. The combination of the two results let us
to have a recognition rate of 100% (Fig.13). For the move
forward gesture we found two errors with the first feature
vector and four errors with the second vector. The fusion of

two results returned one error (Fig.14), which leads up to
a recognition rate of 98%. So, this makes us to reach very
important recognition rates for all gestures [Tab.3].

• Application under ROS to control Nao robot:

Now we want to test our application with Nao robot to evaluate
its performance. We have implemented four nodes under ROS:
“openni tracker“ node that publishes coordinate joints skele-
ton. A second node “sequence observation“ which subscribe
to the first node to have coordinate joints informations and
generates the sequence observation of each test gesture. It
performs data discretization and quantization. The third node
“recognition node“ subscribes to the second and computes
the probability of generating observation sequence by each
HMM, and then returns the model that corresponds to the test
gesture. Finally we launch the “teleoperation node“, this node
was extracted from the idea of [18] to teleoperate Nao robot
(Fig.15).

Table 1. Gesture Recognition rates with quaternions feature vector.

Gesture Move forward Move back turn around stop

Move forward 48 0 0 0

Move back 0 50 0 0

Turn 0 0 49 0

Stop 0 0 0 47

Recognition rate 96% 100% 98% 94%

Fig. 8. Angles variation in move forward gesture.

Fig. 9. Angles variation in move back gesture.

Fig. 10. Angles variation in turn around gesture.

Fig. 11. Angles variation in stop gesture.

Table 2. Gesture Recognition rates with joints angles feature vector.

Gesture Move forward Move back turn around stop

Move forward 46 0 0 0

Move back 0 50 0 0

Turn 0 0 49 0

Stop 0 0 0 49

Recognition rate 92% 100% 98% 98%

Fig. 12. Recognition phase with combining two feature vectors.

Table 3. Gesture Recognition rates with combining two feature vectors.

Gesture Move forward Move back turn around stop

Move forward 49 0 0 0

Move back 0 50 0 0

Turn 0 0 49 0

Stop 0 0 0 50

Recognition rate 98% 100% 98% 100%

IV. CONCLUSION

In this paper we implemented a real-time gesture recog-
nition system using Kinect sensor under ROS based on the

Fig. 13. Result of the fusion of two feature vectors for stop gesture.

Fig. 14. Result of the fusion of two feature vectors for move forward gesture.

Fig. 15. Human-Nao interaction with gestures.

hidden Markov model. Our data base was trained with different
subjects, and the idea of merging both results provided by two
types of orientation feature vectors led us to achieve recog-
nition rates near 100%. At the same time we implemented
a system that was independent from many factors (size and
position of people, gesture speed and duration). After this work
we will continue on the same issue for gesture recognition,
we will add other gestures for robot control in order to vary
activities for Nao.

REFERENCES

[1] Reza Azad and Fatemeh Davami. A robust and adaptable method
for face detection based on Color Probabilistic Estimation Technique.
International Journal of Research in Computer Science A Unit of White
Globe Publications, 2014.

[2] M. Pierobon and M. Marcon and A. Sarti and S. Tubaro. 3-D Body Pos-
ture Tracking For Human Action Template Matching, Acoustics. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), II-II, 2, 2006.

[3] Rustam Rakhimov Igorevich and Pusik Park and Jongchan Choi and
Dugki Min. Two Hand Gesture Recognition Using Stereo Camera.
International Journal of Computer & Electrical Engineering, 5(1), 2013.

[4] D. Droeschel and J. Stückler and S. Behnke. Learning to interpret point-
ing gestures with a time-of-flight camera. 6th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), 481-488, 2011.

[5] Qin, Shuxin and Zhu, Xiaoyang and Yang, Yiping and Jiang, Yongshi.
Real-time Hand Gesture Recognition from Depth Images Using Convex
Shape Decomposition Method. Journal of Signal Processing Systems,
74(1), 47–58, 2014.

[6] Oikonomidis, Iason and Kyriazis, Nikolaos and Argyros, Antonis A. Ef-
ficient model-based 3D tracking of hand articulations using Kinect. Pro-
ceedings of the 22nd British Machine Vision Conference, BMVC‘2011,
University of Dundee, UK, Aug. 29-Sep. 1, 2011.

[7] Kshitish Milind Deo, Avanti Yashwant Kulkarni and Tirtha Suresh
Girolkar. Hand Gesture Recognition using Colour Based Segmentation
and Hidden Markov Model. International Journal of Computer Applica-
tions Technology and Research, 4(5), 386–389, 2015.

[8] Y. Wang and C. Yang and X. Wu and S. Xu and H. Li. Kinect
Based Dynamic Hand Gesture Recognition Algorithm Research. 4th
International Conference on Intelligent Human-Machine Systems and
Cybernetics, 274–279, 2012.

[9] Ayoub Al-Hamadi, Mahmoud Elmezain, and Bernd Michaelis. Hand
Gesture Recognition Based on Combined Features Extraction. Interna-
tional Journal of Information and Mathematical Sciences, 6(1), 2010.

[10] K. Lai and J. Konrad and P. Ishwar. A gesture-driven computer interface
using Kinect. IEEE Southwest Symposium on Image Analysis and
Interpretation (SSIAI), 185–188, 2012.

[11] Kun Qian and Jie Niu and Hong Yang. Developing a Gesture Based
Remote Human-Robot Interaction System Using Kinect. International
Journal of Smart Home, 7(4), 2013.

[12] Grazia Cicirelli, Carmela Attolico, Cataldo Guaragnella and Tiziana
D’Orazio. A Kinect-based Gesture Recognition Approach for a Natural
Human Robot Interface. International Journal of Advanced Robotic
Systems, 2015.

[13] G. Canal and C. Angulo and S. Escalera. Gesture based human multi-
robot interaction. International Joint Conference on Neural Networks
(IJCNN), 2015.

[14] Y. Gu and H. Do and Y. Ou and W. Sheng. Human gesture recognition
through a Kinect sensor. IEEE International Conference on Robotics and
Biomimetics (ROBIO), 1379–1384, 2012.

[15] http://structure.io/openni.
[16] J. B. MacQueen. Some Methods for classification and Analysis of

Multivariate Observations. Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, 281-297, 1967.

[17] Baum, L. E. . An inequality and associated maximization technique in
statistical estimation for probabilistic functions of Markov processes. In
Shisha, O. (Ed.), Inequalities III: Proceedings of the 3rd Symposium on
Inequalities, s, University of California, Los Angeles, pp. 1–8, 1972.

[18] I. Almetwally and M. Mallem. Real-time teleoperation and tele-walking
of humanoid robot Nao using Kinect depth camera. In Proc. of 10th
IEEE International Conference on Networking, Sensing and Control
(ICNSC), 2013.

