N

N

A stable Langevin model with diffusive-reflective
boundary conditions
J.-F Jabir, Christophe Profeta

» To cite this version:

J.-F Jabir, Christophe Profeta. A stable Langevin model with diffusive-reflective boundary conditions.
Stochastic Processes and their Applications, 2019, 129 (11), pp.4269-4293. hal-01543660v2

HAL Id: hal-01543660
https://hal.science/hal-01543660v2

Submitted on 16 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01543660v2
https://hal.archives-ouvertes.fr

A stable Langevin model with diffusive-reflective boundary
conditions

J.-F. Jabir* and C. Profetal

Abstract

In this note, we consider the construction of a one-dimensional stable Langevin type process con-
fined in the upper half-plane and submitted to reflective-diffusive boundary conditions whenever the
particle position hits 0. We show that two main different regimes appear according to the values
of the chosen parameters. We then use this study to construct the law of a (free) stable Langevin
process conditioned to stay positive, thus extending earlier works on integrated Brownian motion.
This construction further allows to obtain the exact asymptotics of the persistence probability of the
integrated stable Lévy process. In addition, the paper is concluded by solving the associated trace
problem in the symmetric case.

Keywords: Integrated Stable Lévy processes; Hitting times; Reflective-diffusive boundary conditions.
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1 Introduction

Let (L¢, t > 0) be a strictly a-stable Lévy process, defined on some filtered probability space (2, F, (Fy, t >
0),P), with scaling parameter o € (0, 2] and positivity parameter p. Its characteristic exponent is chosen
as (see Zolotarev [29, p.17)):

U(A) = log(E[e™]) = —(i)"e mrse) - A eR,

where the positivity parameter p is given via the usual asymmetric parameter 8 € [—1,1] by

p=P(L, >0)= % + % arctan(f tan(mra/2)).

We assume that |L| is not a subordinator, i.e. p € (0,1). For 0, c two (strictly) positive constants, we
consider the SDE:

t
Xt:X0+/ Ust,
0

U=U+Le+ Y. ((1 — Ba) (6" My — U, ) — Ba(1 + c)Uﬂ;) Iir. <ty

n>1
where (7,, n € N) are the successive hitting times of (X, t > 0) at the boundary x = 0; namely

Tn = inf{t > 7,,_1; X, = 0}, 70 =0,
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with

I B lifr, <t,
st =g otherwise,

and where the sequences (5,, n > 1) and (M,,, n > 1) are independent random variables, also independent
from (Xo,Up) and (L¢, t > 0), such that

1. the random variables (3,, n > 1) are i.i.d. Bernoulli r.v.’s with parameter p := P(8; = 1),

2. the random variables (M,,, n > 1) are i.i.d., non-negative and such that P(M; = 0) = 0. We further
assume that they admit moment of order at least «.

The model (1) describes a type of Langevin model where, at each time ¢, the components X; and U,
represent respectively the position and the velocity of some fluid particle, interacting with a physical wall
located at the axis @ = 0. The particle positions are confined within the upper-half space [0, 00), the
velocity paths are cadlag, governed by the Lévy process (Lt, t > 0) when X; is in the interior (0, 00) and,
whenever the particle hits the frontier x = 0, the velocity component is submitted to either a partially
absorbing boundary condition or a diffusive boundary condition, respectively quantified by ¢ and 6™ M,,.
More precisely, for all n, the left-hand limit U- = lim U, describes the ingoing velocity of the

t—=Tn,t<Th
particle and the reflective-diffusive interaction between the particle and the confinement frontier implies

that the velocity U., = . lir?> U; immediately after the impact is given by :
—Tn, Tn
— cUT; if 8, =1,
Up, =AU, +U, - = (2)
0" M, ifp, = 0.

As U_- is necessarily non-positive, the particle either re-emerges in (0,00) or remains stuck to the axis
"
2 =0, and, in any cases, remains confined within [0, co).

The (partially) absorbing case (p = 1, i.e. 3, = 1 a.s.) was previously introduced and intensively
investigated in Bertoin [4, 5] (in the case of a totally absorbing wall, ¢ = 0) and Jacob [18, 19] when
L = B is a one dimensional Brownian motion. Jacob [18] exhibited the critical level cei; = exp(—7/+/3)
separating sticky and non-sticky situations; whenever ¢ > ceit, lim, 7, = o0 a.s., whereas if ¢ < ceit,
lim,, 7, < o0 a.s. In the situation where L = B is a standard Brownian motion, the corresponding zeroes
of the integrated Brownian motion (z + tu + fg Bsds, t > 0) have been the subject of a long history of
studies starting from the early work of McKean [23] and the numerous works of Aimé Lachal (see [21]
among others). In the case of a stable Lévy process, few results on the distribution of the zeroes of
an integrated Lévy process are known. Nevertheless the necessary and sufficient conditions ensuring the
non-accumulation of (7,,, n > 1) in finite time will be exhibited in Section 2.

The (totally) diffusive situation (p = 0, i.e. B, = 0 a.s.) models the particular case of Maxwell
boundary conditions introduced in the kinetic theory of gases (see e.g. Chapter 8 in Cercignani, Illner
and Pulvirenti [9]). The particular situation where § = 1 and (My,n > 1) is distributed according to a
Maxwellian distribution of the form:

v [v]? .
o exp BT Liv>0ys with © > 0,

corresponds to the situation where a (gas) particle interacts with a surface in thermodynamical equilibrium
at temperature O, and where the particle re-emerges from the wall with a velocity M, after each impact.



The introduction of the term 6™ enables to balance the effects of the reflective and diffusive boundary
conditions, softening (when 6 < 1) or increasing (6 > 1) the heat transfer from the wall to the particle. In
particular 8™ allows to exhibit different asymptotic regimes for the sequence (7,,, n > 1), see Theorems 2.1.1
and 2.2.1. The addition of such component provides a peculiar wall-particle interaction when compared
to classical boundary condition for kinetic equations (see Section 4) as it is inhomogeneous and induces a
dependency of the boundary condition with respect to the past trajectory of the particle near the wall.

Comparable, yet distinct, situations are currently studied in the physics literature, for instance in Mo-
hammadzadeh and Struchtrup [22] where the Maxwellian distribution depends on the ingoing velocity of
the particle, or in Chibbaro and Minier [10] where the boundary condition, modeling particle deposition,
depends on the time that the particle has spent in a near-wall region. (1) can be thought as a illustra-
tive and prototypical model which will be used for investigating more general situations (time-velocity
dependent absorption diffusion coefficient, multidimensional setting, ...) in future works.

Let us also point out that the connection between transport equation endowing diffusive-reflective
boundary conditions and Langevin models driven by a Poisson process has been studied in Costantini and
Kurtz [12] and Costantini [11]. The link between (1) and kinetic equations will be further discussed in
Section 4.

Our aim in this paper is to study the limit behaviour of the sequence (7,,, n > 1), according to the
parameters 6 and c. Such results then allow to discuss some related problems for the construction of a
conditioned stable Langevin process, as well as some relations to kinetic equations.

a) In the next Section 2, we describe the asymptotic behaviour of the sequence (7,, n > 1) in the
case where (Xo,Up) belongs to the semi-finite line {0} x (0, 00), showing necessary and sufficient
conditions on the parameters ¢ and 6 to characterize sticky situations (see Theorem 2.1.1) in the case
of an absorbing wall (p = 1), of a diffusive wall (p = 0) and mixed boundary condition (0 < p < 1).
When the lifetime of the process is infinite, we further give some a.s. asymptotics for the behavior
of (1,, n > 1) (see Theorem 2.2.1).

b) Section 3 is dedicated to the construction of an integrated stable Lévy process conditioned to never
hit 0, thus extending the previous results obtained in Jacob [19] and in Groeneboom, Jongbloed
and Wellner [16] for Brownian motion. As a by product, we deduce the asymptotic behavior of the
upper tail distribution of 7, (Corollary 3.2.2), improving the result in Profeta and Simon [26].

¢) Section 4 is dedicated to the link between (1), in the case § = 1, and classical trace problems for
kinetic equations. Such link was previously studied in Bossy and Jabir [7] for Langevin model driven
by a Brownian motion and singular nonlinear (in the sense of McKean-Vlasov) drift component. We
show the existence of trace functions under appropriate assumptions on ¢, § and the distribution of
(Xo, Uo).

2 Estimation on the asymptotic behavior of (7,,, n € N) starting
from {0} x (0, +00)

We start by decomposing the paths of X into a sum of excursions. To simplify the expressions, we shall
assume that a.s. Xg =0 and Uy > 0.
For n > 1, we define the restarting velocity after the n'® passage time at the boundary :

Vo =Us, = (1= B,)0" My, + Brc|U_-| and Vo = Up. (3)



Observe that by the scaling property of L, for n > 1 :

(70, U D (Fus + V6 Vi) (4)

=

where the pair (£1,¢1) is independent from V;,_; and is distributed as (71, UT;) when the process (X, U)
is started from (0, 1). Although the law of the pair (£1,¢1) is not explicitly known, we have the following
estimates from [26]: for A > 0,

1—
E)] < +oo = E[f|") <400 <= A< 1+of)p’ (5)

as well as the Mellin’s transform,

v— v sin(mwyv
B[l ~) = B 10, 1] = et )
where v is given by
_a(l—p)
14 ™

By defining
gn =sup{k <n—1; B =0} and My = Uy,

we deduce by iteration from (3) and (4) that

—~
=

Vi, n2 1) = | (1= Bn)0" My + 809" M, [[ cltil, n>1 (8)
i=gn+1

where (£y,n > 1) are i.i.d. random variables with the same law as U.- when (X,U) starts from (0, 1).
Note that the r.v.’s (V,,,n > 1) are of course not independent, except if p = 0.

The same scaling and the independent increments properties further allow to decompose the passage time
Tp a8 :

N T — Th1 a (@ a - a
Tn =T+ E : Ve, Vity = &Ug + E §kViiq 9)
k=2 - k=2

where (&, k > 1) are i.i.d. r.v.’s with the same law as 7, when (X, U) is started from (0,1). Furthermore,
for every fixed n > 1, & is independent from Vj_1.

In the following, we shall be interested in the study of

Too = nllgloo T, = inf{t > 0; (X, U:) = (0,0)}.

2.1 Absorption in finite time

We start by looking at the conditions under which the particle is absorbed at the boundary in finite time,
that is 7o, < 00 a.s. We also investigate (still in the case 7o < 00) the existing moments of 7., namely
we study for which A > 0 we have E[r2] < co. Noting that E[r1] = E[7o] = E[|l1|%] = +00, only the case
A € (0,1) is of interest.



Theorem 2.1.1. Assume that Xo = 0 and Uy > 0 with U§' integrable. Then we have the following
situations:

1. If p=1, then
Too <0 P—a.s. <= c¢<cCerit

where
Cerit = €xp (—mcot (7)) .

In particular, for 0 < X < 1,

Elry] <400 <= {c<ceur and ™ E [|€1]*Y] < 1}.

2. If p=0, then
Too <00 P—as <— 6<I1.

In particular, for 0 < XA <1,

1—
E[r)] < +o0 <= {9<1and)\< p}
1+ap

3. If0<p<1, then
Too <00 P—as <— 6O<I1.

In particular, for 0 < XA <1,
Elra] <400 <= {0<1and ™ E[|(1]*]p<1}.
The proof of this theorem will rely on the following lemma, which is a special case of Kolmogorov’s
three-series theorem (see e.g. Durrett [13, p.64]).

Lemma 2.1.2. Let (X,,n > 0) be i.i.d. and positive random variables. We assume that there exists
A € (0,1) such that 0 < E[X{] < +00. Then, for a >0 :

—+oo
ZXna" < 400 a.s. = a < 1.

n=1

Proof. If a < 1,
'E [X?]

o0 A 00
n=1 n=1

which implies that the series converges a.s. If a > 1, since all the components are positive, we have

B [exp <_ > X>

which concludes the proof.

<E

N—o00

N
exp (— Z Xna”>] < E [exp (—Xl)]N — 0
n=1




Remark 2.1.3. Note that we cannot totally remove the assumption on the moments in the previous
lemma. Indeed, consider for instance a sequence of positive i.i.d. random variables with distribution :

In(2)
P(X; € dx) = ——I ,>01dx.
(X ) zIn(x) (=22}
Then, integrating by parts,

+oo +oo
E [eXp (_)\Xlan)] — / eannm 1n(22) dr — 672>\an o Aan / ei}\anz 1n(2) de.
2 x1n”(z) 9 )

Taking a < 1, we deduce by the Tauberian theorem that :

1 —Elexp(—AX1a")] ~ _ (@)

n—+oo  nln(a)

hence
N N
E lexp (—)\nZana )] = EE[exp (=2 X1a")] o 0
—+oo
which proves that Z X,a" = 400 a.s. for any a > 0 in this case.
n=1

Proof. We shall now prove Theorem 2.1.1 and deal with the three cases separately.

1. Assume first that p = 1. We follow the ideas of Jacob [18, Corollary 1]. According to (8), we have the
decomposition

Vn (i) UO HC|£1|
i=1
Therefore, from (9),
+oo n—1
d o [e3 a(n— [e3
e L QUG+ UGS 6uet ™D T 1l
n=2 =1

Next, from Profeta and Simon [27], the law of large numbers implies that :

n—1

1 a.s.
- El In(|¢;]) m E [In(]41])] = 7 cot () = — In(cerit)

hence, for any fixed € > 0, we have for n large enough
n—1
can " < [T 1l < et (10)
i=1

and the finiteness of 7, follows from (5) and Lemma 2.1.2 when ¢ < c¢qit. In the same way, Lemma
2.1.2 implies that 7. = oo a.s. whenever ¢ > cCeit. When ¢ = cqit, observe that the random walk
Zy = > In(|€;]) +In(cerit) is recurrent, hence the restarting velocity V,, = Up exp(Z,,) does not converge
to 0, which implies that 7. = co a.s.

To get the condition on the moments, we then notice that 7, is solution of a renewal equation :



d
o @ EUS + 1|7 (1)
From Goldie [15, Theorem 4.1}, we deduce that there exists a constant x > 0 such that :

K
Pt >1), ~ 500

where n(c) > 0 is such that ¢c®"©E [|¢,|*7(¢)] = 1. In particular, E[r2] < cc if and only if A < 5(c). Point
1. then follows from the fact that for ¢ < cerit, the function A — c**E [|€1|°"\] is convex with a negative
derivative at 07 given by a(In(c) — In(cerit)) < 0.

2. Assume now that p = 0. Then, the particle will always restart afresh when hitting the zero axis, namely
V,, = 0™ M, for n > 1. Hence

—+oo
d — [e%
Too (:) 51U00¢+Z§n90¢(n 1)Mn_1
n=2
and from Lemma 2.1.2, this series converges if and only if § < 1, in which case the moments of 7, are
finite if and only if those of & are (since U§ and M{* are assumed to be integrable).

3. Assume finally that 0 < p < 1. Observe first that since the r.v.’s (8, k > 1) only take the values 0 or
1 and all the terms are positive, 7, may be decomposed, after a change of indices, as :

[e3

n—1 n—1 k
d
L QU+ 3 G (1= B M) + 3 iy [ 070, [ el

k=1 k=1 i=gp+1

with the convention that My = Uy. Since in this case the r.v.’s (8g, k > 1) take infinitely many often the
value 0, we first observe by Lemma 2.1.2 that 7., = co as soon as 6 > 1.
So assuming that § < 1 and taking 0 < A < 11—;1%, we then have :

A
n—1 n—1 k
(0% [e% [e3 A agr (o3 (6% [e3%
Elr] < BTN+ DB [(1= By) (610 M2) | + Y B | | &raoonrg, T eled
k=1 k=1 i=gn+1
A A A oa)\ — oa)\n A = A A : A A
< BIgl (B3] + (1 - B g ) +0B () B oo argt [T e

k=1 i=gr+1
In the following Lemma, we compute the remaining sum (Zz;ll (...)) under the more general assump-
tion that 6 # 1, as the result for # > 1 will be needed during the proof of Theorem 2.2.1.

Lemma 2.1.4. Forn>2,0#1and 0 < X < 11J:Of)p :

n k
Z E eagkkM;C)\ H Cak|€i|o¢)\
k=1 1=gr+1
1 n—1 ;
LY B [0 ) (B0 + (1 - 9o Bl

1 n
= ?E[US‘A] (™ E[|61*Y] p)" +
i=1

904)\(7171') -1
for — 1 )



In particular, for X small enough such that c® E [|€1|"‘)‘] p < 1, there exist two constants Ay, By indepen-

dent of n such that
E [7’7)1‘] < A0 + By,

Proof. The law of g is given by :
Plgp=1)=(1—p)p" " forle{1,....k—1} and P(gyr = 0) = p*~ L. (12)

We decompose the expectation according to gr. When g =0 :

k
« « (e « AA] o oAk e
E (05000 T] el gm0y | = BIUEEME [j[24] . (13
i=gr+1

When gi > 0, similar computations yield :

k k—1 k
E eagkkM;C)\ H Ca>\|€i|a)\ﬂ{gk>0} _ ZE eal)\Mlo&\ H ca>\|€i|o¢)\ (1 _p)pk—l—l
i=gr+1 =1 i=l+1
k—1 ) . .
_ (1 _ p)E[Mix)\] Z oa)\(k—z)caME [|€1|a>\} pz—l. (14)
=1
Applying Fubini-Tonelli’s theorem, we deduce that
n k-1 ) n—1 ) n
Z Z gork—1) Lodigp [|€1|a)\]1pi71 _ Z g—aXiaXip [|€1|a>\}1pi71 Z gl (15)
k=2 i=1 =1 k=i+1
n—1 .
. P - 90‘)‘("_1)
_ paA ai al 3—1
=0 ;c E 6] p ™ g
which concludes the proof of Lemma 2.1.4. O

Now, letting n — 400 in Lemma 2.1.4 and using the fact that # < 1, we deduce on the one hand that
E[r2] < 400 as soon as A is small enough so that ¢®*E [|£1|**] p < 1. In particular, 7o, < +00 a.s. for
any ¢ > 0. On the other hand, we have :

+o0o k @
E[r%] > E <U€Z§k+1ﬂk <H C|£i|> ]I{gk—o}>
k=1

= =1

A

Observe now that the random variable appearing on the right-hand side of the previous equation, say Xoo,
is a solution of the following renewal equation :

Xoo = &81U5 1[I ig,=0y + |01 Tip,=1) Xoo-
As in Point 1., Goldie’s result [15, Theorem 4.1] implies that there exists a constant x > 0 such that

]P(Xoo >t) :

t—)f:-oo tTO
where A\g > 0 is the solution of
1=E CMD|€1|M°H?§1:1}} — ¢™F [[64]°*] p.

This implies that E[x2,] = +o0c for A > Ao, which concludes the proof. O



2.2 Asymptotics of (7,,n > 1)

We now study the rate of divergence of 7,, when 7, —Jr) ~+00.
n——+00

Theorem 2.2.1. Assume now that Toc = +00 a.s. We have the following asymptotics :
1. Whenp=1:

(a) If ¢ > corit =

ln(;") ﬁ a (7 cot () 4+ In(c)) .

(b) If ¢ = cepiz < for any 0 < A < 2,
In(7,)  as.

—FF —— 0.
nl/A notoo

2. Whenp=20 :
(a) If 0 > 1 :
—ln(Tn) —2* 5 aln(d).
n n—-+oo
(b) If@:l,’forany0<)\<1lJ:OfP, .
n a.s. O

3. When0<p<1:
(a) If > 1 :

(b) If 6 =1 : for any A > 0 such that c®*E [|[(1]** p <1 :

T’ﬂ a.s. 0'

n1/>‘ n—-+oo
Before proving Theorem 2.2.1, we state a short lemma regarding the negative moments of &;.
Lemma 2.2.2.

1. If the underlying Lévy process L has negative jumps, then for A >0 :

E¢] < +00 <= Aelo,1).

2. If the underlying Lévy process L has no negative jumps, then for any A > 0, we have E[{“l_’\] < 400.

Proof. We denote by (A; = fot Ly du, t > 0) the (free) integrated stable Lévy process, and by P, ) the
law of (A, L) when started from (z,y). Applying the Markov property, we have for u > 0 :

400 e
/0 TPy (A < 0)dt = E {6_,@/0 e "Po.) (A < 0)dt |-



11/

Recall then that A; @ Txay7=

Ly under P(g ). Therefore, since £; < 0 a.s., we deduce that

12 Py (4 0) =P (L < —(1+ @)t 0) 21— ),

hence
+oo U +oo
/14/ e_“tP(Oﬁl) (At S 0) dt S E [e_“&} S 1— _H P (0,1) (At < O)
0 —PJo
Integrating against u*~! on (0, 4+00) with A > 0, we obtain :
+oo N A +oo N
A/ t Py (A <0)dt <E[G7] < i 7 P,y (A < 0) dt
0 —pPJo

The result now follows from the asymptotics of the stable laws, i.e. when L admits negative jumps (see
Bertoin [2, Prop.4, p221]

P(L; < —fl/a)twom
—

for some k > 0. When L has no negative jumps, this asymptotics is known to be exponential.

Proof. We now come back to the proof of Theorem 2.2.1.

1.(a) The proof of Point 1.(a) is a direct adaptation of Profeta-Simon [27, Theorem A], using the decom-

position, for p > 2:
p—1 @
(4)
Tp — Tp—1 — Ln X 11 X (H C|€l|> .

i=1

Note that due to the reflection, there is no need to use the dual process —L here.

1.(b) Let € > 0. Using the Markov inequality :

P <ln(7’n) S E> < pment/ A1 [T}/\/ﬂ

k=2
<e R [(glUg)lNﬂ (1 +(n—2E {(ccritwll)“/ﬂn)

<emsn M E ( {(5 Ug l/q +Zn:1E {5 Ue) 1/\7} E [(ccrit|£1|)a/\/ﬁrl>

since, from Jensen’s inequality,
E [(ccrit|€1|)a/vn} > exp | —=E[In(]41]) + In(cerit)] | = 1.
\/ﬁ

Next, using the explicit Mellin transform (6) and Taylor expansions, we may compute the limit :

n
2.2

sin(my(1 + %)) )) ——— exp (7"20‘ (1—29)(1+ cot2(7T’7))) .

sin (w(l —-y)(1+ 7=

E (Ccrit|€1|)a/\/ﬁ} — g~ Vnamcot(ry)

The a.s. convergence then follows from the usual application of the Borel-Cantelli’s lemma.

10



2.(a) and 3.(a) Both cases may be dealt with in the same way, by taking p € [0,1[. We start with the
Markov’s inequality :

7

Using Lemma 2.1.4 with A small enough, the first term may be bounded by

In(m) _ aln(@)’ > 5) < e_’\E"( [ Ag— O"\"] +E[r _’\90"\"])

n

E [rp07 ] < Ay + BA0™ ™" < A\ + By < +00

since 6 > 1. Similarly, since (3,, only takes the values 0 or 1, the second term may be bounded by :

—A
n

E [1,20°M"] < 0B | | €ura(1 = Ba)0°" Mg + &g Bn6° Mg, [ 16l
i=gn+1
—a
<0 [ (1= p)0 " E [¢ My ] + pEIGE | [ 0970, [Tl
1=gn+1

Observe next that, decomposing the expectation with respect to the law of g,, (see (12)), we obtain

—al
0NE | | 09 M,, ] cltil
i=gn+1
n—1
_ ea)‘nE[U(;a)‘]EHCfl|_a)‘]npn_l + (1 —p)E[Mfa)\] Z ea)\kEncgll—a)\]kpk—l'
k=1

This term may be bounded by a constant independent of n as soon as A is small enough so that
O E|cl1] " p < 1.
The result then follows again from the Borel-Cantelli’s lemma.

2.(b) and 3.(b) are consequences of the following result by Petrov [25], which we adapt here to our set-up.
Assume that (X, k > 1) are positive r.v.’s such that E[X}] < oo for some positive v < 1 and all

k>1.1f A, =5 ,_, E[X/] —>—|—oo then for any 0 < A < v, > ,_, Xp = o(4 /)‘)
We therefore apply the aforemenmoned result with X = 7o — 7x—1. When p = 0 and 0 = 1, we
~ P This yields :

ap

choose v < 1

> El(7e = 1)) = D E[&Mi )]~ E[EM) ]n
k=2 k=1

When p € (0,1) and 6 = 1, we choose v > 0 such that ¢*E [|¢1]*"]p < 1. This yields :

av

n n k—1
D El(m = m-1)] = (1= p)E(EM?) ) (n = 2) + pE[&1] D E | | My, ] cltil
k=2 k=2 i=gr—1+1

11



This last term may be computed by letting § — 1 in Lemma 2.1.4. We obtain :

n—1 k av

1 av av av n—1
STE|[ My, ] el = —E[Ug"] (¢™E [|t1]*"] p)
k=1 i=gr+1 p

+Z ¢E[|6*]p) (E[US"] + (1 = pE[MY](n — 1 —1)).

Letting n — +o00, we obtain the asymptotics :

av

n—1 k +oo

av 1 av av i
SE|( M T del] | ~onx (- pEMPTY L (@ E (6]
k=1 i=gr+1 nTree = P

and Points 2.(b) and 3.(b) thus follow directly from Petrov’s result.

3 Langevin processes conditioned of not hitting (0, 0)

We shall construct in this section the law of an integrated a-stable Lévy process conditioned to stay
positive, thus extending some earlier results by Groeneboom, Jongbloed and Wellner [16] on integrated
Brownian motion. Note that a direct construction seems difficult as we do not have the exact asymptotic
of P(4,)(71 > t) but only lower and upper bounds, see [26, Theorem A]. We assume in this section that
p=1,and ¢ < ceit 50 that 7o < +00 a.s. We now denote by P(¢) the law of the solution of (1), i.e. of the
integrated a-stable Langevin process reflected on a partially elastic boundary, and, to simplify P = P(®).
The general idea of this section is to first condition the process (X, U) under P(¢) to not hit the boundary
(0,0), which is done using a renewal result, and then to let ¢ — 0. As a consequence of this construction,
we shall finally obtain the exact asymptotics of P, (11 > t).

We start by observing that the law of UT; is the same under P(®) for any ¢ > 0. Its Mellin’s transform is
given as follows, see ([27, Formula 2.1]). Let ¢ be the stable density whose Fourier transform is given by :

1
. 1
/e“\zq(z)dz =E [exp (2/\/ Lsds)} = exp ( — (i )\)O‘e_”w‘pbg“()‘))

For s € (0,1), we consider the function
L // AS q — (1+ 2\ futh) ¢~ 1*_)d/\t =1/ gy
- )

This function admits an analytic continuation for s € [0, ﬁ] which we denote W,(z,u). Then, for

Ve (O, %), the Mellin’s transform of U,- admits the expression :

m(l+ oz)% -~
(w,u) [| -[” } = (HV) s (r (L1 ) (1= 7))‘1’1&1(%“)- (16)

Remark 3.0.1. In the following, to avoid complicated notations in conditional expectations, we shall
systematically remove the superscript (©) when taking the expectation of Fr, -measurable random variables.
Therefore, in the following proof, the notations E(©) and P°) will always apply to the variables Too, T, and
U_- with n > 2, while the notations E and P will refer only to 7 and UTf.

Tn

12



3.1 The case 0 < ¢ < Cerit
We follow Jacob [19, Section 3]. Let n(c) > 0 be the unique solution of the equation

can(c) sin (777(0”7(0) + 1))

an(e) _|em@) | =
"M g,1) [|U71 | } 1 — sin (m(1 — ) (an(c) + 1))

=1 (17)

Note that 7(c) is well-defined since f(z) = Eq1) [|CU7_1—|O‘$} is a convex function, whose derivative at

x = 0 is negative, and such that lim f(z) = +oo. This implies in particular that 7n(c) is a decreasing

z%%
function of ¢ such that
I (c) = 1—-p d I () =0
c%n0—1+ap—n an c_}glritnC— .

We define the harmonic function h¢ for {x > 0 and v € R} or {z = 0 and v > 0} by
B (@) = OB gy [T, |7 = B 107,27 (18)

Note that h¢ enjoys the following scaling property :

e he(1, ua Y/ (@ +1)), (19)

he(z,u) =21

In particular, for z > 0 and u > 0, we have

an(e)

he(0,u) = un© and h(z,0) = z T« h%(1,0).

Proposition 3.1.1. For 0 < ¢ < c¢pt, there exists a probability PE;)Z) on (Q, Fso) such that

: (e) _ p7
VAs € Fs, tl}IJPoo Pl (Aslmoo > 8) =Py (As).

(z,u)

]P’E;)Z) may be described by an h-transform with respect to ]P’E;)u) as follows :

(o)t _ 1 (¢) c
VAs € Fs, IED(m,u)(As) - h0($,u) E(E,u) []IAsh (XS’ US)H{5<T°°}] :

Proof. Using the renewal Equation (11) and the scaling property, we deduce from Goldie [15, Theorem
4.1], that there exists x > 0 such that:

wen(©)

() ~ _
Plow (Too > 1) troo 1(0)

where 7(c) is the solution of Equation (17). Applying the Markov property at the time 71, we then obtain
that
P(C)

(zu)

(Too > 1) = Ez.0) PE(CJ?c\UT,\)(TOO >t—1T)
1

13



To apply the dominated convergence theorem, let us fix some deterministic A > 0 such that, for any
t > A, we have t”(c)]P’Eg)l)(Too > t) < 2k. Then, by scaling and since 0 < n(c) <1 :

t"(c)]P’Eg?CIU 7|)(TOO >t—T)
1

c t—T c
< (t-— Tl)"(c)]P’Eo?l) (Too > AT 1|a> +T{7( )
T

< A7) en@)|gy _jan(e) 2O _|en(e) )
- 1 { } 1 { t—7 >A} 1

1
U _ @ =
1

t—71
caU _ @ SA
1

< (AW(C) + Qﬁ)can(C)wF |om(0) + 7,II(C)
1

which is integrable since 7(c) < 7. The dominated convergence theorem then yields :

]PJ(C)

(z,u

he(x,u)
(T >0, Y F o

Next, applying the Markov property at time s, we deduce that

P (7o > 1 Fy) he(Xe Us)
PO (ro>1) ot hwu) U7

(z,u)

and the result (i.e. the L convergence) will follow from Scheffé’s lemma, once we have proven that

E(C)

(z,u)

[hc(XS, US)I[{TOO>S}} = hc(.’L', u)

Observe that by definition of n(c):

(c) an(c)] _ me) an(c
Efo U IO =B, {Em,wfmn 1V -1 )H

EC., {(C|UT;—1|)Q77(C)E(071) {'Uﬂan(c)” =B U, [7)].

(z,u) n—1

By iteration, we deduce that

he(w,u) = MRS U, -]
= ORE (U 1", <] 4 L) (16X U, 5] (20)

It remains to prove that the first term converges towards 0 as n — +oc.
By the Markov property :

I, =EY

(zu)

022

= EEQU) [|UT; a"(c)ﬂ{mss}ﬂ{|UT;|§1}} +E§2u) []E(o,chl) {|UTI|M(C)H{71+T”135}]1{UT1zl}H :

In K.,

14



Observe first that by dominated convergence, .J, —+> 0. Next, by scaling, the second term K,, may
n—-+0oo

be written
K, :Egi)yu) |:(C|U7.nl|)°‘77(c)E(o71) |:|U7-1|Om(C)H{T1cQU | 1<5}]I{C‘U -~ ||U >1}]]

Applying the inequality T4 p<s} < Ija<s3lip<s) Which is valid for positive a and b, we obtain

K, <Egi)u |:|U |0‘77 ]I{Tn 1<5}E01 |:(C|U |) n(C)H{TlcaUT1|°‘§5}]I{CU.,.1U.,-1|21}:|:|'

Then, since
Lrcou = jecsylieu - u__i>13 < Lryju__je<s)
Tn—1 Tn—1 1 T

we deduce that

K, < Eg;)u) “ |om( )]I{Tn 1<S}} Eo |:(C|U |)an(c)H{T1/UTa<S}:| =l,_1Xr
1

where we have set r = E(q 1) |:(C|U |)°”7(C)]I{Tl/‘U - a<s}] € (0,1). By iteration, we obtain for n > 2,
Tl -

n—2
I, < Z T r® £ [t
k=0

and the result follows by letting n — 400 and using dominated convergence.

3.2 The case ¢c=0

We are now interested in letting ¢ — 0, in order to obtain the law of a (free) stable Langevin process
conditioned on not hitting 0. In this case, notice from (17) and the limit of n(c) that :

e — i S an(@)(1 )
213% h(w,u) = n(lc)%n sin(my(1 + an(c)))

E (o, [1U,.- "7,

Passing to the limit in the expression (16) of h¢, we deduce that h" admits the representation :

a(l—mn)
1+ ) t+a ~
RO (z,u) = ult ) Vot (2, ).

2 (1':0‘") sin(my(1 + an))

Note also, that writing

an(@)] _ e sin(my(1 + an(c)))
E e, [[Ur ") = W) e e e T

h® may be obtained by the converse mapping theorem for Mellin’s transform (see for instance [14]) :

sin (1y(1 + an)) h°(z, u)
P(m,u)(|Urf| > Z) %fjr . an
z 0o 0% z

15



We will see in Corollary 3.2.2 that unlike h°¢, the function h° is increasing in both variables, and that for
x>0, lim AY(x,u) = 0. The insight for this is as follows : for UTf to take a very large negative value,
U—r—00

the process U must first make a very long positive excursion (so that X take a large positive value) before
dropping to the negative values. In other words, if the starting point Uy = w is very negative, then X
will hit almost immediately the boundary, i.e. UT; ~ y, and thus the probability that UTf ~ 1 is smaller
than —z will be close to 0 as z — +00.

Corollary 3.2.1. The law of an integrated a-stable Lévy process conditioned to stay positive is given by

1
T _ 0
VAs € F, Pl (As) = WE(m,u) [Ia, h*(Xs, Us)L{s<ryy]

Proof. To show that this definition makes sense, we shall prove that PT may be obtained by a penalization
procedure, i.e. that :

P, (As||UT;| > Z) P P! ) (As).

(z,u

Indeed, observe first that :
Mg (U > 21F) = 2Py ({10, > 2} 0 {1 < SHF) + 2P (11U | > 220 {7 > s}
=21y _paningsyy 2 im0 P (|UT;| > Z)

0 sin (my(1 + an))
e M (X, Un) ===

hence, as before, the L!-convergence will follow from Scheffé’s lemma once we have proven that
E(m,u) [hO(st US)H{S<7'1}} = hO(Ia u)
Going back to Formula (20) with n = 1, we obtain that :
hc(% u) = Can(C)E(m,u) {lUﬁ'an(C)H{TlSS}} T E(zv“) [hC(XS’ US)H{"'1>S}} ' (21)

Since na < «, the first term is easily bounded by :
Com(c)E(w)u) |:|U71|an(C)H{T1§S}i| < Com(c)E(w)u) [Sup|Uu|an(C)H{ngs}}
u<s
< CO‘”(C)E(I ) [sup |Uy |*" A 1} — 0.
’ u<s c—0

Next, fix 0 < § < cerit and observe that we may find two constants As and Bs, such that, for any ¢ € [0, d],
we have :
he(1,u) < Ag + B (|ul A1),

By the scaling property of h¢, we then obtain :
he(z,u) < As (x A1)Tra + Bs (lu] A1)

The result finally follows by passing to the limit in (21) and using the dominated convergence theorem,
since X and L, admit moments of order o« — ¢ under P.
O
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Corollary 3.2.2. There exists a constant k > 0 such that :

hO(z,u)
]P’(z’u)(Tl > t) t%:oo K o

Proof. Using Corollary 3.2.1, we first have :

1
B0 (z, u)E!

(z,u) [hO(X—h Ut)] = ]P(z,u)(Tl > t).

By the scaling property of h° and (X;, U;), we deduce that :

ho(x,u)ET 1
0 () L0(X0, U |

]P)(m,u) (Tl > t) =
Letting t — 400, we finally obtain that

. n =po T 20/Y. 77\
t—lgi-noot Py (i >1t)=h (:E,U)E(O,O) | hO(X,,Ty) |

which is finite from [26, Theorem A].
O

Remark 3.2.3. It is clear from Corollary 3.2.2 that h is increasing in both variables. Furthermore, using
exponents for the starting points, we have for x > 0 and u < 0:

h(:c,u)zE[hO (Xl“”’“),LY’“))l | —— 0

{1<n; }:| U—r—00
by dominated convergence since
hO (Xl(m,u),Lgm,u)) 1

0 (5 (0) r(x,0)
{1<T{I’“>}§h (Xl L1 )1{1<T{z’°>}'

Note also that, had we known this asymptotics before, the conditioning of X mnot to hit the boundary 0
would have been more direct.

Remark 3.2.4. We briefly check that in the Brownian set-up, our approach agrees with the existing
formulae in the literature. In [16], working directly with the explicit density of P(, )(T1 € dt), the authors
find the harmonic function :

h/(.I,u) = // w3/2 (qt(I,U;O, _w) - Qt(Iau7Oaw)) dt dw
0

where q; denotes the density of the Brownian motion By and its integral :
t
qi(x,u;y,v)dydv =P <x+ut+/ Bgds € dy, u+ By € dv> )
0

Looking now at Lachal [21, Formule (17)], and replacing the + by a - in the definition of m, we observe
that for |s| < 3 :

1 +oo
s—1| __ s . .
E(z,v) |:|B7'f| } = <2COS (ﬂ—gs) - 1) //0 w® (qe(z,u; 0, —w) — qi(z, u; 0, w)) dt dw.
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The inverse mapping for the Mellin’s transform yields thus :

3 TL(I,U)

z——+oc0 T Zl/2

P(m,u) (|BTI—| > Z)

which agrees with the approach we use in Corollary 3.2.1. Note that due to our normalization U = /2B,
we have in fact :

h(z,u) = 21—1/4h0(\/§x, V2u).

4 Link with kinetic equations and a probabilistic approach for
related trace problems

In this section, we apply the results of Section 2 in order to exhibit the link between (1) and the trace
problems related to kinetic equations endowing Maxwellian boundary conditions (see e.g. [9], Mischler
[24]).

4.1 The Brownian case

The link between the sequence of zero times of the integrated Brownian motion, the modeling of boundary
conditions for Langevin dynamics and trace problems for kinetic equations was previously exploited in
[7] (see also [8] for the multi-dimensional case) in order to show the well-posedness of some Lagrangian
Stochastic model related to wall-bounded fluid flows. The trace problem related to a simple Langevin
model driven by a one-dimensional Brownian diffusion (L = v/2B) and endowing purely reflective bound-
ary conditions (p = ¢ = 1) concerns the existence, in an appropriate sense, of a solution to the boundary
value problem:

Duplt, 1) + udap(t, 2,u) — 2p(t, 2, w) = 0, (t,,u) € (0,00) x (0,00) X R, (22a)
p(t,0,u) = p(t,0,—u), (t,u)€ (0,00) xR, (22b)
where p(t) represents the probability density function of (X, U;). In a rigorous way, the variational
formulation of (22a)-(22b) consists in the existence of p and the existence of a pair of trace functions
vT(p) and v~ (p) defining the value of p(t,0,u) along the respective boundary sets
Yt ={(t,u) € (0,00) x R|u < 0} and ¥~ = {(t,u) € (0,00) x R|u > 0}

and such that: for all 0 < T < oo and for all f € C2°((0,T") x [0,00) x R),

T
/ // (O f(t,z,u) + udy f(t, 2z, u) + 0L f(t,z,u)) p(t, z,u) dt dz du
0 (0,00)XR (23)

S //+ u7+(p)(t,0,u)f(t,O,u)H{OStST} dt du — // uy™ (p)(t,0,u) f(t,0,u)lfo<i<ry dt du
s ==

From a PDE point of view, the existence of trace functions can be handled in a classical sense by showing
the continuity of « — p(t,z,u) up to the axis = 0 or in a weak sense by showing some appropriate
Sobolev estimates for p. As noticed in [7], the trace functions 4y and v~ have also a natural probabilistic
interpretation as density functions related to Y. -, P o (7,,U,,) " for the solution of the SDE :

t
Xt:X0+/ U, ds, Ut:U0+\/§Bt—2ZUT;]I{THSt},
0

n>1
Tn =1inf{t > 7,-1; X4 =0}, 70 = 0.
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4.2 The stable Langevin case

In the more general case of the stable Langevin model (1) and assuming that § = 1, the probabilistic
interpretation of the trace functions ¥* in terms of the SDE

t
Xt:Xo—i-/ U, ds,
0

U=Up+ Li+ Y ((1 — Ba)(My = U,-) = (1 +¢)B,U, ) I(r. <ty (24)

n>1 !
o =inf{t > 7,_1; Xy =0}, 70 =0,

is given by

Theorem 4.2.1. Assume that
P(M; € du) = um(u) du, (25)

and that the following properties hold true:

(P1) Vn>1,Po(r,, UT;)_1 18 absolutely continuous w.r.t. the measure (H{ogth}dt) ® (uH{ugo}du) ,
(P) Forall0<T <oo, Y P(r,<T)< o0

n>1

Then there exists a non-negative integrable Borel function vT defined on X% such that, for p(dz, du) =
P(X; € dx,U; € du), we have: For all C°([0,T") x [0,00) x R)-scalar function f,

T
/0 / /( ) OLF 0 L ) 4 00 ,0) el )
== // f(oa €T, u),uo(d:r, du) du — // U’FYJF (ta 07 U’)f(ta 07 U)H{Ogth}dth (26)
(0,00) xR =+

- // 3 U’}/i(t, 07 ’Lb)f(t, 07 U)H{OStST}dtdu

where 0% is the fractional Laplace operator:

o) e Olar fly+u) = fu) —yf (w)ly <1y
02 f(u) i= Cla) /{ » s day,
and
v (t,0,u) = C%’W (t, 0, _TU> + (1 —p)m(u) <— /{v<o} vy T (¢,0,v) dv) . (27)

Proof. For f € C([0,T) x [0,00) x R), It6’s formula immediately yields that (see e.g. Protter [[28],
Chapter 2, Theorem 32])

T
0 =E[f(0,Xo,Up)] +E / (Oef (t, X4, Up) 4+ Up- 0o f(t, X4, Up-)) dt + 0o f(t, Xo, Up) dLy + O f (¢, X, Up-) d(L)§
0

+]E Z (f(S7X87US) _f(qusaUs*) _auf(qusaUs*)ALs)—i_ Z (f(t7Xt7Ut) _f(taXhUt*)) 9
s<T, ALs#0 t<T, X:=0

19



separating, in the last line, the jumps related to (L, 0 < ¢t < T') and the jumps occurring at the zero
times of (X;, 0<¢<T).

Since the infinitesimal generator of (L, t > 0) is given by 95 (see e.g. [Applebaum [3], p. 142]), the
above can be reduced to

O://f(O,;v,u)uo(d;v,du)—i—/oT // (Ouf (1,2, 0) + udof (£, 2, u) + O F (¢, @, ) pe(dar, ) dt

+E |3 (flrn Xew Upt) = £, X0, U,)) L <y

n>1

According to (P;) and (P2), there exists a non-negative integrable Borel function v defined on ¥t such
that

E Z f(n, Xr, s Uﬂf )]I{TTLST} = // uyt (,0,u)f(¢,0,u) dt du. (28)
= (0,T)xR—

Since

U,

n

=U_+AU, =U_-+1=8) (M, =U_) = (1+¢)BU.- = (1 =) Mn — U, -,

this implies that Po (7, U,, ) ™! is also absolutely continuous w.r.t. (]I{ogth} dt) ® (ul{ugo}du). Denoting
the related density by v~, we observe that, for all f € C.((0,T) x [0,00) x R),

E Z f(T’n.; XTnv UTn)H{TnST} = // U’}/7 (tv Oa U)f(t, 05 U) dt du
(0, T)xR+

n>1

Z E {f(Tnu XTn7 (1 - Bn)Mn - BnCU-,—;)H{TngT}}

n>1

= (1= 9) Y E[f(rus Xy Ma)lgr, <1y] + 2 D E [ £, Xy, U, s, <1y

n>1 n>1

Then, since, for any n, the r.v.’s 7, and M,, are independent, we obtain, with m the distribution of M;
given by the assumption (25),

+oo
Z E [f(Tern,Mn)]I{rngTﬂ = Z (/0 ulE [f(Tn, XTn,u)H{TnST}] m(u) du>

n>1 n>1

_/O n ZE[f(Tn,XTn,u)]I{THST}] m(u) du

n>1

:/ u —// F(t,0,u)vyT(t,0,v) dt dv | m(u) du,
0 (0,T) xR~
which implies, using (28),

//(O.’T)X]R+ uy ™ (t,0,u) f(t,0,u) dt du = (1 — p) <//(0,T)XR+ wm(w) (_ /OOO W*(t,O,v)dv) (4,0, u) dtdu>

+5 // uyt (t,O, —_“) F(t,0,u) dt du.
¢ (0,T) xR+ c
(29)
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Combining (23) and (29), we deduce that the time marginal distribution (u, 0 < t < T') satisfies the
variational equation (26) with the boundary condition (27). O

Remark 4.2.2. Let us point out that the case 6 # 1 has been purposely left aside as this situation
doesn’t relate to a classical trace problem associated to Mazwell boundary conditions. Generically, Mazwell
boundary conditions (see e.g. [Chapter 8, [9]]) forms as

uy” (¢,0,u) = (R * ”y+) (t,0,u), u>0,t€e0,T], (30)

where R = R(t,u;v) is a scattering kernel defining the transition law between the velocity distribution v
of the outgoing particles and the velocity distribution v~ of the incoming particles at a time t.
Assuming that 0 is arbitrary, and that the probabilistic representations:

// u'er(t,O,u)f(t,O,u) dtdu= —FE Zf(Tn)XTn7U7-7)H{Tn<T} )
(0, T)xR— " -

n>1

J[ w00 didu=E | 3 5, X Un e |
(0,T) xR+ )

n>1

hold true, replicating the calculations for (29) yields to

// uy ™ (t,0,u)f(t,0,u)lf<py dt du
(0,T) xR+ N
-zE[ Ko AP 5 ]

n>1
D) D E [ (7, Xr s 0" M)z, <1y] 40D E (7, X, =eU, )iz, <1y
n>1 n>1
n>1 (0,T) xR+

In the case 0 =1,

ZE[f(Tn,Oe u)]I{T <T} t()u // tO’U)dtdv
0,7") XR+

n>1

and we simply recover the form (30) which allows to formulate a usual trace problem related to kinetic
systems. The case 8 £ 1 doesn’t provide such link as, in this case, the Mazwellian diffusive part distribution
is strongly correlated to the distribution of the sequence (1., n € N), and the resulting boundary condition
diverts from classical boundary value problems for kinetic equations.

Owing to Theorem 4.2.1, the trace problem related to (26) is then reduced to the verification that (P;)
and (P») hold true.

Theorem 4.2.3. Assume that (Ls, 0 <t < T) is symmetric, that (Xo,Up) is distributed according to a
probability measure po defined on (0,00) x R, that (25) hold true, 6 =1 and

e cither 0 <p<1
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e orp=1 and ¢ > cerir and there exists 0 < v < 1 such that, for any § € (0,v),

//E(m,u) [|UT;|_6] po(dx, du) < co.

Then (Py) and (P2) hold true.
As a preliminary result for the proof of Theorem 4.2.3, let us show that

Lemma 4.2.4. Po (7, U77)71 is absolutely continuous with respect to the measure ullg, <oydu @ dt.
1

Proof of Lemma 4.2.4. The idea of the proof relies on showing that (24) in the case of a purely reflecting
wall (p =1, ¢ = 1) admits trace functions (in a classical sense) and to deduce from (28) that, for all n,
Po (Tn, UT;)_1 is absolutely continuous with respect to ullf,<gydu ® dt.

First, let us consider the distribution i of the (free) Langevin processes
t
V,=Uy+L; and Yt:X0+/ V, ds.
0
For all t > 0, \,w € R, we have :
ﬁ{(% \)=E [etit-i-iAVt] _ // piw(z+ut) +idup {eiw J§ Ls ds+iXLy pio(dz, du)
RxR

. - "1 @
— // ezw(erut)Jrz)\ueft Jo ltwr=+A| dT,LL()(dI, du)
RxR

Then, the successive changes of variables A = A w, 0% = w® fol [tr + 5\|°‘ dr yield

J[ e
RxR
. 1 - o
< // et Joltwr AT dr gy iy = / dA (/ |o|e~ el d&)) < o0,
RxR R R

(fol ‘rt + S\‘er)

hence, for all 0 < ¢ < T, the Fourier transform ﬁtf is integrable on R x R. This implies (see e.g. Jacob and
Protter [20], Theorem 13.1) that the distribution u/ of (¥;,V;) admits a bounded continuous Lebesgue
density pf(t) on R x R given by

1 o , . a
pf(t,y,’l)) = // e~ WY—iAv (// ezw(m-i—ut)-l—z)\ue—tfol\twr+>\| drﬂo(d%,dﬂ,)) d)\ dw.
(2m) RxR RxR

Additionally, for all k,1 > 1, by applying the same change of variables as above,

2w

|00k p! (t,y,v)| < // [ FIAet Jo T 217 dr g\ gy
RxR

ALl < . el -
< / A e dA </ |W|k+l+1e el dw) < 00,
R a R

(fol |rt + Ao dr)
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from which we deduce that, for all ¢ > 0, p/(¢) is C*° on R x R.

Next, define
Xi =Y, U] =Visign(Y)f,  t>0,

where (sign(Y);", t > 0) is the cadlag modification of (sign(Y;), t > 0). Since, for any n, (,+1 = inf{t >
Cn, Y: = 0} (with ¢y = 0) is a predictable stopping time, ¢t — L; never jumps a.s. at (, (see e.g. Blumenthal
[6], Theorem 5.1). It6’s formula then yields that

t
XZ‘:XQ“F/ U! ds,
0

t
Ul =Us + / sign(V); dLe+ Y Vi Asign(V) L pgpnvy-zoy T 9 ALsAsign(Y)]
0 0<s<t 0<s<t

t
:U0+/ sign(Y); dLs —2 > Ul Taxsz0)-
0 0<s<t

Thanks to the symmetric property of (L, t > 0) and the fact the L and sign(Y") a.s. do not jump at the
same time, (fot sign(Y); dLs, t > 0) is also a symmetric a-stable Lévy process, and (X[, V;"), t > 0) is
a weak solution to the Langevin model (1) with purely elastic reflection. Therefore P (X € dz, U] € du)
admits a smooth density function p” given by

P (X[ € dz, U] € du) = (p (t,z,u) + p (t, =2, —u)) {50} dz du.

Owing to the smoothness of ,u{ and replicating the arguments of [7, Theorem 2.3], we deduce that the
natural trace functions satisfying (26) in the purely reflective case are given by

Fyi (pr)(ta 07 ’LL) = (pf (ta 07 ’LL) =+ pj(tv _07 —U)) ]I{wzo,iu<0}'
According to (28), this is enough to ensure that
Po (7], U:f)—l =Po(m,Us+ er)_l
1
admits a density with respect to (H{ogth}dt) ® (ul{ugo}du). O

Proof of Theorem 4.2.3. For (P1), applying Lemma 4.2.4 and using (25) and the Markov property, we
immediately deduce that for all n € N

P(rn, € dt, U_- € du)

admits a density with respect to the measure uly,<gydu @ dt, and that (P;) is satisfied.
For (P,), assuming that 0 < p < 1, by the Markov property, we have

E[e™] =E [ Equ.,) ] =E [e™™ (1 = DB, [e7"] +PE vy [])]
<SE[e]E[((0-p)Eoam) [e] +p)]
Therefore, setting o :=E [(1 —p)Eo,a) [e7] —|—p} which is strictly smaller than 1,

E [6_7"“] < o"E [e_ﬁ} .
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For any given 0 < T < +00, choosing ¢z > 0 such that I,<7) < ere™, it follows that

Z]P’(Tn <T)<ecr ZIE [677"] < crE [efﬁ} Z o" < oo.

n>1 n>1 n>0

In the case where p = 1 and ¢ > ceit, we first write, for n > 2 :

S PE<T)<Y Plrap—m <T).

n>1 n>1

Then, using the Markov’s inequality with 6 > 0 and the decomposition (9),

]P)(Tn-i—l — Tn S T) - // ]P)(zu) (Tn-l—l — Tn S T) Mo(d,f,du) S // E(zu)
(0,00)xR (0,00)xR

-6
<T°E [¢7°E 0,1 // Epo 10U -170 po(de, d

T5

(TnJrl - Tn)

5] po(dz, du)

<TE [¢°] (E [|c£1|‘a5])n//(o B [10,17°] no(dz, du).

According to Lemma 2.2.2; taking § < v immediately ensures that E [{f‘s] is finite. Next, since f(§) =
E {|c€1|_a6] is such that f(0) =1 and

f'(0) = (E [exp (—a61n|c£1|)])&;:0 = —aE[In|cl]] < —a(In(ceis) + Eln [41]]) = 0,

f is decreasing near 0. Hence, choosing § > 0 small enough, o = E [|c€1|_a6} < 1, and we get
P (741 — 7o <T) < Cp™ with ¢ < 1. This enables to conclude (Pz). O
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