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Abstract – The load transfer in hybrid (bolted/bonded) – denoted HBB – single-lap joints 1 

is complicated due to the association of two different transfer modes (discrete and 2 

continuous) through elements with different stiffnesses. The Finite Element (FE) method 3 

can be used to address the stress analysis of those joints. However, analyses based on 4 

FE models are computationally expensive and it would be profitable to use simplified 5 

approaches enabling extensive parametric studies. Two among the authors of this paper 6 

participated in the development of a dedicated 1D-beam approach (Paroissien 2007). 7 

This paper presents an extension of this framework enabling (i) the analysis of HBB joints 8 

made of dissimilar laminated or monolithic adherends, and (ii) the introduction of non 9 

linear material behaviour for both the adhesive layer and the fasteners. The output data 10 

are the distributions of displacements and forces in the adherends and fasteners, as well 11 

as those of adhesive shear and peeling stresses, allowing for a fast assessment of the 12 

material behaviour and strength prediction of HBB joints. The use of this model is 13 

illustrated in the identification of the failure mechanisms of HBB joints under quasistatic 14 

loadings, based on experimental and numerical tests on single-lap HBB joint. It is worth 15 

mentioning that the model can support pure bonded and pure bolted configurations. It 16 

can be used during the presizing phase at the design office (possibly independently on 17 

commercial software), to obtain quickly mechanical performances and to help in decision 18 

making. Moreover, it was shown that the judicious choice of the adhesive material allows 19 

for a significant increase of the static and fatigue strength compared to pure bolted or 20 

bonded corresponding configurations (Kelly 2006) (Paroissien 2006). The model can then 21 

be used to formulate at best adhesive materials to optimize the mechanical performance 22 

of HBB joints according to work specifications.  23 

 24 

 25 

Key words: bolted joint, bonded joint, unbalanced joint, analytical solution, Finite 26 

Element Method, macro-element, mixed-mode I/II 27 
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NOMENCALTURE AND UNITS  1 

 2 

Aj = extensional stiffness (N) of the adherend j 3 

Bj = extensional and bending coupling stiffness (N.mm) of the adherend j 4 

C = stiffness (N.mm-1)  5 

Cu = stiffness (N.mm-1) of the spring in the x direction (longitudinal stiffness) 6 

Cw = stiffness (N.mm-1) of the spring in the y direction (transversal stiffness) 7 

Cq = stiffness (N.mm.rad-1) of the spring around the z direction (bending stiffness) 8 

Dj = bending stiffness (N.mm2) of the adherend j 9 

Ej = Young’s modulus (MPa) of the adherend j 10 

E = adhesive peel modulus (MPa) 11 

Ef = Young’s modulus (MPa) of the fastener  12 

F = vector of forces 13 

G = adhesive shear modulus (MPa) 14 

G1c = critical energy release rate in pure mode I (MPa.mm) 15 

G2c = critical energy release rate in pure mode II (MPa.mm) 16 

K = stiffness matrix 17 

L =  length (mm) of the overlap  18 

Mj =  bending moment (N.mm) in the adherend j around the z direction 19 

Nj = normal force (N) in the adherend j in the x direction 20 

Qa = nodal normal force (N) applied to the node a in the x direction (a = i,j,k,l) 21 

Ra = nodal shear force (N) applied to the node a in the y direction (a = i,j,k,l) 22 

S = adhesive peel stress (MPa) 23 

Sa = nodal bending moment (N.mm) applied to the node a around the z direction 24 

(a = i,j,k,l) 25 

T = adhesive shear stress (MPa) 26 

U = vector of displacements  27 

Vj = shear force (N) in the adherend j in the y direction 28 

Y0 = elastic strain energy stored in pure mode 1 (MPa.mm) 29 
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b = width (mm) of the adherends (lateral pitch between two rows of fasteners) 1 

d = length (mm) between the end of the joint and the nearest fastener 2 

ej = thickness (mm) of the adherend j  3 

e = thickness (mm) of the adhesive layer 4 

f = force (N) applied to the joint in the x direction 5 

h = distance (mm) between the neutral line of both adherends 6 

lj = length (mm) of the beam outside the overlap of the adherend j 7 

n = number of fasteners 8 

s = length (mm) of the longitudinal pitch between two lines of fasteners 9 

uj = displacement (mm) of the adherend j in the x direction 10 

ua = displacement (mm) of the node a in the x direction (a = i,j,k,l) 11 

wj = displacement (mm) of the adherend j in the y direction 12 

wa = displacement (mm) of the node a in the y direction (a = i,j,k,l) 13 

D = length (mm) of the Bonded-Beams element 14 

f = fastener diameter in mm 15 

nf = Poisson’s ratio of the fastener 16 

qj = angular displacement (rad) of the adherend j around the z direction 17 

qa = angular displacement (rad) of the node a around the z direction (a = i,j,k,l) 18 

(x,y,z) = direct orthonormal base 19 

20 
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1. INTRODUCTION 1 

Hybrid (bolted/bonded) – denoted HBB – joining technology in lap joints combines both 2 

classical techniques, i.e. bolting and bonding. The advantages of HBB joints, compared to 3 

bolted joints, could be summarised in two main points: (i) continuous instead of discrete 4 

load transfer distribution along the overlap, (ii) decrease of load transferred by fasteners.  5 

Hartman reported fatigue test results on single-lap joints of two similar aluminium 2024 6 

T3-clad adherends, so that HBB joints showed largely superior fatigue performance than 7 

bolted joints (Hartman 1966). Furthermore, in terms of security, the existence of 8 

fasteners in HBB joints could ensure the functioning of the structure, even if the adhesive 9 

layer failure occurs. In manufacturing industries, such as aerospace, automotive, rail or 10 

naval transport industries, in which numerous bolted and riveted joints are used, the use 11 

of HBB technology could be considered as a potential solution, in order to reduce the 12 

mass as well as the manufacturing cost. HBB joining technology was presented as a 13 

relevant concept of fail-safe structures by Hart-Smith (Hart-Smith 1982). According to 14 

this study, HBB joints with aerospace configurations and material systems do not offer 15 

any significant increase in strength compared to adhesively bonded joints, which could be 16 

explained by the low fraction of load transferred by the fasteners. Imanaka et al. showed 17 

that the fatigue strength of the adhesive joint can be improved through combination with 18 

a rivet whose fatigue strength is at least that of the corresponding bonded joint 19 

(Imanaka 1995). Since 2000, along with the development of adhesive materials as well 20 

as the increasing use of composites in industrial applications, some studies have been 21 

published on the mechanical performance of HBB joining technology. Fu and Mallick 22 

experimentally demonstrated that single-lap HBB joints with structural injection moulded 23 

(SRIM) composite material for the adherends and epoxy material for the adhesive have a 24 

higher static strength and longer fatigue life than corresponding adhesively bonded joints 25 

(Fu 2001). However, this performance depends on the washer configuration. Washers, 26 

which provide partial lateral clamping pressure over the entire overlap area, have a 27 

better performance than those that provide partial lateral clamping pressure. Samaei et 28 

al. experimentally and numerically showed that the addition of an adhesive layer to a 29 
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pure bolted joint made of aluminium alloy allows for the extension of fatigue crack 1 

growth life (Samei 2016). Chowdhury et al. showed that HBB joints could lead to higher 2 

damage tolerance performances than pure bonded joints configurations, whereas no 3 

significant variation in the static strength is obtained (Chowdhury 2015). Kelly 4 

experimentally and numerically showed that as the load can be shared between the 5 

adhesive and the bolt by using low modulus adhesives, HBB joints can have greater static 6 

strength and fatigue life than corresponding adhesively bonded joints (Kelly 2006). By 7 

employing a low modulus adhesive, Paroissien experimentally obtained a significant 8 

improvement in fatigue life with double-lap HBB joints with two lines of fasteners 9 

compared to double-lap sealed and bolted joints with three lines of fasteners (Paroissien 10 

2006). The judicious choice of the adhesive appears as determinant to optimize the static 11 

and fatigue performance of HBB joints. According to Raju et al., the use of interference-12 

fit bolt promotes the load sharing between the adhesive layer and the fastening system 13 

(Raju 2016), as a key parameter to improve the mechanical performances of HBB joints. 14 

Kumar et al. provided a design improvement of single-lap composite HBB joints in term 15 

of static ultimate strength by adding attachments reducing the bending moment at both 16 

overlap ends (Kumar 2010). 17 

The Finite Element (FE) method is able to address the stress analysis of HBB joints 18 

(Kelly 2006, Hoang-Ngoc 2010, Bois 2013). Nevertheless, analyses based on FE models 19 

are mainly computationally expensive and it would be profitable to develop simplified 20 

methods, enabling extensive parametric studies. Oterkus et al. presented a semi-21 

analytical tool for the three-dimensional analysis of a single-lap HBB joint with one 22 

fastener line, calculating the displacements and stresses in the joint and the load 23 

distribution near the contact region between the bolt and laminates (Oterkus 2007). It 24 

was found that most of the load is transferred through the adhesive layer, even if it has a 25 

low modulus as compared to the bolt. Besides, Paroissien et al. developed a framework 26 

enabling a semi-analytical 1D-beam (and 1D-bar) analysis of HBB joints (Paroissien 27 

2006, Paroissien 2007). This framework is inspired by the FE method and based on the 28 

minimization of the potential energy. Macro-elements are formulated for the simulation 29 
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of fasteners and the simulation of two bonded adherends, called bonded-beam (BB) 1 

elements. This model allows for an easy mechanical behaviour analysis of single-lap HBB 2 

joints, composed by any number of fastener lines. It provides the distributions of 3 

displacements and forces in the adherends and the fasteners, as well as those of 4 

adhesive shear and peeling stresses. In the frame of a parametric study, this analytical 5 

approach shows that a low modulus adhesive should be used, in order to share the load 6 

between the adhesive layer and the fasteners, in attempt to offer a significant 7 

improvement in fatigue life. Nevertheless, this 1D-beam model was restricted to joints 8 

made of two similar adherends and to linear elastic material behaviour. A new BB 9 

element, supporting two possible dissimilar laminated or monolithic adherends and 10 

including non linear adhesive materials was then developed (Paroissien 2013a, Paroissien 11 

2013b). Lélias et al. improved the non linear algorithm to include various non linear 12 

adhesive constitutive behaviours such as damage evolution law under mixed mode I/II 13 

(Lélias 2015).   14 

The objective of this paper is to take benefit from recent improvements performed 15 

on the BB elements, in order to provide an improved semi-analytical model of HBB joints. 16 

Moreover, a more efficient solution, in terms of computational time, for the simulation of 17 

fasteners is presented. An example of application on unbalanced configurations allows for 18 

the illustration of adhesive stress and adherend force distributions along the overlap. The 19 

use of this model to investigate the failure mechanisms of HBB joints under static load is 20 

then presented in this paper, based on an experimental test. Finally, a refined 3D FE 21 

model realised on ABAQUS-STANDARD is developed based on cohesive damage approach 22 

of adhesive behaviour. With the help of this 3D FE model, failure development can be 23 

explained and compared with 1D-Beam model. 24 

 25 

2. SEMI-ANALYTICAL MODEL OF HBB JOINTS 26 

2.1  MACRO-ELEMENT TECHNIQUE OVERVIEW 27 

The method is inspired by the FE method and exemplified on the single-lap HBB joint. 28 

The single-lap HBB joint is meshed (see Figure 1) in elements. A 1D-beam kinematics is 29 
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assumed so that each node has three degrees of freedom (DoF): two translations in the 1 

plane according to both first axes and one rotation around the third axis. The parts 2 

outside the overlap are simulated by beam elements. The fasteners are simulated by 3 

special fastening elements (Paroissien 2007), as presented in section 2.3 of this paper. In 4 

the overlap, each bonded bay is simulated by an especially formulated macro-element, 5 

called bonded-beams (BB) element. This macro-element has four nodes (see Figure 2), 6 

in order to take into account the relative displacements of both bonded adherends. After 7 

finding the elementary stiffness matrices of each element type, the stiffness matrix – 8 

denoted K – of the full single-lap HBB joint is assembled. The boundary conditions are 9 

then introduced. The vector of displacements – denoted U – and the vector of forces – 10 

denoted F – are determined. The stiffness matrix of the full joint is then updated 11 

following the classical rules of the FE method. For a linear elastic material, the 12 

minimization of the potential energy leads simply to the linear system F=KU. Considering 13 

non linear materials, an iterative procedure based on the linear elastic procedure is 14 

employed for the resolution. The mechanical and geometric parameters are free. In 15 

particular, the number of fastener lines is denoted n. To get the solution, a dedicated 16 

computer programme has to be implemented.  17 

Considering the analysis of pure bonded joints, this approach can be regarded as another 18 

sandwich-type model for the analysis of bonded joints (Williams 1975, Bigwood 1989, 19 

Högberg 2004, Weissgraeber 2014), developed in particular to address the unbalanced 20 

configuration. Nevertheless, the presented approach supports the introduction of various 21 

boundary conditions at various locations, not only restricted to both overlap ends. 22 

Indeed, particular interests of the macro-element technique are the possibility both to 23 

address easily various geometrical configurations by simple manipulations on the 24 

stiffness matrix and to be implemented through user routines within commercial FE codes 25 

(Stapelton 2012), to reduce computational time while keeping a satisfying level of 26 

accuracy. 27 

 28 

2.2  BONDED-BEAMS ELEMENT 29 
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2.2.1 Hypotheses and governing equations 1 

The formulation of the bonded-beams element is based on the following hypotheses. 2 

Firstly, the thickness of the adhesive layer is constant along the overlap. Secondly, the 3 

adherends are considered as laminated Euler-Bernoulli beams in the frame of the 4 

classical laminated theory, and can be dissimilar. The constitutive equations are 5 

expressed, as described by Mortensen and Thomsen (Mortensen 2002), by: 6 
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where Nj (Mj)  is the normal force (bending moment) of the adherend j and uj (wj, qj)  is 8 

the longitudinal displacement (deflection, bending angle) of the adherend j. For the 9 

adherend j, Aj represents the extensional stiffness, Dj the bending stiffness and Bj the 10 

coupling stiffness. 11 

The adhesive layer is simulated in the frame of the classical two-parameter elastic 12 

foundation model (Goland 1944) and consists thus in continuously distributed shear and 13 

peel springs. In other words, only two components of the adhesive stress tensor are 14 

assumed different from zero. Moreover, the adhesive stresses are assumed constant 15 

along the adhesive layer thickness. The adhesive shear stress – denoted T – and the 16 

adhesive peeling stress – denoted S – are then given by: 17 
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          (2) 18 

where G is the adhesive shear modulus, E is the adhesive peel modulus (Lélias 2015) and 19 

e the adhesive thickness. 20 

The local equilibrium of both adherends (see Figure 3) leads to the system of six 21 

following differential equations:  22 
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where Vj is the shear force of the adherend j, ej is the thickness of adherend j and b is 2 

the width. This equilibrium corresponds to the equilibrium by Goland and Reissner 3 

(Goland 1944). 4 

The previous system of equations forms the governing equations of the bonded beams. 5 

 6 

2.2.2 Elementary Stiffness Matrix 7 

The coefficients of the stiffness matrix are obtained by differentiating each component of 8 

the nodal forces by each component of the nodal displacements: 9 
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The detailed resolution scheme can be found in (Paroissien 2013a, Paroissien 2013b). 11 

The main steps are then summarized in the Appendix A. 12 

 13 

2.3 SIMULATION OF FASTENERS 14 

The former simulation of fasteners consists in a rigid body element coupled with three 15 

springs, the stiffnesses of which are termed 2Cu, 2Cw and 2CC  (Paroissien 2007). The 16 

fastener m is placed between the nodes 2(m+1) and 2(m+1)+1 of the structure. The 17 

partial stiffness matrix of the fastener m, termed m
uK  linking the vector of nodal 18 

displacements according to the x-axis t(u2(m+1) ; u2(m+1)+1 ; ur(m) ; us(m)) and the vector of 19 

nodal forces according to the x-axis t(Q2(m+1) ; Q2(m+1)+1 ; Qr(m) ; Qs(m)), is: 20 
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Similar relationships are obtained for the partial stiffness matrices m
wK  and mKq .   2 

The nodes of the rigid body element are termed r(m) and s(m) as shown in Figure 4. The 3 

size of the stiffness matrix of the joint is then increased of 6n. The introduction of n rigid 4 

body elements induces the following 3n associated kinematic relationships of linear 5 

dependency: 6 
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where h is the distance between the neutral lines (line of section centers) of both 8 

adherends. The application of the master-slave method allows for the elimination of 3n 9 

on 6n additional DoF. For example, the n nodes s(m) – then the 3n DoF associated – are 10 

assumed to be removed, without any generality loose.  The nodal force vector can then 11 

be expressed as functions of the nodal displacement vectors as follows: 12 
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   (7)   13 

Nevertheless, this initial model can be improved by removing the n last nodes of the rigid 14 

body. Each node r(m) is free from both prescribed displacements and applied external 15 

forces. In other words, the applied nodal forces according to the x-axis and to the y-axis 16 

as well as the nodal moment according to the z-axis are equal to zero. As a result, 3 17 

linear combinations involving only DoF are obtained.  It allows then for the elimination of 18 

the 3 DoF associated to the remaining node r(m), leading to the following relationship 19 

between the vector of nodal forces and the vector of nodal displacements: 20 
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where: 2 

2
2

2

uCh
CC += q                (9)   3 

In the case of a linear stress analysis of a single-lap bonded joint, only one macro-4 

element along the overlap is needed. The addition of fasteners for the linear stress 5 

analysis of a single-lap HBB joint required both additional macro-elements and additional 6 

nodes, according to the former model (Paroissien 2007). Following the model presented 7 

in this paper, only additional macro-elements are required. To address a non-linear 8 

analysis of a single-lap bonded joint, the overlap can be meshed with several macro-9 

elements (Paroissien 2013a, Paroissien 2013b, Lélias 2015). As a result, the non-linear 10 

analysis of a single-lap HBB joint can potentially involve the same number of macro-11 

elements and nodes as the non-linear analysis of the single-lap bonded joint obtained 12 

from the HBB configuration after removing the fasteners. In such a case, similar 13 

computational time can be expected. Finally, it is indicated that the same analysis can be 14 

easily conducted assuming spring stiffnesses on the upper side different from those of 15 

the lower side. 16 

This paper does not focus on the computation of these fastener stiffnesses. Several 17 

papers address this topic and provide formulae, mainly semi-empirical, to assess these 18 

stiffnesses. Formulae for the shear stiffnesses can be found in (Tate 1946, Swift 1984, 19 

Huth 1986) for example. Simulating the fasteners as beams subjected to combined shear 20 

and bending loading, both shear and bending fastener stiffnesses can be assessed (Cope 21 

2000). This assessment makes use of a calibration with the semi-empirical Swift’s 22 

formulae (Swift 1984). Following this last approach, the bending stiffness can be simply 23 
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expressed as a function of the shear stiffness (Paroissien 2006, Paroissien 2007), such 1 

as: 2 

( ) 21
8

3
fnq

f

uC

C
+=                                                   (10)   3 

where nf is the Poisson’s ratio of the fastener and f the fastener diameter. Finally, the 4 

fastener stiffness according to the y-axis can be computed as the axial tensile stiffness: 5 

h

E
C f

w
4

2pf
=                         (11)   6 

where Ef is the Young’s modulus of the fastener. 7 

Finally, it is indicated that the present approach offers the abilities to consider various 8 

calibration of fastener stiffnesses to be representatives for dedicated local behaviour 9 

around the fastener (Bois 2013). 10 

 11 

2.4 RESOLUTION 12 

Assuming a pure linear analysis of a single-lap HBB joint with n fasteners, the model is 13 

then composed by n+1 BB elements, n fastening elements and 2 beam elements. The 14 

stiffness matrix of the joint is then assembled according to the classical assembly rules of 15 

the FE method. A total number of 2n+6 nodes then 6n+18 DoF is then involved. In order 16 

to consider non linear materials, an iterative procedure based on an adaptation of the 17 

Newton-Raphson algorithm is developed (Lélias 2015). Contrary to the linear elastic case 18 

for which only one BB element is required for an entire bonded bay, the n+1 bonded 19 

bays have to be meshed. Various displacements or forces can be applied to the suitable 20 

nodes. The vector of nodal displacements is then obtained, allowing for the computation 21 

for each macro-element of twelve integration constants and then the building of 22 

displacement, force and stress distributions within the joint. Furthermore, the bolt load 23 

transfer rates are computed from the normal forces in the adherends. The validation of 24 

this model is complicated, since the results are dependent of the assumed fastener 25 

flexibilities. However, when restricted to HBB joints with similar isotropic linear elastic 26 

adherends, the present model provides the same results as those by Paroissien et al. 27 
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(Paroissien 2007). Besides, the present model is able to address the pure bonded joints, 1 

for which elements of validation and of assessment against refined FE models are 2 

provided in (Paroissien 2013a, Paroissien 2013b, Lélias 2015). A simple comparison with 3 

the Goland and Reissner’s theory (Goland 1944) is provided in this paper. The 4 

mechanical and geometrical parameters under consideration are given in Table 1. For this 5 

configuration the moment factor computed through Goland and Reissner’s theory is equal 6 

to 0.6671. To perform the exact comparison, the model is then simply adapted by 7 

choosing the length outside the overlap, which provides this same moment factor. The 8 

comparison of the adhesive shear and peeling stresses obtained with the previous models 9 

are given in Figure 5 and Figure 6. It is shown that, when the present model is employed 10 

under the same hypotheses as those of Goland and Reissner’s theory, it provides the 11 

same results.  12 

 13 

3. FIRST APPLICATION EXAMPLES ON UNBALANCED CONFIGURATION 14 

In order to illustrate the use of the presented model, unbalanced single-lap bonded and 15 

HBB joints in-plane loaded are analyzed. For the presented application, the single-lap 16 

HBB joint differs from the single-lap bonded joint, in terms of geometrical and 17 

mechanical parameters, only by the presence of bolts. The geometry of joints under 18 

consideration is illustrated in Figure 7, while the geometrical and mechanical parameters 19 

are given in Table 2 and Table 3 respectively. The upper adherend (adherend 1) is a 20 

laminated material. The layup is quasi-isotropic according to [-45/45/0/90/0/-45/45/90]s 21 

and the mechanical parameters of the lamina are extracted from (Kelly 2006). The lower 22 

adherend (adherend 2) is isotropic. The adherends have neither the same thickness nor 23 

the same stiffnesses. In this section, the materials are assumed to be linear. The joints 24 

are assumed to be clamped at one extremity and free to move at the other extremity in 25 

the x-direction only. 26 

Considering the HBB joint, the influence of the adhesive Coulomb’s modulus on the load 27 

carried out by each of both bolts is provided in Figure 8. As the adherends are 28 

geometrically and mechanically dissimilar, both bolt load transfer rates are different. The 29 
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bolt load transferred is obtained by subtracting the values of normal forces in the lower 1 

adherend at the fastener location. The bolt load transfer rate is obtained by dividing the 2 

bolt load transferred by the applied tensile load. Moreover, it appears that the bolt 3 

transfer rates decrease very rapidly to zero with the increase of the adhesive stiffness. 4 

The adhesive modulus range, which allows for a significant load transferred by both the 5 

fasteners and the adhesive layer, is then restricted to adhesives having low modulus. In 6 

term of load transfer, the mechanical behaviour of HBB joints tends to be the same as 7 

that of bonded joints when structural adhesives are used. Exactly the same tendencies 8 

are obtained, if the relative adhesive shear stiffness G/e is varying instead of the 9 

adhesive shear modulus G. Comparing to a pure bolted configuration, the adhesive layer 10 

of the HBB configuration allows for the unloading of holes, so that the significance of 11 

potential benefit in fatigue strength is dependent on the fatigue strength of the adhesive 12 

layer.  13 

In order for both fasteners to transfer a part of the applied load, a low adhesive modulus 14 

is employed (see Table 3). The nearest fastener to the clamped end is transferring 15 

7.56% of the applied load while the other fastener is transferring 7.17% of the applied 16 

load. The adhesive stress distributions along the overlap have similar evolutions for both 17 

configurations (Figure 9 and Figure 10). In terms of stress level, the adhesive peel stress 18 

distributions are very similar for both configurations, whereas the adhesive shear stress 19 

is clearly reduced for the HBB configuration compared to that of pure bonded 20 

configuration. This reduction of the adhesive shear stress level along the overlap is 21 

related to the reduction of the load transferred by the adhesive layer, from which the 22 

load carried by the fasteners is removed. In terms of maximal adhesive stress values, 23 

the difference on peel peaks between both configurations is not significant, whereas the 24 

adhesive shear peak for the HBB configuration is relatively different from -6.34% from 25 

that of the pure bonded configuration. The variation of the difference in the adhesive 26 

shear peak for the HBB configuration relatively to that of pure bonded configuration as a 27 

function of the adhesive Coulomb’s modulus is provided in Figure 11.  It is shown that 28 
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this difference tends to zero when the adhesive Coulomb’s modulus increases. However, 1 

a significant reduction remains for higher adhesive modulus. 2 

Besides, the normal forces, shear forces and bending moments in the lower adherends is 3 

presented in Figure 12 to Figure 14. The influence of fastener contribution within the 4 

internal equilibrium of HBB joints clearly appears through discontinuities at fastener 5 

locations (0.25 and 0.75 in terms of normalized abscissa along the overlap). For a given 6 

adhesive, the level of these discontinuities is a function of fastener stiffnesses as shown 7 

in Figure 8. The slope of the normal (shear) forces curve is representative for the 8 

adhesive shear (peel) stress. The influence of fasteners in the reduction of stress 9 

gradients is then clearly highlighted. It appears that the variation of the shear forces and 10 

bending moment is not monotonic along the overlap, contrary to the normal forces. 11 

However, the model is able to retrieve this distribution along the overlap with one macro-12 

element only. The prediction of internal loads offers the possibility, for example, to use 13 

this model to compute strength criteria based on Linear Fracture Mechanics (Fraisse 14 

1993). 15 

 16 

4. ANALYSIS OF A QUASI-STATIC TEST 17 

Thanks to experimental and numerical tests, this section aims at investigating the 18 

mechanical behaviour of a single-lap HBB joint, made of metallic adherends, under quasi-19 

static loading. The experimental and numerical tests are presented. In addition of the 20 

1D-beam test, the numerical test includes predictions from a 3D FE model. It is indicated 21 

that the selected material laws and associated material parameters used for the 22 

numerical tests are chosen according to the own judgment of the authors after several 23 

trial tests. It is not claimed that the choice is optimal. 24 

 25 

4.1  EXPERIMENTAL TEST 26 

4.1.1 Manufacturing of Specimen 27 
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The specimen is assembled from an aluminium alloy 2024-T351 plate using six 1 

countersunk head fasteners and an adhesive layer to implement a single bonded/bolted 2 

overlap joint configuration. The geometry of the joint configuration is shown in Figure 15.  3 

A methacrylate adhesive from the LORD Corporation is used. The fastening system is 4 

composed of titanium alloy TA6V screws with a shank diameter of 5.56 mm (prEN6114-5 

V-3A-4) and of steel nuts (ASNA2531-3A). Before joining, the plates are drilled. The 6 

diameter of each hole is calibrated with regards to the actual shank diameters with a 7 

tolerance of ± 10 µm. On one plate, the screws are installed in the holes. On the other 8 

plate, the adhesive is applied under the shape of only one bead between both fastener 9 

rows. Both plates are then joined and the nuts are tightened on wet adhesive layer, 10 

before the beginning of its polymerization. In particular, the adhesive layer thickness is 11 

not calibrated.  12 

 13 

4.1.2 Experimental set up 14 

A hydraulic 250 kN Instron tensile machine is used, for which a displacement controlled 15 

loading at a rate of 1 mm/min is applied. The specimen was clamped on tabs with 16 

hydraulic grips.  17 

A full field displacement measurement VIC 3D (Digital Image Correlation System) is 18 

introduced and placed in front of each sample on the bolt area; experimentally a random 19 

pattern with good contrast was applied to the surface of specimen, countersunk face 20 

specimen. A calibration process, performed before loadings, allows to establish the 21 

precise position of the two cameras, relative to each other and to the specimen.  22 

Displacement, load, strain sensors and 3D field measurement, were recorded 23 

simultaneously with a 10 Hz (1 Hz for 3D camera) frequency rate and stored. 24 

 25 

4.2  NUMERICAL TEST  26 

Finite element analyses are achieved with the FE software ABAQUS Standard, version 14-27 

3. On the basis of a set of hypotheses, the main objective is to make a comparison of the 28 

3D FE model with the experimental results and the 1D-beam model for global and local 29 
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behavior of HBB joints. The relative performances of predictions from both models are 1 

not discussed in this paper. A detailed comparison of predictions from FE models and 2 

from the present 1D-beam model is provided in (Lélias 2015) on the end notched flexure, 3 

double cantilever beam, mixed mode bending and single-lap bonded specimen involving 4 

cohesive zone modeling. The FE modeling of the bolting part is based on the own 5 

knowhow of authors as published in (Paroissien 2006, Hoang-Ngoc 2010, Lachaud 2011, 6 

Sola 2016) applied in the frame of a standard use of ABAQUS software. The full set of 7 

hypotheses employed for each of both models is then described in the next section 8 

allowing for the reproducibility of this study. 9 

 10 

4.2.1 3D FE MODEL 11 

Mesh and boundary conditions (see Figure 16). The 3D FE model makes use of 12 

quadratic brick elements (C3D20) under normal integration scheme. Three elements in 13 

the thickness of each plate are set and a mesh refinement was used near the hole in 14 

each adherend. Three boundary conditions remain unchanged throughout the analysis. 15 

Clamped regions are used on each end of the sample. Prescribed displacements are 16 

applied by a reference point linked with nodes of adherend part. Displacement boundary 17 

conditions are placed along the specimen in order to take into account symmetric 18 

conditions (1/3 of the specimen is modelled). Before applying the displacement load, a 19 

preload of 6,000 N is applied on each bolt with a specific load case, through the standard 20 

preload methodology by Abaqus Software. The diameter clearance between bolt and 21 

adherend is 0.02 mm. 22 

Standard penalty contact conditions with 0.3 friction value are applied between each 23 

adherend, and between the adherends and the bolts. Cohesive contact conditions with 24 

cohesive behavior are introduced between each adherend on the overlap part. The 25 

cohesive behavior is described hereafter. 26 

Material Behaviors. The 3D FE model described below used non linear behavior laws for 27 

each material as summarized in Table 4. For each adherend, made in aluminium alloy, an 28 
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elastic perfectly plastic isotropic behavior is used. Same behavior is used for the screw 1 

made in titanium alloy. Linear elastic behavior is used for steel nut.  2 

The cohesive behavior law, for adhesive progressive failure modelling, is described in 3 

Figure 17. A classical bi-linear cohesive damage behavior model implemented in ABAQUS 4 

6.14 is used. Damage initiation is realized by a quadratic stresses criterion and failure 5 

appearance with the Benzeggagh-Kenane (BK) energetic criterion. Stiffness coefficients 6 

are given according to the adhesive thickness and bulk modulus (see Table 4). 7 

Benzeggagh-Kenane parameter describing the mixed mode coupling is taken equal to 8 

one (Benzeggagh 1996). This 3D model uses behavior laws close to those used in the 9 

1D-beam model described in section 4.2.2. 10 

Computation. The computation used Full Newton Raphson solver (ABAQUS General 11 

Standard) with nonlinear geometric activation. The full Newton Raphson scheme involved 12 

an update of the tangent stiffness matrix at each iteration; this scheme appears to the 13 

authors as a suitable approach to support the progressive failure of the adhesive layer. 14 

Moreover, the classical viscous regularization is activated with the related couple of 15 

parameters t=1E-4s and a=1 (Allix 2003, Sola 2016). It allows in particular for a better 16 

convergence within implicit scheme. The damage evolutions predicted by the 3D FE 17 

model have an exponential shape and appears as more progressive than those predicted 18 

by the 1D-beam model. It can be related to the effect of the activation of the viscous 19 

regularization in the 3D FE model. 20 

 21 

4.2.2 1D-BEAM MODEL 22 

Mesh and boundary conditions. The 1D-beam model described in section 2 is used by 23 

including non linear behavior laws for the adhesive and the fasteners. In order to support 24 

non linear material behavior of the adhesive layer, a non linear computation procedure is 25 

implemented as described in (Lélias 2015); it is based on Newton Raphson making use of 26 

the secant stiffness matrix with an update of the stiffness matrix at each iteration. A 27 

number of 56 macro-elements (one macro-element per millimeter) is set. As for the 3D 28 
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FE model, the specimen is clamped at one extremity and free to move at the other 1 

extremity in the longitudinal direction only where the load is applied. 2 

Material Behaviors. The adherends are assumed to be linear elastic with the same 3 

characteristics (see Table 4). A bilinear law is assumed for the fastener stiffness along 4 

the x-direction (Cu), involving then 3 material parameters, listed in Table 5. Both other 5 

fastener stiffnesses (Cu and Cw) are computed from equation (10) and (11). For the 6 

adhesive layer, an interface model following (Allix 1996) is implemented under the shape 7 

of a simple bilinear damage evolution law. Linear energetic criterion for both initiation 8 

and propagation are then employed, involving 5 parameters provided in Table 6. Because 9 

of the wet installation of fasteners, the adhesive thickness varies along the overlap area. 10 

The hypothesis of a constant adhesive thickness in the macro-element appears as a 11 

restriction in its use. However, it is possible to represent the adhesive thickness variation 12 

by meshing with macro-elements having its own constant thickness. By assuming the 13 

continuity of adhesive stresses at macro-elements boundaries, linear relationships 14 

between the degrees of freedom appear. The use of a reduction matrix allows then for 15 

the management of the offset of neutral lines induced by the variation of adhesive 16 

thickness, similarly to the former approach to link fasteners to the model. Nevertheless, 17 

in this paper, there is no attempt to represent the actual local adhesive thickness along 18 

the overlap and a fixed cohesive law is assumed. 19 

 20 

4.3  ANALYSIS OF RESULTS 21 

4.3.1  Global behaviour of the HBB joint 22 

The curves of force as a function of the total displacement for the experimental test, the 23 

1D-beam test and the 3D FE test are provided in Figure 18. The force is normalized by 24 

the force of the first peak, experimentally measured. All results are normalized to this 25 

same maximum load. 26 

The experimental test shows a linear behavior up to the first force peak at around a total 27 

displacement of 1.25 mm. The load loss is around 8%. After this first drop, the load is 28 

recovered up to the second force peak at a normalized force of around 1.05 and a total 29 
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displacement of around 1.6 mm. The load loss for this second peak is around 36%. The 1 

load is then recovered exhibiting a bilinear behavior up to a normalized force of 1.03 and 2 

a total displacement of around 2.5 mm, point for which the six fasteners fail in shear. 3 

In order to validate the 3D FE model, the experimental and numerical displacement fields 4 

on the overlap for both fasteners of the central rows are compared in Figure 19 at a total 5 

displacement of the specimen equal to 0.65 mm. The scale factor is the same between 6 

both pictures. It is then shown that the field displacement given by the 3D FE model is 7 

close to experimental results. 8 

 9 

4.3.2  Failure mechanism kinematic 10 

After a comparison of the global mechanical behavior as measured by experimental test 11 

and as predicted by 1D-beam and 3D FE tests, the current section shows the local 12 

analysis of the damage initiation and propagation within the adhesive layer of the HBB 13 

joint. It is indicated that the good agreement obtained at the global scale is not sufficient 14 

to validate the ability of the 1D-beam model to describe the actual local damaging 15 

process.  16 

Both numerical tests predict a progressive damage evolution from damage initiation to 17 

failure propagation in the adhesive starting at both extremities of the overlap in direction 18 

of the middle of the overlap. For both 1D-beam and 3D FE tests, the prediction of the 19 

damage evolution in the adhesive layer was monitored on the 3 particular points: A, B 20 

and C. The points A and B are located at both extremities of the overlap, with A located 21 

on the clamping side and B at the other side. The point C is located in the middle of the 22 

overlap. The results are provided in Figure 20 as a function of the total displacement of 23 

the specimen and superimposed on the normalized force measured during the 24 

experimental test. As the 1D-beam model assumes a perfectly symmetrical joint, the 25 

damage evolution at the point A and point B are similar. On the contrary, the 3D FE 26 

model is representative for the dissymmetry of the joint inherent to the fastening 27 

system. The 3D FE test predicts then an initiation of the damage at the point A then at 28 

the point B. Indeed, the point A is located near the clamped side. But, the clamped 29 
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adherend contains the countersunk heads of bolts, which clearly contributes less in terms 1 

of stiffness than the other adherend linked to the nut. The damage evolutions predicted 2 

by the 3D FE model appear as more progressive than those predicted by the 1D-beam 3 

model. It can be related to the activation of the viscous regularization in the 3D FE 4 

model.  5 

The 3D field measurement pictures show the same results as the 3D FE model 6 

predictions, so that the later can help to detect failure mechanism (see Figure 19). In 7 

Figure 21, the measured normal strain field as well as the measured out-of-plane 8 

displacement field is presented, before and after the first peak load (see Figure 18). 9 

In Figure 21a, first line bolt is not loaded because adhesive is not failed. The blue zone in 10 

front of this bolt line indicates the bending of the plate just before the overlap part. This 11 

zone disappears after the first load peak because of the adhesive layer failure, which 12 

leads to the release of the bending moment into tensile strain. The bending zone appears 13 

then in Figure 21b on the first bolt line because the bending moment is shifted. This 14 

dissymmetrical failure of the adhesive zone on edge distances, localized on the plate 15 

including the countersunk head fasteners, induces an out-of-plate displacement jump. 16 

The out-of-plane displacement changes from 1.2 mm to 1.6 mm between both pictures 17 

(see Figure 21a, Figure 21b). 18 

The second peak load is investigated in Figure 20. The successive load loss is associated 19 

to the total failure of adhesive zone (damage equal to 1 on point C). Both numerical 20 

models are very close to each other. The damage value increases very rapidly for both 21 

numerical models. In this case, only the fasteners transfer the load since the adhesive 22 

has entirely failed. The pictures from the 3D field measurement also show the final failure 23 

of the adhesive zone between both fastener lines. In Figure 22, the normal measured 24 

strain field as well as the out of plane measured displacement field, before and after the 25 

second peak load (see Figure 18). 26 

The measured strain and displacement fields shown in Figure 22a are close to the ones 27 

shown in Figure 21b, particularly concerning the dissymmetrical adhesive failure. In 28 

Figure 22b, the measured strain field is shown, when the total failure of the adhesive 29 
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appears or equivalently when the damage in the center of the overlap (point C of Figure 1 

20) is equal to 1. Only the six bolts are then loaded which indicates the total failure of 2 

the adhesive.  3 

A damage indicator over a characteristic area is defined as the sum of damage 4 

parameters divided by the maximal possible value of this sum. Two characteristic lengths 5 

are monitored: (i) both overlap edges and (ii) the length between the fasteners. Each 6 

characteristic area has a length of 28 mm. As shown in Figure 23, the damage initiates 7 

on both edge distances. This damage remains constant up to the first force peak. The 8 

first load loss appears linked to fast damage propagation. During the first load recovery, 9 

the damage propagation goes on up to the complete failure of the adhesive layer on both 10 

edge distances. Then the damage initiates between the fasteners and grows up to the 11 

second force peak. The second load loss is associated to the complete failure of the 12 

adhesive layer between the fasteners. As a result at this stage, only the fasteners are 13 

loaded up to the final failure of the specimen.   14 

According to the numerical tests, it can be concluded that the failure mechanism of the 15 

HBB joint tested is driven by the progressive damage evolution within the adhesive layer. 16 

Moreover, the damage evolution seems to concern firstly the edge distances only and 17 

then the area between both fasteners, once the adhesive is failed over the entire edge 18 

distance. Both numerical tests provide almost this same tendency. However, the 3D FE 19 

model allows for a light damage initiation between the fasteners before the entire failure 20 

of the adhesive on both edge distances. 21 

 22 

5. CONCLUSION 23 

A simplified model for the stress analysis of single-lap HBB joints is presented in this 24 

paper. This model is based on the macro-element technique. It supports non linear 25 

adhesive and fastener material behaviours as well as unbalanced configurations involving 26 

composite and metallic adherends. The output of this model is the distribution of forces 27 

and displacements in the adherends and in the fasteners as well as the distributions of 28 

adhesive shear and peel stresses along the overlap. This model can address both 29 
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boundary cases: the pure bonded joints and the pure bolted joints. A simplification of the 1 

fastening simulation is presented. 2 

It is shown that the model is able to predict the quasi-static mechanical behaviour up to 3 

failure of HBB joints, experimentally measured. The resulting identified failure 4 

mechanisms correspond to the ones already observed. The failure is initiated at overlap 5 

ends in the adhesive layer and propagated toward the first fasteners. If only one fastener 6 

is employed, the load is then carried out by this fastener, similarly to a pure bolted joint. 7 

If two fasteners are present, the adhesive failure propagates between the fasteners up to 8 

the middle of the overlap; the fasteners carry then the loads, similarly to a pure bolted 9 

joint. The progressive degradation of the adhesive layer results in the increase of the bolt 10 

load transfer rate, so that the HBB joints considered progressively pass from a nearly 11 

pure bonded joint behaviour to a pure bolted joint behaviour. Besides, the predictions by 12 

the 1D-beam test on pure bonded and pure bolted configurations are given in Figure 24, 13 

using the same set of geometrical and mechanical parameters as the one already used 14 

for HBB configurations. The same boundary conditions are used. This test allows for the 15 

comparison of predicted mechanical performance under quasi-static loading. For the case 16 

under study, it reveals that the HBB joint offers higher strength and stiffness. The 17 

mechanical performance of the pure bonded and HBB configuration are closed. However, 18 

the fasteners in the HBB configuration allows for the delay of the final failure of the joint 19 

as well as a lightly higher maximal load capacity. 20 

The present model takes benefits of the flexibility of the FE method, so that various 21 

geometrical configurations can be addressed, through simple manipulations on the 22 

stiffness matrix. This model could be used in the aim of a design optimization approach. 23 

For example, the predictions by the 1D-beam test on the initial configurations and a new 24 

configuration are given in Figure 25. The new configuration is based on the same single-25 

lap joint geometry with squared end. The same materials are involved. The differences 26 

with the initial configuration are the width (30 mm instead of 28 mm), the thickness (2 27 

mm instead of 2.5 mm), the length of the overlap (60 mm instead of 58 mm) and the 28 

length outside the overlap (110 mm instead of 112 mm). The fasteners are moved so 29 
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that their abscissa remains at 25% and 75% of the overlap length. The volume of 1 

adherend materials related to the new configuration is 12% smaller than the one of the 2 

initial configuration, while the first peak load is 10% higher. This conclusion holds if the 3 

adherends remain in its elastic domain at this load level. Besides, this model could be 4 

used for the identification of material laws and associated parameters of fastener 5 

stiffness as well as adhesive layers. In particular, the presented approach is able to 6 

numerically test specimen relevant to Fracture Mechanics (Lélias 2015) for the 7 

identification of cohesive damage laws. The development performed on the bonded-beam 8 

element to consider thermal loadings (Paroissien 2013b) can be applied to the HBB 9 

configuration. The further developments of the present simplified analysis will target the 10 

consideration of non linear geometries as well as of fatigue analysis based on progressive 11 

damage propagation (Khoramishad 2011, Lachaud 2011). 12 
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APPENDICES A. Summarizing the resolution scheme for the BB element formulation. 18 

From the governing equations (1)-(3), the system of differential equations in adhesive 19 
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where Kj and
jK are integration constants, r, s and t are real numbers (roots of 1 

characteristics equation from Cardan’s method) and: 2 
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The displacements in the adherends are then expressed as functions of the adhesive 8 

stresses, their derivatives and polynomial expressions. The forces in the adherends are 9 

then deduced from the adherend constitutive equations (1). The determination of the 10 

twelve independent integration constants is performed thanks to the work by Högberg 11 

(Högberg 2004). The nodal displacements and the nodal forces can be then obtained as 12 

functions of this set of integration constants:   13 
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where Q, R and S respectively refer to the nodal normal forces, shearing forces and 15 

bending moments acting on the BB element. But, considering the expression for the 16 

vector of nodal forces (F) as a function of the vector of integration constants (C) as well 17 
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as the vector C as a function of the vector of nodal displacements (U), the stiffness 1 

matrix of the BB element can be computed as follows: 2 

1-= NMK             (A9) 3 

 4 

APPENDICES B. Stiffness matrix of a beam element (Paroissien 2013a, Paroissien 5 

2013b). 6 

The stiffness matrix of the beam element with coupling stiffness is obtained by 7 

differentiating each nodal force by each nodal displacement, and is written in the basis 8 

( )jijiji wwuu qq , such  as: 9 
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 1 

Figure 1. Meshing of an in-plane loaded and clamped single-lap HBB joint, with fasteners 2 

for example. The adherends outside the overlap are simulated by beam elements 3 

(element 6 and 7), and the fasteners by special fastening element (element 4 and 5). 4 

Each bonded bay is simulated by a bonded-beams element (element 1, 2 and 3).  5 

 6 

Figure 2. Bonded-beams element: a four-nodes macro-element with three degrees of 7 

freedom per nodes (ua, wa, qa)a=i,j,k,l. The nodal displacements and nodal forces are 8 

represented as well as the forces and the displacements in the adherends. 9 

 10 

Figure  3. Free body diagrams of infinitesimal elements of the overlap.  11 

 12 

Figure 4. A rigid body with the springs between the nodes 2(m+1) and 2(m+1)+1 13 

simulating the fastener m. 14 

 15 

Figure 5. Comparison of the shear stress distribution along the overlap provided by 16 

Goland and Reissner’s theory (1944) and the present model employed under the same 17 

assumptions. 18 

 19 

Figure 6. Comparison of adhesive peeling stress distributions along the overlap provided 20 

by Goland and Reissner’s theory (1944) and the present model employed under the same 21 

assumptions. 22 

 23 

Figure  7. Definition of the single-lap bonded and HBB joints under consideration. 24 

 25 

Figure 8. Bolt load transfer rates of each of both bolts as functions of the adhesive 26 

Coulomb’s modulus for the single-lap HBB joint provided by the present model. 27 

 28 
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Figure 9. Comparison of adhesive shear stress distributions along the overlap for the 1 

single-lap bonded and HBB joints provided by the present model. 2 

 3 

Figure 10. Comparison of adhesive peeling stress distributions along the overlap for the 4 

single-lap bonded and HBB joints provided by the present model. 5 

 6 

Figure 11. Relative difference in % of the adhesive shear peak for the HBB configuration 7 

relatively to the pure bonded configuration as functions of the adhesive Coulomb’s 8 

modulus for the single-lap HBB joint provided by the present model. 9 

 10 

Figure 12. Comparison of normal force distributions in the lower adherend (adherend 2) 11 

along the overlap for the single-lap bonded and HBB joints provided by the present 12 

model. 13 

 14 

Figure 13. Comparison of shear force distributions in the lower adherend (adherend 2) 15 

along the overlap for the single-lap bonded and HBB joints provided by the present 16 

model. 17 

 18 

Figure 14. Comparison of bending moment distributions in the lower adherend (adherend 19 

2) along the overlap for the single-lap bonded and HBB joints provided by the present 20 

model. 21 

 22 

Figure 15. Geometry of the specimen. Dimensions in mm. 23 

 24 

Figure 16. Mesh and boundary conditions of the 3D Finite Element model. 25 

 26 

Figure 17. Mixed-mode cohesive law model (Lélias 2015) 27 

 28 
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Figure 18. Force displacement curves for the experimental test, the 1D-beam test and 1 

the 3D FE test. The force is normalized by the first peak force experimentally measured. 2 

 3 

Figure 19. Displacement field in the tensile direction on the overlap around the two 4 

center bolts at 0.65 mm total displacement of the specimen: a) Experimental field, b) 5 

Numerical 3D FE field. 6 

 7 

Figure 20. Evolution of damage parameter in point A, B and C according to the 1D-beam 8 

test and the 3D FE test. A is located at the extremity of the overlap near from the 9 

clamped side. B is located at the other extremity. C is located in the middle of the 10 

overlap. 11 

 12 

Figure 21. Strain along sample in tensile direction and out-of-plane displacement, around 13 

the first peak load (3D FE model). 14 

 15 

Figure 22. Strain along sample in tensile direction and out-of-plane displacement, around 16 

the second peak load (3D FE model). 17 

 18 

Figure 23. Evolution of damage indicator computed on both edge distances and between 19 

the fastener lines according to the 1D-beam test and the 3D FE test.  20 

 21 

Figure 24. Force displacement curves for the experimental test on HBB joint and for the 22 

1D-beam test on HBB, pure bonded and pure bolted joint. The force is normalized by the 23 

first peak force experimentally measured. 24 

 25 

Figure 25. Force displacement curves for the 1D-beam test on HBB in the initial and new 26 

configurations. The force is normalized by the first peak force experimentally measured 27 

(initial configuration) 28 

29 
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 1 

Table 1. Geometrical and mechanical parameters for the single-lap bonded joint under 2 

the configuration of Goland and Reissner’s theory.  3 

 4 

Table 2. Geometric parameters employed for the single-lap bonded and HBB joints. 5 

 6 

Table 3. Mechanical parameters employed for the single-lap bonded and HBB joints. 7 

 8 

Table 4. Material law and parameters assumed in the frame of the 3D FE model.  9 

 10 

Table 5. Bilinear law assumed for the fasteners. 11 

 12 

Table 6. Bilinear damage evolution law assumed for the adhesive layer. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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 1 

FIGURES 2 

 3 

 4 

 5 

Figure 1. Meshing of an in-plane loaded and clamped single-lap HBB joint, with fasteners 6 

for example. The adherends outside the overlap are simulated by beam elements 7 

(element 6 and 7), and the fasteners by special fastening element (element 4 and 5). 8 

Each bonded bay is simulated by a bonded-beams element (element 1, 2 and 3).  9 

 10 
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Figure 2. Bonded-beams element: a four-nodes macro-element with three degrees of 1 

freedom per nodes (ua, wa, qa)a=i,j,k,l. The nodal displacements and nodal forces are 2 

represented as well as the forces and the displacements in the adherends. 3 

 4 

 5 

Figure  3. Free body diagrams of infinitesimal elements of the overlap.  6 

 7 

 8 

Figure 4. A rigid body with the springs between the nodes 2(m+1) and 2(m+1)+1 9 

simulating the fastener m. 10 
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Figure 5. Comparison of the shear stress distribution along the overlap provided by 4 

Goland and Reissner’s theory (1944) and the present model employed under the same 5 

assumptions 6 

-4

-2

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

A
d

h
e

si
v

e
 p

e
e

li
n

g
 s

tr
e

ss
, 

S
 (

M
P

a
)

Normalized abscissa along the overlap, x/L

Goland and Reissner (1944)

present model

 7 



40 

 

Figure 6. Comparison of adhesive peeling stress distributions along the overlap provided 1 

by Goland and Reissner’s theory (1944) and the present model employed under the same 2 

assumptions. 3 

 4 

 5 

 6 

Figure  7. Definition of MCM single-lap bonded and HBB joints under consideration 7 
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Figure 8. Bolt load transfer rates of each of both bolts as functions of the adhesive 2 

Coulomb’s modulus for the single-lap HBB joint provided by the present model 3 
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Figure 9. Comparison of adhesive shear stress distributions along the overlap for the 5 

single-lap bonded and HBB joints provided by the present model  6 
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Figure 10. Comparison of adhesive peeling stress distributions along the overlap for the 2 

single-lap bonded and HBB joints provided by the present model  3 
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Figure 11. Relative difference in % of the adhesive shear peak for the HBB configuration 1 

relatively to the pure bonded configuration as functions of the adhesive Coulomb’s 2 

modulus for the single-lap HBB joint provided by the present model 3 
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Figure 12. Comparison of normal force distributions in the lower adherend (adherend 2) 5 

along the overlap for the single-lap bonded and HBB joints provided by the present 6 

model 7 
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Figure 13. Comparison of shear force distributions in the lower adherend (adherend 2) 2 

along the overlap for the single-lap bonded and HBB joints provided by the present 3 

model 4 
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Figure 14. Comparison of bending moment distributions in the lower adherend (adherend 1 

2) along the overlap for the single-lap bonded and HBB joints provided by the present 2 

model 3 

 4 

 5 

Figure 15. Geometry of the specimen. Dimensions in mm. 6 

 7 

 8 
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Top view of the 3D FE model 

 

 

 

 

 

Longitudinal middle cut view of the 3D FE model 

Figure 16. Mesh and boundary conditions of the 3D Finite Element model 1 
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 2 

Figure 17. Mixed-mode cohesive law model (Lélias 2015) 3 
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 1 

Figure 18. Force displacement curves for the experimental test, the 1D-beam test and 2 

the 3D FE test. The force is normalized by the first peak force experimentally measured. 3 

     4 

a)         b)  5 

Figure 19. Displacement field in the tensile direction on the overlap around the two 6 

center bolts at 0.65 mm total displacement of the specimen: a) Experimental field, b) 7 

Numerical 3D FE field. 8 



48 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1 1.5 2 2.5

n
o

rm
a

li
ze

d
 p

a
ra

m
e

te
r

total displacement in mm

force [experimental test] damage in A or B [1D-Beam test]

damage in C [1D-Beam test] damage in A [3D FE test]

damage in B [3D Fe test] damage in C [3D FE test]

A BC

 1 

Figure 20. Evolution of damage parameter in point A, B and C according to the 1D-beam 2 

test and the 3D FE test. A is located at the extremity of the overlap near from the 3 

clamped side. B is located at the other extremity. C is located in the middle of the 4 

overlap. 5 

 6 
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a) Before the first peak load 
Load = 1.0 ; Disp.=1.25 mm 

 

 

 

a) After the first peak load 
Load=0.93 ; Disp.=1.28 mm 

 

Figure 21. Strain along sample in tensile direction and out-of-plane displacement, around 1 

the first peak load (3D FE model). 2 

 3 

 4 

 

 

a) Before the second peak load 
Load= 1.05 ; Disp.=1.50 mm 

 

 

 

b) After the second peak load 
Load=0.68 ; Disp.=1.6 mm 

 

Figure 22. Strain along sample in tensile direction and out-of-plane displacement, around 5 

the second peak load (3D FE model). 6 

 7 
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Figure 23. Evolution of damage indicator computed on both edge distances and between 3 

the fastener lines according to the 1D-beam test and the 3D FE test.  4 

 5 

  6 
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Figure 24. Force displacement curves for the experimental test on HBB joint and for the 1 

1D-beam test on HBB, pure bonded and pure bolted joint. The force is normalized by the 2 

first peak force experimentally measured. 3 

 4 

 5 

Figure 25. Force displacement curves for for the 1D-beam test on HBB in the initial and 6 

new configurations. The force is normalized by the first peak force experimentally 7 

measured (initial configuration) 8 

9 
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 1 

TABLES 2 

 3 

Table 1. Geometrical and mechanical parameters for the single-lap bonded joint under 4 

the configuration of Goland and Reissner’s theory (1944).  5 

Cu,w (N.mm-1) 
 

Cq (N.mm.rad-1)
 

E (MPa) E1 (MPa)
 

E2 (MPa)
 

G (MPa)
 

1e-8 1e-8 2000 72000 72000 800 

e (mm)
 

e1 (mm)
 

e2 (mm)
 

b (mm)
 

L (mm)
 

f (N)
 

0.1 1.6 1.6+1e-8 25 25 1000 

 6 

 7 

Table 2. Geometrical parameters employed for the single-lap bonded and HBB joints. 8 

e1 (mm)
 

e2 (mm)
 

d (mm)
 

s (mm)
 

b (mm)
 

l1 (mm)
 

l2 (mm)
 

e (mm)
 

2.4 3.2 10 20 20 40 40 0.5 

 9 

 10 

Table 3. Mechanical parameters employed for the single-lap bonded and HBB joints. 11 

Cu  

(N.mm-1)
 

Cw  

(N.mm-1)
 

Cq  

(N.mm.rad-1)
 

G  

(MPa)
 

E  

(MPa)
 

f   

(N)
 

50000 50000 50000 100 280 1000 

(E11)1  

(MPa)
 

(E22)1  

(MPa)
 

(G12)1  

(MPa)
 

(n12)1
 

E2  

(MPa )
 

 

98000 7800 4700 0.34 72000  

 12 

 13 

 14 
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Table 4. Material law and parameters assumed in the frame of the 3D FE model. 1 

COMPONENT MATERIAL LAW TYPE LAW PARAMETERS 

adherend aluminium 

elastic perfectly 

plastic 

isotropic 

Young’s modulus: 72,400 MPa 

Poisson’s ratio: 0.3 

yield stress: 350 MPa 

screw titanium 

elastic perfectly 

plastic 

isotropic 

Young’s modulus: 110 GPa 

Poisson’s ratio: 0.3 

yield stress: 1100 MPa 

nut steel 

elastic linear 

isotropic 

Young’s modulus: 210 GPa 

Poisson’s ratio: 0.3 

adhesive  

layer 

methacrylate 
bilinear damaging 

evolution 

knn=E/e=32,000 N.mm-1 

kns=G/e=11,000 N.mm-1 

knt=G/e=11,000 N.mm-1 

GIc=0.6 MPa.mm 

GIIc=1 MPa.mm 

GIIIc=1 MPa.mm 

s33=10 MPa 

s13=25 MPa 

s23=25 MPa 

BK parameter = 1. 

 2 

 3 

 4 
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Table 5. Bilinear law assumed for the fasteners. 1 

 

Cu_1 = 14,000 N.mm-1 

du = 1.19 mm 

Cu_2 = 50 N.mm-1 

 2 

Table 6. Bilinear damage evolution law assumed for the adhesive layer. 3 

 

E/e   

(N.mm-1) 

G/e   

(N.mm-1) 

Y0   

(MPa.mm) 

GIc  

(MPa.mm) 

GIIc  

(MPa.mm) 

32,000 11,000 0.46 0.6 1 

 4 

stress 

displacement 
jump 

mode 2 

G/e 

GIIc 

stress 

displacement 
jump 

mode 1 

E/e 

Y0 

GIc 

force 

displacement 

Cu_2 

Cu_1 

du 


