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Uniqueness in the Elastic Bounce Problem, |l
DANILO PERCIVALE

Department of Mathematics, SISSA-ISAS,
34014 Trieste, Srada Costiera 11, Italy

INTRODUCTION

In a recent paper (see [6]) uniqueness for the elastic bounce problem
has been studied in a very general framework. More precisely given 7> 0
and feC? (R" R), a pair (x, U)eLip(0, T; R") x L'(0, T; C}(R")) is said
to be a solution to the elastic bounce problem iff

(i) f(x(t)=o0in [0, T]
(ii) there exists a bounded measure u >0 on [0, T'] such that x(z)
is an extremal for the functional

T T
®) F(y)=| (3137 + UGy} de+ [ fp(0)) d

and spt p< {¢te [0, T]: f(x(1))=0}.
(iti) the function &: ¢t — |X(¢)|* is continuous on [0, T'].

In [6,7] it was pointed out that the Cauchy problem for (P) admits a
unique solution when certain inequalities (involving the Gaussian cur-
vature of 022 and the normal component with respect to Q2 of U is fulfilled
(see [6, Thm. 2.27).!

When these conditions are violated, uniqueness for (P) may fail as it is
shown in [7, 8], where an example of fe C*(R?) is constructed in such a
way that 2= {x: f(x)=0} is convex and, as soon as one takes U =0, the
solution of the Cauchy problem for (P) is not unique.

This example shows that—even in the absence of external forces and in
two dimensions—boundaries having rapidly oscillating Gaussian curvature
which vanishes at order infinity at some point may cause a loss of unique-
ness.

! Here we set 2= {x: f(x)>0}.



The aim of this paper is to show that if u is assumed to be real analytic
and U =0 then these phenomena disappear and the solution to the elastic
bounce problem is unique for every choice of the Cauchy data.

1. STATEMENT OF THE PROBLEM

Let f: R" > R be a real analytic function such that df(x)# 0 on the set
{xeR": f(x)=0}. We want to study the elastic bounce problem for a
material point whose position at time ¢ will be indicated by x(¢). This point
moves in the region Q= {x: f(x)>0} and bounces against the boundary
0Q = {x: f(x)=0}. We shall assume that no external force is acting on the
point and therefore given 7>0 we say that xeLip(0, T; R”) solves the
elastic bounce problem (P) iff

(i) f(x(t))=0 for every te [0, T]
(ii) there exists a finite positive measure y on [0, T} such that x(z)
is an extremal for the functional

1,7 T
Fiy)=5 | 13l dit [ ) du

and spt u< {re[0, T]: f(x(¢))=0}
(iii) for every t,,1,€ [0, T] we have

|5Ci (t1)|2= |xi (t2)|2a

where %, and X _ respectively denote the right and left derivatives of x
since X is a BV function (see [3, 4, 7]).

As we have seen in [3], a function x € Lip(0, T; R") satisfies (i), (ii), and
(iii) if and only if it satisfies (i), (iii), and the following equality

X =uVf(x(1)) (1)

holds true in the sense of distributions and spt u< {re [0, T]: f(x())=0}.
According to [3] we introduce the set E= {xeLip(0, T; R"): x solves
(P)} and define the initial trace 7 : [0, T]x E - R¥*?2

T (t, x) = (51%()]%, x(2), % (1), f(x(2)) %(1), 0),

where %(7) = |V (x(2))|1? 2(t)— (X, V{(x(¢)) > Vf(x(2)). Now, fixed t, € [0, T]
and be T ({t,} x E)= A, we set

G(ty, b)={xeLip(0, T; R"): xe E, T (to, x)=b}.



As we have seen in [6] this set is non void and moreover we can state the
following result (see [6]):

PROPOSITION 1. Let t,€[0,T] and be# such that f(b,)=0 and
|bs|* —2b, |Vf(b,)|*=0. Suppose that for every xe G(t,, b) there exists &
such that in (ty, ty+ 0) the inequality

a 2
X, =0
(X, axi)x(t)f

holds true. Then there exists o >0 such that the set
G(ty, b) = {xeLip(ty, to+0): x€E, T (t5, x)=b}

is a singleton.

The aim of this paper is to prove the following result:

THEOREM 1I. If f: R" —> R is real analytic, then for each ty,e [0, T] and
Jor each be B the set G(t,, b) is a singleton.

In order to prove Theorem II we remark that f may be put into the
form f(x)=h(x,, x5, .., X,_ ;) — X, is a suitable neighbourhood of xe0Q
with Vh(x,, .., %, _;)=0. Now, fixing t,€[0, 7], we may consider—
without loss of generality—only those be% such that f(b,)=0
and |b4|2 =2 |Vf(b,)| b, =0=|bs|>—2b,; the last equality implies that
(x4 (ty), Vf(x(25))>=0 and therefore, from now on, we assume that
f(b,)=0, Vi(b,)=0 b,=(1,0,..,0), b,=(0,0, .., 0).

Moreover we put %= (X,, .., X,_1)€R" %, @(x)=V, f(x), x=(x;, %),
V. f(x)= ¥(%) so that problem (P) can be rewritten as follows:

(1) A(x, (1), X)) = x,(¢t) forevery ¢ [0, T'].
(ii) there exists a bounded measure p>0 on [0, T'] such that
sptuc {re[0, T]: f(x(¢))=0} and

X, =pp
(P) F=py
xnz —H

in the sense of measures
(iii) for every t,, ¢t,€ [0, T] we have

%4 (817 =134 ()P =1




2. PrOOF OF THEOREM (II)

Let 1,e [0, T], be B, xeG(t,, b) and assume that 7z, and b satisfy the
hypothesis stated in the previous section. Moreover—by virtue of [6,
Thm. 2.27]—it is no restrictive to assume that

n 62
5 f

Ox; 0x;

(x(20)) X; (£o) X;(20) =0

i=1
and as in [6] (see also [3]) it is not difficult to check that the following
energy-relation holds:

n 2

=2

i=1

& Fx(0) (3061 %(6) (5) | & fix(6))

0x, 0x;

‘2[i o7 (x(t)))?'(t)fc'(t)]f(X(t))
L&, 0x; ox, e

=2 [ (GH6) VY SN (x(9))) s @)

We put f(x)=h(x,, £)— x,; hence when n=2, (2) becomes
2

d
5 (0= 5,00

=2(h(x1 (1) = x2 (1)) h"(x, (1)) X1(2)

=2 [ B (5)) 51 6) A () = 5(6)) . (2)

Since 4 is real analytic we may assume that there exists an index p>2
such that A”(x,(¢y))#0 unless h"(x,) is identically zero; in the latter case
from (2') it follows f(x(7))=0 in a neighbourhood of ¢,. If A#(x,(¢y))>0
then A”(x,(#)) 20 so that f(x(r)) is convex in a suitable [, f,+J) and
therefore or z(t)=0 in [#y, 1o+ ) or z(¢)>0 in (¢, t,+ J). In both cases
from [6, Lemma (2.1)] we argue the thesis.?

We claim that even in the case h‘”(x(t,))<0 the function z(¢)=
h(x,(£)) — x,(¢) is identically zero in some neighbourhood of ¢,.

In fact we have (choosing t,=0)

2()1% =2h"(x, (1)) 2(1) %} (1) -2 Lt R (x(1)) x,(s) z(s) ds

<c{tpf2z(t)+tﬂ~3j'z(s) ds}

2 Here <¢, V>™(f)(x(1)) denotes off(OxF ---OxZY EF - £ Y o, =m.



and then, by using Holder inequality,

L: |2(s)|*ds< C {t"z for z(s) ds+f0’ ds L: 77 32(1) dr}

. 12
<212 ([ |z'(s)|2ds)
0
which yields

! 12
(J;) |2(s)]? ds) <201 -2 3)

and then |z{(t}| <2Ct”.
Since x, is decreasing and x,(0) =1 we have |x,| <1 and then for 7 small
enough
N . LA(O ] I———
[ a0 ds< (e ) Tt [ @)

) [A7(0)] xf72(1+32(t))’ (5)

"(p—2)!

A" (xy)] %7 =%

where ¢, (¢) and &,(¢) goes to zero when ¢ — 0. From these two relations we
obtain

Z()12< 1h"(x,)] 2 {—z(z)+ (p-2) K| 'z(s)ds},
0

where K(1)=(1+¢&,(£))(1 +&,(2)) " 'tx; *x " goes to 1 as 1 — 0 and there-
fore it is possible to choose d in such a way that K()<(p—1)(p—2)""
for 0< <.

Now, the latter inequality yields (for te (0, 8))

P <)l {20+ (p= 1 [ (o)
0
moreover we have |z(¢)] < ct? and

%(np fo 2(s) ds) P (m(z)— (p—1) fo 2(s) ds) <0

so that # — ' 7 {! z(s) ds is decreasing and then {{ z(s) ds <0 but z >0 and
therefore z(¢)=0 in (0, §); from [6, Lemma 2.1] we easily complete the



proof of Theorem II in the case n=2. We deal now with the case n>2; to
this aim it is useful to put f(x)=h(x,, 0)+ (%, g(x)> —x, so that

V. [(x)=@(X)=h,(x;,0)+ (£, §,(X)> (6)
and

V. f(x)=P(%)= §(x,, 0) + A(X)%, (6)

where A(x) is a suitable (n—2) x (n— 2) matrix. Now we are able to state
the following

LEMMA 1. If xe G(ty, b) then there exists 6 >0 such that
12(6) S K| 8(x,(2), 0)] 1%, (2)| (7)
for every te [, ty+ 0).
Proof. From (6) and (6') we deduce

X= —(8(x:(2), 0) + A(x(1) (1)) %, ®

and then

%= — (80 (0), 0) + A(x(0)) $(1) %, + [ Als) d, 9)

where A(s) = [x,(s) §(x,(s), 0) + (A(x(s)) £(s))" ] %, (s).
By using equality (9) we obtain

14118001, 0)1 15,0+ ¢ [ 1%(5)] ds
] {1800 00 Ui+ 3 180+ ¢ 14} s

where we have used that |4(x(¢)| <c, and |A(x(¢)| < c,. From the previous
inequality we argue

t
1< 3 1060, 0)* 82+ ¢, | 1(s)12 ds
4]

for every te [t,, T].
Since - [ g(x,(f),0)|?X3(¢) is increasing in a suitable interval



[0, to+ o), we can apply Gronwall’s Lemma to the latter inequality and
we obtain

1X(0)7 < eey | £(x, (1), 0))°%;
which is precisely (7).

The method consists now in proving that the sign of {x, V)" (f)(x(t))
depends only on the sign of 07 A(x,, 0) in a neighbourhood of #,. To this
aim we consider first the case in which #(x,,0) goes to zero faster than
h (x,,0) as t - t,, which leads to

|'P| goes to zero faster than ¢ as ¢t — ¢,.

In this case, by using Lemma 1, a direct computation shows that for every
k=2 and t— ¢, small enough

(& VA1) = %7 95, hlxy, 0)[1 + (1))

holds true with a(2) <c |t —1¢,].

By the previous equality, we may reduce ourselves to the two-dimen-
sional case and, by using the same techniques, the proof of Theorem II can
be easily achieved in this case.

In order to complete the proof, from now on we suppose that

he (x1, 0) < C [ &(xy, 0)l.

Again from Lemma 1 if £(x,, 0)=0 in some neighbourhood of (x,(¢,), 0),
then %(z)=0 in some neighbourhood of ¢, and we fall in the two-dimen-
sional case; therefore g(x,, 0) is assumed to be different from zero in some
neighbourhood of (x,(z,), 0).

LEMMA 2. If xe G(ty, b) then there exists 6 >0 such that
(P(x(0), X(1)> 20 (10)

d ,
<;,; (P(x(1)), x(z)> >0 (11)

Jor every te[ty, ty+ 5]

Proof. We prove only (11) since (10) can be proven in an analogous
way. We have

(G @ 50) = 2,,0,0). ' g0 1,0)du) +60)

with 10(2)] <e(t) | £(x, (1), 0)] [, 1£(x,(5), 0)| du and e(z) 0 as t - t,.



By the analyticity of § we may suppose
8i(x1, 0)=o,xT"+ O(xT") (12)

and it is easy to check that, when ¢t — ¢,, 6(¢) goes to zero faster than

(21001 [ g3 (91.0) ).

This fact easily implies (11).

The crucial point of the proof is the following

LEMMA 3. If xeG(ty, b) then there exists M >0 such that

. @*(x(1)) t ¥
<M |vf(x(t))|2+2fm< (W)’ (S)>d‘ (13)

for every te [0, T].
Proof. From (P') we obtain
@(x(2)) £ = x, P(x(t)) (14)
and then
P(D))X ) =% |¥)? (15)

which implies

x,(t)=1+<x(z) 1W12> j <%(%),£(s)> ds.

Since x3(1) + |X(¢)|? + * 2(r) = 1, setting I(t) = j (djdt) (@] |?),
%(s)) ds, we obtain

< <P5”> +(1=I(1)? +2(1 — I(t)) <

Yo
+ %12 +x2=1. 16
e > | (16)

|71
By a standard argument from (16) we obtain

p* _(1-I))
|12 (1+ 0%/|¥1%)

—(1=I()*—x2+120

which easily yields (13).
We recall now that, since b,=(0,..,0) and b,=(1,0,..,0), to say
(<x(2), V)21 )(x(20)) =0 is equivalent to saying that h,, (0,0)=0 and



therefore there exists an index p>2 such that (67h/0x7)(0,0)#0 unless
ke, xi(x;,0)=0 in some neighbourhood of (0,0); in the latter case we
agree to put p= oo.

First we assume p < o0, (62f/0x7)(0,0) <0 and as in (13) we set

&i(xy, 0)=0o;x7"+ O(xT")
and m=min{m,;:i=2, .., n—1}; we now prove the following.

LEMMA 4. Let xe G(t,, b); then there exists 1> 0 such that
() <K, (1771 mm (17)

for every te[t,, to+1] and for a suitable constant K> 0.

Proof. Let p<2m+1; from Lemma 3 we have

X0 <

l5”|2
—2¢<¥, l1’>)+<Y’,X> | %1%} ds

and from (6), (6’), and Lemma 1 we argue

X (S L, (07717 +x, ()7 Do),

where w(f) goes to zero as t— i, and having taken p<2m+1 the
inequality (17) holds true in a suitable interval [¢,, to+1]. If p>2m+1,
setting | 8(x;, 0)]? = a’x?™ + O(x?™) and h(x,, 0) = Bx? + O(x%) we obtain
[¢ [P =20, OICE, 2D+ 0 ¥ (b, £
=xH{a®Bp(p—1—2(m—1)) x}"2*2 + O(x]" > +7) }( ¥, 1)
+062I3P 2m+p 2+0(xp+2m 2))<W .7C>

Since we have assumed <0 from Lemma 2 we argue the sum on the
second member is negative and this fact yields

2

®
|12

<M

for all ¢ sufficiently close to ¢, and so (17) is completely proved.

From the previous lemmas we easily obtain the following.



PROPOSITION 5. For every k =2 we have

*h
(G, VY Nx(2)) = 5 (x4 (1), O)(L + (1))

1

for all t sufficiently close to ty and with (1) >0 as t — ¢,.

Now by using the same techniques of the case n =2 we easily achieve the
proof of the following.

PROPOSITION 6. Let x € G(t,, b) and asume that (0°h/0x%)(0, 0) <0; then
the function z(t)=h(x, (1), (1)) — x,(t) is identically zero in a suitable
interval [ty, to+7].

Combining Proposition 6 with [6, Lemma 2.1] we prove local unique-
ness in this first case.

Assume now that (87h/dx%)(0,0) >0 and 2m + 1 < p < co. From the first
part of the proof of Lemma 4 we argue

22(1) < Lx, (1)?~! (18)

when ¢ — 1, is small enough; on the other hand it is easy to verify (as in
Lemma 2) that

Vi, %(1)> 20 (19)
and then
(X1, V(S )x(2))
= hx1x1 (xl’ 0) x% + <)€-9 gx1x1> x% + 2<Vi(p’ j> xl + h)?,)?jxixj'

Again we can prove that (%, .. (x;,0)) >0 for t—¢, small enough and
by using (18), (19) from the latter equality we obtain

(1), VI )x(1) =0

for all ¢ such that ¢ — ¢, is sufficiently small.
When p <2m+ 1 we may proceed as in the first part of Lemma 4 (which
does not depend on the sign of (07h/0x7)(0, 0)) and we obtain

XS Kxy(2)r-tom (20)
as ¢t — t,. By using (20) we obtain for ¢ — 7, small enough

(<Cx(1), VI X(1)) = by (1, 0) X (1 + v(2)),

where v(z) >0 as 1 > 1,.

10



We have only to consider the case p= oo, ie., #(x;, 0)=0; from (6) and
(6) we obtain ¢(x)= (X%, £,,(x))> and so Lemma 1 and Lemma 3 yield

2

|5”|2+Cf 1%(s)|? ds

2

<M g +C [ 14(9) O £3(0) s

2(<M

when 7 — ¢, is small enough. But for the same ¢ we have

lp(x(t)) < e 1% | £, (x4, 0)]
SO’([) Ig(xls 0)|2 |gx1(xl’ 0”25(3(”,

where (1) > 0 as 1 - ¢,. Since | ¥(x,(z), 0)[* =m | g(x,(¢), 0)|*> we obtain
() <k [ 180xi(s), 012 52(s) ds

and so x,(¢t)=0 in a suitable interval [¢,, t,+7].
Therefore, by virtue of Lemma 1, we obtain %(¢) =0 in the same interval
and the equality

(CH(D), V() x(1) =0

holds true in [¢,, o +7].
We have proved that when (824/0x7)(0,0) >0 or f(x;,0)=0 then

(Cx(1), VOI(SN)(x(1)) =0

holds true in a suitable interval [¢,, £, + #7]; this fact, by applying Proposi-
tion completes the proof of local uniqueness and so Theorem II is
completely proven. |}
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