P. Sagaut, Large eddy simulation for incompressible flows : an introduction, 2005.

P. Moin, K. Squires, W. Cabot, and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, vol.3, pp.2746-2757, 1991.

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, vol.3, pp.1760-1765, 1991.

R. A. Clark, J. H. Ferziger, and W. C. Reynolds, Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech, vol.91, pp.1-16, 1979.

B. C. Wang, J. Yin, E. Yee, and D. J. Bergstrom, A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection, Int. J. Heat Fluid Flow, vol.28, pp.1227-1243, 2007.

Y. Fabre and G. Balarac, Development of a new dynamic procedure for the Clark model of the subgrid-scale scalar flux using the concept of optimal estimator, Phys. Fluids, vol.23, pp.1-11, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00642577

G. Balarac, J. L. Sommer, X. Meunier, and A. Vollant, A dynamic regularized gradient model of the subgrid-scale scalar flux, Phys. Fluids, vol.25, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00835655

J. A. Langford and R. D. Moser, Optimal LES formulations for isotropic turbulence, J. Fluid Mech, vol.398, pp.321-346, 1999.

H. S. Kang and C. Meneveau, Universality of large eddy simulation model parameters across a turbulent wake behind a heated cylinder, J. Turbul, vol.3, 2002.

A. Moreau, O. Teytaud, and J. P. Bertoglio, Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models, Phys. Fluids, vol.18, pp.1-10, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00078115

R. Deutsch, Estimation Theory, 1965.

G. Balarac, H. Pitsch, and V. Raman, Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators, Phys. Fluids, vol.20, pp.1-8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00399930

A. Vollant, G. Balarac, and C. Corre, A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation, Physics of Fluids, vol.28, p.25114, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01339923

F. Sarghini, G. De-felice, and S. Santini, Neural networks based subgrid scale modeling in large eddy simulations, Comput. Fluids, vol.32, pp.97-108, 2003.

J. Bardina, J. Ferziger, and W. Reynolds, Improved subgrid-scale models for large-eddy simulation, 1980.

M. Milano and P. Koumoutsakos, Neural network modeling for near wall turbulent flow, Journal of Computational Physics, vol.182, pp.1-26, 2002.

B. Tracey, K. Duraisamy, and J. Alonso, A machine learning strategy to assist turbulence model development, 2015.

J. X. Wang, J. L. Wu, and H. Xiao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data, Physical Review Fluids, vol.2, p.34603, 2017.

A. P. Singh and K. Duraisamy, Using field inversion to quantify functional errors in turbulence closures, Physics of Fluids, vol.28, 2016.

E. J. Parish and K. Duraisamy, A paradigm for data-driven predictive modeling using field inversion and machine learning, Journal of Computational Physics, vol.305, pp.758-774, 2016.

J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech, vol.807, pp.155-166, 2016.

J. Ling, R. Jones, and J. Templeton, Machine learning strategies for systems with invariance properties, Journal of Computational Physics, vol.318, pp.22-35, 2016.

R. N. King, P. E. Hamlington, and W. J. Dahm, Autonomic closure for turbulence simulations, Physical Review E -Statistical, Nonlinear, and Soft Matter Physics, vol.93, pp.1-6, 2016.
DOI : 10.1103/physreve.93.031301

URL : https://link.aps.org/accepted/10.1103/PhysRevE.93.031301

W. Noll, Representations of certain isotropic tensor functions, vol.21, pp.87-90, 1967.

C. Jiménez, F. Ducros, B. Cuenot, and B. Bédat, Subgrid scale variance and dissipation of a scalar field in large eddy simulations, Phys. Fluids, vol.13, pp.1748-1754, 2001.

C. B. Da-silva and J. C. Pereira, Analysis of the gradient-diffusion hypothesis in large-eddy simulations based on transport equations, Phys. Fluids, vol.19, pp.1-20, 2007.

K. Alvelius, Random forcing of three-dimensional homogeneous turbulence, Phys. Fluids, vol.11, pp.1880-1889, 1999.
DOI : 10.1063/1.870050

V. Eswaran and S. Pope, Direct numerical simulations of the turbulent mixing of a passive scalar, Phys. Fluids, vol.31, pp.506-520, 1988.

J. B. Lagaert, G. Balarac, C. G. , and -. , Hybrid spectral-particle method for the turbulent transport of a passive scalar, Journal of Computational Physics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00935487

S. B. , Pope Turbulent Flows, 2000.

, A. Papoulis Probability, random variables, and stochastic processes, 1965.

B. Lund and E. Novikov, Parameterization of subgrid-scale stress by the velocity gradient tensor, REFERENCES, vol.37

A. Lodwich, Y. Rangoni, and T. Breuel, Evaluation of robustness and performance of Early Stopping Rules with Multi Layer Perceptrons, International Joint Conference on Neural Networks, pp.1877-1884, 2009.

D. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, vol.4, pp.633-635, 1992.

M. Lesieur, Turbulence in fluids, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00261553

K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, 2001.

C. Silva and J. Pereira, Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets, Phys. Fluids, vol.20, 2008.

M. Riedmiller and H. Braun, A Direct Adaptive Method for Faster Backpropagation Learning : The RPROP Algorithm, in, vol.1, pp.586-591, 1993.