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INTRODUCTION 

In a recent paper (see [6]) uniqueness for the elastic bounce problem 
has been studied in a very general framework. More precisely given T> 0 
and f~ C3 (TV; W), a pair (x, U) E Lip(0, T; Rn) x L’(0, T; C’(lR’)) is said 
to be a solution to the elastic bounce problem iff 

’ 6) f(x(t)>o in [O, T] 
(ii) there exists a bounded measure p > 0 on [0, T] such that x(t) 

is an extremal for the functional 

(P) F(Y)=/T {flJ;I’+ U(t, At))) nt+jTf(YuwP 
0 0 

and sptps {TV [0, T]:f(x(t))=O}. 
(iii) the function F: t + I.t(t)12 is continuous on [0, r]. 

In [6,7] it was pointed out that the Cauchy problem for (P) admits a 
unique solution when certain inequalities (involving the Gaussian cur- 
vature of da and the normal component with respect to aQ of U is fulfilled 
(see 16, Thm. 2.2]).’ 

When these conditions are violated, uniqueness for (P) may fail as it is 
shown in [7,8], where an example off E Cm(R2) is constructed in such a 
way that Sz = {x: f(x) 3 0} is convex and, as soon as one takes U = 0, the 
solution of the Cauchy problem for (P) is not unique. 

This example shows that+ven in the absence of external forces and in 
two dimensions-boundaries having rapidly oscillating Gaussian curvature 
which vanishes at order infinity at some point may cause a loss of unique- 
ness. 

‘Here we set Q= {x:f(x)>O}. 
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ELASTIC BOUNCE PROBLEM,11 305 

The aim of this paper is to show that if u is assumed to be real analytic 
and U E 0 then these phenomena disappear and the solution to the elastic 
bounce problem is unique for every choice of the Cauchy data. 

1. STATEMENT 0F THE PROBLEM 

Let f: R” + R be a real analytic function such that Q(X) # 0 on the set 
{xElR”:f(X)=O}. w e want to study the elastic bounce problem for a 
material point whose position at time t will be indicated by x(t). This point 
moves in the region 0 = {x: f(x) >/ 0} and bounces against the boundary 
dQ= (x$(x)=0}. W e s a h 11 assume that no external force is acting on the 
point and therefore given T> 0 we say that x E Lip(0, T; R”) solves the 
elastic bounce problem (P) iff 

(i) f(x(t)) 2 0 for every t E [0, T] 

(ii) there exists a finite positive measure p on [0, T] such that x(t) 
is an extremal for the functional 

and sptpz {to [0, T]:f(x(t))=O} 

(iii) for every I,, t2 E [0, T] we have 

Ii’+ (t1)12= Ii’+ (t2)12? 

where f, and f- respectively denote the right and left derivatives of x 
since i is a BV function (see [3, 4, 71). 

As we have seen in [3], a function x E Lip(0, r; lRn) satisfies (i), (ii), and 
(iii) if and only if it satisfies (i), (iii), and the following equality 

2 = pVf(x( t)) (1) 

holds true in the sense of distributions and spt p E {I E [0, T] : j-(x(t)) = O}. 
According to [3] we introduce the set E = {x E Lip(0, T; W) : x solves 

(P)} and define the initial trace F: [0, T] x E + E43n+2 

F(4 x) = (fl~W12, x(t), %(t),f(x(t)) 4th 01, 

wheref(t)=(Vf(x(t))~*~(t)-(~,Vf(~(t)))Vf(~(t)).Now,fixedt,~[0,T] 
and bEF({t,} xE)=LB, we set 

505/90/Z-7 
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As we have seen in [6] this set is non void and moreover we can state the 
following result (see [6]): 

PROPOSITION I. Let toe [0, T] and b E C4? such that f(b2) = 0 and 
lb312-2bl IVf(b2)14=0. Suppose that for every xeG(to, b) there exists 6 
such that in (t,, t, + 6) the inequality 

holds true. Then there exists 0 > 0 such that the set 

G(t,, b)= {x~Lip(&, t,+a):xEE, F(t,,x)=b} 

is a singleton. 

The aim of this paper is to prove the following result: 

THEOREM II. Zf f: R” + R is real analytic, then for each t, E [0, T] and 
for each b E B the set G( to, b) is a singleton. 

In order to prove Theorem II we remark that f may be put into the 
form f(x) = h(x,, x2, . . . . x, _ i) - x, is a suitable neighbourhood of X E X2 
with Vh(X, , . . . . 2, _ i ) = 0. Now, fixing t,, E [0, T], we may consider- 
without loss of generality-only those b E g such that f(bJ = 0 
and lb3j2-2 IVf(b2)l b, =0= lb312-2b,; the last equality implies that 
(i+(to), Vf(x(t,,))) =0 and therefore, from now on, we assume that 
f(b2) = 0, Vh(b,) = 0 b, = (1, 0, . . . . 0), bz = (0, 0, . . . . 0). 

Moreover we put R = (x,, . . . . x,_ i) E W-*, q(x) = V,, f(x), 1= (x1, A?), 
V,f(x) = Y(Z) so that problem (P) can be rewritten as follows: 

(i) h(x,(t), a(t))>x,(t) for every t [0, T]. 
(ii) there exists a bounded measure p 20 on [0, T] such that 

sptps {te [0, T]:f(x(t))=O} and 

(P’) 

in the sense of measures 
(iii) for every t, , t, E [0, T] we have 

\ Ii+ M2= Ii, (t2)12= 1. 
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2. PROOF OF THEOREM (II) 

Let to E [0, T], b E 9, XE G(t,, b) and assume that to and b satisfy the 
hypothesis stated in the previous section. Moreover-by virtue of [6, 
Thm. 2.2]-it is no restrictive to assume that 

is,& (x(tO)) ii CfO) ~j(rCl)‘o 

1 3 

and as in [6] (see also [3]) it is not difficult to check that the following 
energy-relation holds: 

(2) 

We put f(x) = h(x,, .-Z) - x,; hence when it = 2, (2) becomes 

= Wbl (t) -X2(l)) h%,(t)) e(t) 

- 2 f’ h”‘(xl (s)) it: (s)(h(x, (s)) - x2(s)) ds. 
10 

(2’) 

Since h is real analytic we may assume that there exists an index p > 2 
such that &‘(~i (to)) # 0 unless h”(x,) is identically zero; in the latter case 
from (2’) it follows f(x(t)) = 0 in a neighbourhood of to. If hP(xI (to)) > 0 
then h”(x, (t)) > 0 so that j-(x(t)) is convex in a suitable [to, I, f 6) and 
therefore or z(t)=0 in [to, t,+6) or z(t)>0 in (to, t,+6). In both cases 
from [6, Lemma (2.1)] we argue the thesis.* 

We claim that even in the case @“(x(t,)) < 0 the function z(t) = 
h(x, (t)) - x2(t) is identically zero in some neighbourhood of to. 

In fact we have (choosing t,, = 0) 

li(t)l’= 2h”(x, (2)) z(t) i:(t) - 2 j-; h”‘(x,(t)) x,(s) z(s) ds 

< C F2z(t)+ tP-’ 
{ 

I 

1 I 
z(s) ds 

0 

* Here (5, Vjm(f)(x(f)) denotes af/(ax;l . ‘8x2) 5;’ ‘52 I: a, = m. 
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and then, by using Holder inequality, 

s,; /f(s),“ds~C{tY’j~z(,,dS+ j; ds j;r”-?r(r)dTj 

<zct-(j; ,i(s),‘dC)“2 

which yields 

(3) 

and then Jz(t)( < 2CtP. 
Since ~2~ is decreasing and f, (0) = 1 we have II,/ 6 1 and then for t small 

enough 

s 
t Ih”‘(x,)l R;z(s)ds<(l +&l(t))~xf-3j~z(s)dS (4) 

0 0 

Ih”(x,)l i; = 22: ~ x wYO)’ fP2(1 +E2(t)), 

(P-2)! 
(5) 

where .sr (t) and s2 (t) goes to zero when t + 0. From these two relations we 
obtain 

lW12 d Ih”(Xl)l a: {--i(t)+(p-2)K(t)t-1 j;z(s)ds}, 

where K(t)= (1 +Er(t))(l +E2(t))-‘til-2x;1 goes to 1 as t +O and there- 
fore it is possible to choose 6 in such a way that K(t) < (p - l)( p - 2) ~ ’ 
for O<t<S. 

Now, the latter inequality yields (for t E (0, 6)) 

li(t)l’< Ih”(x,)l a: {-z(t)+(p-l)tr~Jfz(s)ds}; 
0 

moreover we have [z(t)1 < ctP and 

~(t’~~j’s(s)d~)=t-p(tz(t)-(P-l) j;z(s)d+o 
0 

so that t + tlpP ’ so z(s) ds is decreasing and then SC, z(s) ds d 0 but z 2 0 and 
therefore z(t) = 0 in (0, 6); from [6, Lemma 2.11 we easily complete the 
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proof of Theorem II in the case n = 2. We deal now with the case II > 2; to 
this aim it is useful to put f(x) = h(x,, 0) + (a, g(x)) -x, so that 

and 

V-J(x) = Y’(n) = i(x1,O) + A(f)& (6’) 

where A(x) is a suitable (n-2)x (n-2) matrix. Now we are able to state 
the following 

LEMMA 1. Zf x E G(t,, b) then there exists Q > 0 such that 

I&t)1 GK I $(x1(t), 011 l%(t)l 

for every t E [to, to + u). 

Proof From (6) and (6’) we deduce 

i= -(2(x,(t), O)+A(x(t)) i(t)).%, (8) 

(7) 

and then 

i= -(~(X1(I),O)+A(X(t))P(t))~,+j’1(S)dS, (9) 
IO 

where A(s) = [xl(s) 2(x1 (s), 0) + (A(x(s)) a(s))‘] a,(~). 
By using equality (9) we obtain 

121 i IO,, O)l lktl + ci j-’ P(s)l ds 
f0 

+jt uec xl, ON Iin1 + c2 I4 + ci $I> ds, 
t0 

where we have used that IA(x(t)l < cI and I&x(t)\ < c2. From the previous 
inequality we argue 

I$*<c, I~(~l,O)(~.i;+c, j’ I$s)l’ds 
to 

for every t E [to, T]. 
Since t --* [ g(xl (t), 0)1*$(t) is increasing in a suitable interval 
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[to, to + cr), we can apply Gronwall’s Lemma to the latter inequality and 
we obtain 

Ik(t)12<eC4c3 Ig(~~(t),O)(~i~ 

which is precisely (7). 

The method consists now in proving that the sign of (a, V)m(j)(x(t)) 
depends only on the sign of a~,h(x,, 0) in a neighbourhood of t,. To this 
aim we consider first the case in which g(x,, 0) goes to zero faster than 
h,, (xi, 0) as t --f to, which leads to 

) !PI goes to zero faster than cp as t -+ t, 

In this case, by using Lemma 1, a direct computation shows that for every 
k 2 2 and t-t, small enough 

holds true with o(t) d c It - t,l. 
By the previous equality, we may reduce ourselves to the two-dimen- 

sional case and, by using the same techniques, the proof of Theorem II can 
be easily achieved in this case. 

In order to complete the proof, from now on we suppose that 

Again from Lemma 1 if 2(x,, 0) = 0 in some neighbourhood of (xi (to), 0), 
then i(t) z 0 in some neighbourhood of to and we fall in the two-dimen- 
sional case; therefore d(x,, 0) is assumed to be different from zero in some 
neighbourhood of (xi (to), 0). 

LEMMA 2. If x E G(t,, b) then there exists 6 > 0 such that 

< Wx(t)), 4t)> 2 0 (10) 

( $ (Vx(x(t)), P(t)) 20 (11) 

for every t E [to, t, + S]. 

Proof: We prove only (11) since (10) can be proven in an analogous 
way. We have 

( $ (W(t))), &) = (&,(x1(t), Oh jt ax1 (s), 0) dp) + e(t) 10 
with lo(t)I <s(t) I b(xi (t), 0)l s:, ( g(xi (s), O)l & and e(t) --+ 0 as t -, to. 
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By the analyticity of g we may suppose 

&(x1, 0) = a,x;11+ O(xT’) (12) 

and it is easy to check that, when t + t,, e(t) goes to zero faster than 

( 
ix, (x1 (t), Oh i’ W,(s), 0) dP 

10 > 
. 

This fact easily implies (11). 

The crucial point of the proof is the following 

LEMMA 3. If x E G(t,, b) then there exists A4 > 0 such that 

rp’M0) w 6 ii4 1 qx(q)12 +q(;(j$)xs)>l (13) 

for every t E [0, T]. 

Proof: From (P’) we obtain 

dx(t))~ = Xl Wx(x(t)) 

and then 

cp(x(t))(K Y) = ji-, 1 !zq* 

(14) 

(15) 

which implies 

i,(t)= lt i(t) ( ,~)-~,~(~(~),~(s))ds. 

Since if(t) f Ic?(t)12 + ii(t) = 1, setting Z(t) = j:, ((d/dt)(q!P/l)l*), 
i(s)) ds, we obtain 

+(l-Z(t))2+2(1-Z(t)) + Ii(*+i;= 1. (16) 

By a standard argument from (16) we obtain 

2 (1 -z(t))* 

I+ (1 +(P*/lW~ 
-(l -Z(t))‘-a;+ 120 

which easily yields (13). 
We recall now that, since b, = (0, . . . . 0) and b, = (JO, . . . . 0), to say 

((4tcl), wf)(xkd) = 0 is equivalent to saying that h,,,,(O, 0) =0 and 
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therefore there exists an index p> 2 such that (dPh/&;)(O, 0) # 0 unless 
hx,xl (xi, 0) = 0 in some neighbourhood of (0,O); in the latter case we 
agree to put p = co. 

First we assume p < co, (8”/&;)(0,0) < 0 and as in (13) we set 

J&(X,) 0) = a,xy + O(xT’) 

and m=min{mj: i=2, . . . . n - 1 }; we now prove the following. 

LEMMA 4. Let x E G( t,, 6); then there exists z > 0 such that 

i;:(t)QKxl(t)*(p-l- 

for every t E [t,, t, + z] and for a suitable constant z-> 0. 

(17) 

Proof: Let p < 2m + 1; from Lemma 3 we have 

and from (6), (6’), and Lemma 1 we argue 

a;(t)< L(xl(t)*(~-‘--m)+Xl(t)~p--lkO(t)), 

where u(t) goes to zero as t -+ t, and having taken p < 2m + 1 the 
inequality (17) holds true in a suitable interval [to, t, + z]. If p > 2m + 1, 
setting I 2(x1, O)l* = c?x~~ + 0(x:“‘) and h(x, , 0) = j?xf + 0(x;) we obtain 

c9 l~12-&JcK ~>lW,~)+(p IV2 <4L+> 
=~~{a2/?p(p-1-2(m-l))x~“~2+P+U(x~m~2+P)))(ly,~) 

+ c?jp(xfm+p-2+ O(xf+‘m-*))( !P, R). 

Since we have assumed /I ~0 from Lemma 2 we argue the sum on the 
second member is negative and this fact yields 

for all t sufficiently close to t, and so (17) is completely proved. 

From the previous lemmas we easily obtain the following. 
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PROPOSITION 5. For every k > 2 we have 

((4th Vk)(f)(X(N = g (x1(t), 0x1+ E(l)) 
1 

for all t sufficiently close to to and with E(t) -+ 0 as t -+ t,. 

Now by using the same techniques of the case n = 2 we easily achieve the 
proof of the following. 

PROPOSITION 6. Let XE G(t,, b) and asume that (Ph/axf)(O, 0) < 0; then 
the function z(t) = h(x, (t), a(t)) - x,(t) is identically zero in a suitable 
interval [to, t, + y]. 

Combining Proposition 6 with [6, Lemma 2.11 we prove local unique- 
ness in this first case. 

Assume now that (Ph/8xf)(O, 0) > 0 and 2m + 1 < p < co. From the first 
part of the proof of Lemma 4 we argue 

i;(t)<Ex,(t)P-l (18) 

when t - t, is small enough; on the other hand it is easy to verify (as in 
Lemma 2) that 

and then 

<v&b i(t)> 2 0 (19) 

= h,,,, (x,, 0) ~2; + (a, &,,) a; + 2(V,(p, 2) IE-, + h,,,,R&. 

Again we can prove that (a, g,,,, (x1, 0)) > 0 for t - t,, small enough and 
by using (18), (19) from the latter equality we obtain 

(<a(t), v>2)m(x(t)) 20 

for all t such that t - t, is sufficiently small. 
When p d 2m + 1 we may proceed as in the first part of Lemma 4 (which 

does not depend on the sign of (Ph/iYxf)(O, 0)) and we obtain 

i;(t)< K~,(t)~(~--l-~) (20) 

as t + t,. By using (20) we obtain for t - to small enough 

((4th V>‘)(f)(x(t))=h,,,,(x,, O)$(l +v(t)), 

where v(t) + 0 as t + t,. 

10
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We have only to consider the case p = co, i.e., h(x, , 0) = 0; from (6) and 
(6’) we obtain C&X) = (2, g,, (x) ) and so Lemma 1 and Lemma 3 yield 

when t - to is small enough. But for the same t we have 

IM(t))l G’c, Lf12 I~x,(xl,o)l’ 

<a(t) lax,, ON2 IkL,h,w2~~w, 

where o(t) -0 as t+ t,. Since IY(x,(t), 0)12>m [2(x,(t), 0)12 we obtain 

and so iE (t) = 0 in a suitable interval [to, to + ~1. 
Therefore, by virtue of Lemma 1, we obtain i(t) = 0 in the same interval 

and the equality 

((4th V>‘NfMN =o 

holds true in [to, to+?]. 
We have proved that when (@h/~?x;)(O, 0) > 0 or f(xi, 0) E 0 then 

((4th V2U)(x(t)) 20 

holds true in a suitable interval [t,, t, + q]; this fact, by applying Proposi- 
tion I completes the proof of local uniqueness and so Theorem II is 
completely proven. 1 
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