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Abstract 

Water utilities have started to install water quality sensors to protect their network against intentional and accidental 
contamination events. In this context, for taking appropriate action, not only are early-warning detection systems important, but 
so is the identification of the contamination source, and knowledge of the present and future contamination extent. For the latter 
there is a need for reliable and updated network models. The main objective of this paper is to specify which performance criteria 
should be considered to place water quality and water quantity sensors for both early detection and model calibration. Firstly, a 
brief bibliographical review is given for optimal sensor location design. Next, formulations and objectives for early-warning 
detection are proposed. Problem formulations that aim to minimize the estimator variance for calibration are then specified. 
Finally, the method is applied on the real WDN system of the CUS water service (1,000 km, 25,000 nodes and 45,000 
customers).  

© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Scientific Committee of CCWI 2015. 

Keywords: Sensor placement; Computer-aided designs; Models; Early-warning detection system; Calibration; Multi-objective optimization. 

1. Introduction 

Drinking water distribution networks are exposed to malicious or accidental contamination. Several levels of 
response are conceivable. One of them consists of installing a sensor network to monitor the system in real time. 
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Once a contamination has been detected, it is also important to take appropriate counter-measures. The SMaRT-
OnlineWDN [1] project relies on modeling to predict both hydraulics and water quality. An online model makes it 
possible to identify the contaminant source and perform a simulation of the contaminated area. The sensor system is 
intended for detection by an early-warning system and for online calibration of the transport model. 

Firstly, a review of previously published research on sensor designs for water security and model calibration is 
presented. Then, the experiences of the SMaRT-OnlineWDN partners in the two previous German National projects, 
STATuS and IWaNet, and in the FP7 European project, SecurEau [2], are reported. 

1.1. Main previous published research in water quality sensor designs  

One of the first formulations is the demand coverage method (DCM) by Lee and Deininger [3] for placing water 
quality monitoring stations (MS). A MS covers a node if a sufficient fraction of water flows from this node to the 
MS for a demand scenario. The design relies on the principle that the water quality decreases with time and distance 
from the source. One drawback of the method for its application to water security is that it is only based on water 
quantity under steady state.  

 
Kessler et al. [4] have formulated a set-covering problem (SCP) to find the optimal layout for detecting a random 

pollution event.  The optimal design satisfies a given level of service to the consumers that is defined by the 
maximum volume of consumed polluted water prior to detection. Ostfeld and Salomons [5] have generalized the 
previous problem formulation to calculate the domain of pollution with the complete transport model in order to 
better take into account the water dilution and the water quality changes. The SCP formulation searches for a safe 
cover for every pollution scenario. Uber et al. [6] have introduced a maximum coverage problem (MCP) with a 
weaker assumption for the cover. Solution of the set-covering problem is achieved by [4] using a graph heuristic 
algorithm suggested in the Christofides’s book [7], by [5] using GAs and by [6] with a greedy algorithm. 

 
Propato et al. [8] propose a MILP (Mixed Integer Linear Programming) formulation. Their generic objective 

function consists of costs that are impact factors for an EWDS, such as average time to detection, likelihood of 
detection, etc. Berry et al. [9] propose another variant with a formulation mathematically equivalent to the p-median 
facility location problem. They solve with a Greedy Randomized Adaptive Search Procedure (GRASP) and they 
quantify how close to optimality the solution is with the MIP Cplex solver or with LP bounds. Propato and Piller 
[10] solved the MILP problem in [8] with the MIP Cplex solver and observe near optimality for a greedy algorithm. 

 
To discuss the convenience and the potential of each approach regarding designing an EWDS, the Battle of the 

Water Sensor Networks (BWSN) was held as part of the Eighth annual WDSA symposium in Cincinnati in 2006. 
Among diverse conclusions of the common paper by all the BWSN participants [11], it was concluded that there is 
not a single formulation/solving method solution that was superior to the others; better solutions were ones 
combining strength of the algorithm with engineering judgment and intuition. Interestingly, several future research 
directions were: definition of the pollution matrix and better contaminant event generation to better represent the 
network complexity; graph simplification or water quality model simplification without reducing the model 
prediction power; dual use of sensors (not only for security goals but for model calibration, etc.); inclusion of risks; 
sensor reliability and alarm generation with false positive and false negative classification; and finally incorporation 
of operational conditions. To a greater or lesser extent, all these research directions are explored in the SMaRT-
OnlineWDN project. 

1.2. Main previously published research in model calibration for WDNs 

Sensitivity analysis allows the determination of how “sensitive” our model is to change in the values of these 
parameters. They have been successfully applied to hydraulic sensitivity [12], hydraulic calibration [13-15] and 
hydraulic and water quality sampling design [16-20]. For the latter, it gives the most sensitive nodes where it would 
be most profitable to perform the necessary measures for calibration.  
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1.3. Experience of partners 

Within the German collaborative research project STATuS, funded by the BMBF (13N10623, 2009 – 2013), a 
risk-based approach to water network security was taken. Some recommendations for the placement of sensors were 
derived from the results and graph forest/core decomposition of the network [21]: 
 Sensors should be placed at so called path or crossroad nodes (in the core with degree > 2) only;  
 Contamination event scenarios for sensor placement could focus on intrusion at path nodes;  
 Graph theoretical bridge elements are well suited for sensor placement since a sensor on a bridge pipe separates 

the network into two parts without any ambiguity. 
 
Within the collaborative research project IWaNet (funded by the BMBF, 01ISO9014B, 2009 – 2011) a hybrid 

sensor location method [22] was developed for placing water quality measurements (conductivity, temperature, pH) 
as well as hydraulic parameter ones (pressure, flow rate). For detection of contaminants, a mono-objective integer 
linear programming (ILP) algorithm was implemented. As objective function, the maximum coverage of pollution 
events was used. By fixing a maximum travel time, the competing objective of minimizing time to detection was 
also considered in a simplified way as a constraint. For solution of that problem a Greedy algorithm was 
implemented. The results were almost as good as those of the ILP but the running time could be reduced by a 
magnitude. Finally, the optimal locations for hydraulic measurements were calculated by a second Greedy-
Algorithm that is based on pressure sensitivities with regards to the demands. This research is completed in the 
SMaRT-OnlineWDN project. 

 
The FP7 SecurEau project [2] (EC n° 217976) was aimed at the security and decontamination of drinking water 

distribution systems following a deliberate contamination. One project goal was the setup of an early-warning 
system, and a multi-objective problem was formulated. Several objectives were defined. Some of them are early-
warning specific; others were introduced to mitigate the decontamination procedure; while the last ones decrease the 
population vulnerability and the financial cost. Two groups of constraints were considered in order to select sensor 
designs ready for use by water utilities. The first group is for the operational and capital costs. The second group 
encompasses all the location restrictions and limitations. A novel formulation was derived that reduces the problem 
size in term of unknowns and constraints, which leads to a Nonlinear Integer Programming problem formulation.  

2. Materials and Methods 

2.1. Early-warning sensor placement formulation 

Half of the four conflicting objectives by Ostfeld et al. [11] that were part of The Battle of the Water Sensor 
Networks (BWSN) are retained. The average time to detection criterion is the simplest. It is defined as: 

Nsimu

j
jjtpZ

1
1   (1) 

Where, δ is a feasible sensor design (number and location); Nsimu is the number of contamination events to 
consider; pj is the probability of a contamination event (pj = 1/Nsimu for the equiprobable case); and tj is the 
minimal detection time of the jth contamination for the given sensor location δ. 

The information of the population supplied at network nodes was not available from the water utility. A surrogate 
but robust objective design as proposed in the SecurEau project [2] is to consider the average fraction of population 
exposed prior to detection. 

Nsimu

j
jj fpZ

1
2   (2) 
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Where fj is the fraction population exposed to the jth contamination for the given sensor design δ. The likelihood 
of detection LD is the average number of detections for a given sensor design. Its complement of one is the average 
number of failed detections that is: 

Nsimu

j
jj

Nsimu

j
jjD dpZdpL

1
3

1
111  (3) 

Where dj is the probability to raise an alarm given that the real contaminant event ej has happened. 
In order to protect a population that is at risk (e.g., a hospital; a school; a vulnerable customer; and to a certain 

extent a normal consumer) the average fraction of population exposed at risk criterion is used. It is defined as: 

Nsimu

j
jj rpZ

1
3   (4) 

Where rj is the fraction of population at risk that is exposed to the jth contamination before detection by the given 
sensor design δ. This criterion differs from the Z2 fraction of population exposed (Eq. (2)) as the definition risk may 
differ from the connection number. An example of risk definition is 5, for presence of a hospital or a school; 3 for a 
safeguard consumer; and 1 for a normal consumer. More objective functions such as the installation cost were 
investigated but not reported here. 

 
Two groups of constraints have to be considered in order to select sensor designs ready for use by water utilities. 
The first group is for the operational and capital costs. To simplify, the operational cost was considered to be a 

linear function of the number of sensors. The installation cost for a monitoring station will greatly vary from one 
location to another. Nevertheless, an average installation cost may be given and used because of the amount of 
sensors to install. The capital cost may also be considered as a linear function of the sensor number. In this study, 
operational and capital costs are represented and valuated by the number of sensors. 

The second group encompasses all the location restrictions and limitations. Some locations are selected by the 
water utility. This leads to defining a preselected sensor set P. Other locations should be avoided because they lead 
to technical and financial limitations: installation costs are too expensive and/or technical requirements such as 
minimum velocity (for optimization of chlorine sensor working) are not met. This defines the feasible sensor set F 
that is a superset of the preselected sensor set P. 

 
The sensor design multi-objective problem may be formulated as: 

s

T
ii

N

Z

F,P :subject to

min 4,. .1   (5) 

Where P is the pre-selection set; F is the feasible set; Zi is one of the four objective functions defined in Eqs. (1-4); 
and δ is the sensor design (decision) variable that is a subset of F and a superset of P. This problem consists of a 
Nonlinear Integer Programming problem that is multi-objective. The solution to this problem is a set of Pareto 
points. In this research work we solve with a customized greedy algorithm. 

2.2. Calibration sensor placement formulation 

As discussed in the background chapter, the nodal demands for short periods of time are rough estimates.  
Accordingly, they will constitute the unknowns that we seek to identify. Based on the nature of premise occupation 
and water use metering analysis, consumers may be grouped in few classes with the same demand multiplier time 
pattern. For example, one will distinguish domestic, residential and industrial consumer classes.  Then, the 
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consumers are aggregated at nodes.  Few consumers of different classes can be aggregated at the same node. This 
reads: 

td xGd t   (6) 

Where d is the nodal demand; Gd is the nj by nd class matrix of nodal demand allocation; and x(t) is the demand 
class of size nd. The definition of such classes is a difficult task.  A trade-off should be made between the model 
error resulting from simplification and the parameter uncertainty. Indeed, few parameters are easy to calibrate but 
errors in the model can be significant.  Several authors have examined this question as well as the rational use of 
probability theory and automatic clustering [23, 24]. 

For a sensor design δ, the following reduced nonlinear regression equation to predict the observation may be 
defined: 

ttmes ,t xySy   (7) 

Where ymes is the vector of observation at time t; Sδ is the selection matrix to select the state vector components 
that corresponds to the measurements δ; y(x,t) is the prediction vector calculated from the water quantity and the 
water quality models; and ε is the error or noise vector that we will assume distributed with mean zero and diagonal 
covariance matrix C. More specifically, we assume C of this form: 

1222diag WC iy   (8) 

With Δyi the confidence we have for the ith measurement at a given level; and sigma is a coefficient of 
proportionality. We assume these coefficients are proportional to the standard deviation of the model error. 

 
We will call the influence of the measurement error on the least-squares estimates, the deviation from the 

solution with no measurement error. At first-order estimates, this estimation error fulfills the linear equation: 

εTT WJJWJxxx 1
0ˆˆ   (9) 

With Jδ is a Jacobian estimate that is assumed constant at the vicinity of the solution. 
 

The main idea [14] is to choose a sensor design δ that minimizes the absolute value of the influence of 
measurement error Eq. (9) for measurement errors within the confidence limits defined with the Δyi values. For each 
design δ, we calculate: 

JWWJJWJ 5.01sup εTT

yii

  (10) 

Where the infinity matrix norm is simply the maximum absolute value row sum of the matrix; A+ is the pseudo-
inverse of matrix A; and D0.5 is such that D = D0.5D0.5 with D a positive matrix. 

 
The problem of optimal design for parameter calibration is formulated as: 

nd

Z

J

JW

rank :subject to

min 5.0

  (11) 
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Where rank is the matrix rank operator. The full rank constraint the number of columns is to ensure the algebraic 
observability. 

 
In the SMaRT-OnlineWDN project, we solve the mono-objective problem Eq. (11) with a greedy algorithm and a 

sequential update of the pseudo-inverse by the incremental Greville’s algorithm.  

3. Application on the CUS network 

3.1. Building the hydraulic model from GIS data 

CUS (Strasbourg Eurométropole) water service (201 workers) supplies water to 400,000 inhabitants through a 
network composed of about 1,100 km cast iron pipes. The average daily production is about 105,000 m3/day 
groundwater without any treatment. Distributed water is chlorinated at each of the 4 production sites and in the 
buffer tank. 

The Porteau hydraulic model has been built by import of the pipe data sections from the CUS GIS. After 
substantial data cleansing, in particular to connect the graph, the complete network contains 52,651 pipes, pumping 
stations, and the main storage tank. The consumption is imported by projection of the subscriber positions on closest 
pipes. The operator chose a typical working day of consumption. 

To calculate the various score criteria to compare sensor placements, it was necessary to allocate the number of 
connections and the notion of risk to the network junction nodes. The operator has positioned the subscribers at risk, 
while giving a weight according to the type of subscriber (5 the maximum for hospital, 1 a subscriber at risk, 0 for 
no sensitive subscribers); The level of risk was then allocated as for the consumption to pipes and split in the two 
end nodes for each pipe. All in all we have indicated the position of 49,612 connections; and the overall risk number 
is 9,680 for the CUS network. 

The network was simplified by deletion of the antennas of small diameters and/or short lengths. Their 
consumptions, connections and levels of risk were summed and added at the root node of the antenna. The network 
graph obtained after simplification includes 16,001 links and 13,712 junction nodes. It is the basis of water quality 
multi-probe sensor for early-warning detection system. 

3.2. Scenarios of contaminations for CUS network 

5,000 contamination events were generated by random sampling of the node of intrusion, the starting time 
(between 0 to 24 hours), different injection mass, and the injection duration between 0 and 6 hours. The number of 
contaminations was calculated to represent approximately 1/3 of the number of nodes; this allows a relative uniform 
spatial and temporal distribution of the contaminations. Every simulation takes a few minutes.  

3.3. Sensor placement for early-warning detection system 

The optimal location of 200 sensors was sought for 8 different criteria of optimization. The total process time for 
all the optimization solving is 23 h CPU on a Xeon 3Ghz. The Figure 1 shows the criterion « average time to 
detection » versus the sensor cost (number of sensors) for seven different mono-objective optimizations (time to 
detection, likelihood of probability, population at risk, etc.). The line of dark blue points represents Pareto optimal 
choices of time to detection. With no sensors, 37h represents the average residence time in the network with no 
detection and normal demand. With 80 sensors at optimal location, detection is expected in less than 5 hours. With 
more than 120 sensors there is no significant improvement. 

The Figure 2 compares the same different mono-objective solutions for the detection likelihood criterion (or 
detection probability) vs. the sensor costs. The detection probability curve (in brown) is a Pareto efficient frontier. 
We may notice that with 94 sensors the probability detection is 0.95 and for 200 sensors 0.99 is reached. 

The position of the first 20 sensors following both criteria: time to detection and detection likelihood are totally 
different. So for the same sensor cost, it is necessary to arbitrate between the diverse possible criteria. 
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Fig. 1. Pareto front for average time to detection versus sensor cost with different criteria for CUS network. 

 

Fig. 2. Pareto front for detection likelihood versus sensor cost with different criteria for CUS network. 

3.4. Sensor placement for online demand calibration 

With a very looped network composed by mostly oversized pipes, velocity in pipes is very low and the 
calibration by measuring a head loss and identifying pipe roughness factors is very difficult to achieve in this 
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situation. Flow rate metering was then preferred and 14 network sectors were instrumented for demand calibration 
of each sector. The algebraic sum of the inflows and outflows is measured by flow meters on the pumping stations 
outflows, by level on tank and new flow meters on sector limits. 

During this project the initial 20 monitoring stations have been completed by 34 additional monitoring stations 
with flow rate in pipe, pressure, free chlorine, pH, temperature, more the conductivity for a cost of 40 k€/station. 

4. Conclusions and perspective 

This paper specifies which performance criteria should be considered to place water quality and water quantity 
sensors for both early-warning detection systems and model calibration. The optimal designs that are proposed come 
from a thorough analysis of the literature and from the SMaRT-OnlineWDN consortium experience. 

For early-warning detection systems, the following different objectives are defined to optimize the average time 
to detection, the fraction of population exposed, the likelihood of detection, the average fraction of population 
exposed at risk, and the installation cost. The solution is a two-step method. Firstly, several pollution events are 
simulated and several impact costs if no sensor for detection are worked out. Then, a multi-objective nonlinear 
integer-programming problem is solved to cover the pollution events under budget and limitation constraints. A 
trade-off may be found, using Pareto-efficient fronts on conflicting objectives. 

Placing sensors for model calibration relies on selecting designs that reduce the influence of measurement errors 
on parameter estimation. The solution proposes to minimize the variance of the least-squares estimator. The 
objective function represents the sensitivity of the demand class parameter estimation to the measurement error. The 
full rank constraint restricts the design solution that leads to observability of parameters. The optimal sensor designs 
lead to a calibration problem with the best-condition numbers. The confidence interval for parameters will be 
reduced compared to another sensor design with higher score. 

For the CUS network (Strasbourg Eurométropole), a network graph is obtained after simplification that includes 
16,000 links and 14,000 junction nodes. It is the basis of water quality multi-probe sensor design for early-warning 
detection system. 5,000 uniformly distributed contamination events were generated by random sampling. Pareto 
optimal fronts were proposed to the water utility for average time to detection versus the sensor cost, and for 
detection likelihood versus the sensor cost. This makes possible the placement of additional 1 to 200 water quality 
multi-probe sensors. It was found that for more than 94 additional sensors there is no significant improvement for 
the detection likelihood, and 95% of the generated contamination events were detected in less than 5 hours. In the 
SMaRT-OnlineWDN the early-warning optimal sensor placement was also achieved for the VEDIF [25] and the Berlin 
water utility. 

This work will be completed in the ResiWater project [26] for design and management actions for improving 
resilience of water critical infrastructure systems. 
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