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Abstract

In this work we propose and analyze a novel Hybrid High-Order discretization of a class of
(linear and) nonlinear elasticity models in the small deformation regime which are of common use
in solid mechanics. The proposed method is valid in two and three space dimensions, it supports
general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary ap-
proximation order, and has a reduced cost thanks to the possibility of statically condensing a
large subset of the unknowns for linearized versions of the problem. Additionally, the method
satisfies a local principle of virtual work on each mesh element, with interface tractions that obey
the law of action and reaction. A complete analysis covering very general stress-strain laws is
carried out, and optimal error estimates are proved. Extensive numerical validation on model
test problems is also provided on two types of nonlinear models.

1 Introduction

In this work we develop and analyze a novel Hybrid High-Order (HHO) method for a class of (linear
and) nonlinear elasticity problems in the small deformation regime.

Let Ω Ă Rd, d P t2, 3u, denote a bounded connected open polyhedral domain with Lipschitz boundary
Γ :“ BΩ and outward normal n. We consider a body that occupies the region Ω and is subjected
to a volumetric force field f P L2pΩ;Rdq. For the sake of simplicity, we assume the body fixed on
Γ (extensions to other standard boundary conditions are possible). The nonlinear elasticity problem
consists in finding a vector-valued displacement field u : Ω Ñ Rd solution of

´∇¨σp¨,∇suq “ f in Ω, (1a)
u “ 0 on Γ, (1b)

where ∇s denotes the symmetric gradient. The stress-strain law σ : ΩˆRdˆdsym Ñ Rdˆdsym is assumed to
satisfy regularity requirements closely inspired by [2323], including conditions on its growth, coercivity,
and monotonicity; cf. Assumption 11 for a precise statement. Problem (11) is relevant, e.g., in modeling
the mechanical behavior of soft materials [4040] and metal alloys [3636]. Examples of stress-strain laws
of common use in the engineering practice are collected in Section 22.

The HHO discretization studied in this work is inspired by recent works on linear elasticity [1717] (where
HHO methods where originally introduced) and Leray–Lions operators [1313, 1414]. It hinges on degrees
of freedom (DOFs) that are discontinuous polynomials of degree k ě 1 on the mesh and on the mesh
skeleton. Based on these DOFs, we reconstruct discrete counterparts of the symmetric gradient and
of the displacement by solving local linear problems inside each mesh element. These reconstruction
∗This work was partially funded by the Bureau de Recherches Géologiques et Minières. The work of M. Botti was

partially supported by Labex NUMEV (ANR-10-LABX-20) ref. 2014-2-006. The work of D. A. Di Pietro was partially
supported by Agence Nationale de la Recherche project ANR-15-CE40-0005.
†michele.botti@umontpellier.frmichele.botti@umontpellier.fr
‡daniele.di-pietro@umontpellier.frdaniele.di-pietro@umontpellier.fr
§p.sochala@brgm.frp.sochala@brgm.fr

1

mailto:michele.botti@umontpellier.fr
mailto:daniele.di-pietro@umontpellier.fr
mailto:p.sochala@brgm.fr


operators are used to formulate a local contribution composed of two terms: a consistency term
inspired by the weak formulation of problem (11) with ∇s replaced by its discrete counterpart, and
a stabilization term penalizing cleverly designed face-based residuals. The resulting method has
several advantageous features: (i) it is valid in arbitrary space dimension; (ii) it supports arbitrary
polynomial orders ě 1 on fairly general meshes including, e.g., polyhedral elements and nonmatching
interfaces; (iii) it satisfies inside each mesh element a local principle of virtual work with numerical
tractions that obey the law of action and reaction; (iv) it is (relatively) inexpensive thanks to the
possibility of statically condensing a large subset of the unknowns for linearized versions of the
problem (encountered, e.g., when solving the corresponding system of nonlinear algebraic equations
by the Newton method). Additionally, as shown by the numerical tests of Section 66, the method is
extremely robust with respect to strong nonlinearities.

In the context of structural mechanics, discretization methods supporting polyhedral meshes and
nonconforming interfaces can be useful for several reasons including, e.g., the use of hanging nodes
for contact [66, 4141] and interface elasticity [2828] problems, the simplicity in mesh refinement [3838] and
coarsening [22,2020] for adaptivity, and the greater robustness to mesh distorsion [1010] and fracture [3232].
The use of high-order methods, on the other hand, can classically accelerate the convergence in the
presence of regular exact solutions or when combined with local mesh refinement. Over the last
few years, several discretization schemes supporting polyhedral meshes and/or high-order have been
proposed for the linear version of problem (11); a non-exhaustive list includes [33, 1717–1919, 3737]. For the
nonlinear version, the literature is more scarce. Conforming approximations on standard meshes
have been considered in [2626, 2727], where the convergence analysis is carried out assuming regularity
for the exact displacement field u and the constraint tensor σp¨,∇suq beyond the minimal regularity
required by the weak formulation. Discontinuous Galerkin methods on standard meshes have been
considered in [3535], where convergence is proved for d “ 2 assuming u P Hm`1pΩ;R2q for some m ą 2,
and in [55], where convergence to minimal regularity solutions is proved for stress-strain functions
similar to [44]. General meshes are considered, on the other hand, in [44], where the authors propose a
low-order VEM method for problem (11). Therein, an energy-norm convergence estimate in h (with
h denoting, as usual, the meshsize) is proved when u P H2pΩ;Rdq under the assumption that the
function τ ÞÑ σp¨, τ q is piecewise C1 with positive definite and bounded differential inside each mesh
element. These conditions on the stress-strain function are stronger than the ones considered in
Assumption 1313 to derive error estimates for our HHO method. Convergence to solutions that exhibit
only the minimal regularity required by the weak formulation and for stress-strain functions as in
Assumption 11 is proved in [2323] for Gradient Schemes [2222]. In this case, convergence rates are only
proved for the linear case. We note, in passing, that the HHO method studied here fails to enter the
Gradient Scheme framework essentially because the stabilization term cannot be embedded into the
discrete symmetric gradient operator.

We carry out a complete analysis for the proposed HHO discretization of problem (11). Existence of
a discrete solution is proved in Theorem 88, where we also identify a strict monotonicity assumption
on the stress-strain law which ensures uniqueness. Convergence to minimal regularity solutions u P
H1

0 pΩ;Rdq is proved in Theorem 1010 using a compactness argument inspired by [1313,2323]. More precisely,
we prove for monotone stress-strain laws that (i) the discrete displacement field strongly converges
(up to a subsequence) to u in LqpΩ;Rdq with 1 ď q ă `8 if d “ 2 and 1 ď q ă 6 if d “ 3; (ii) the
discrete strain tensor weakly converges (up to a subsequence) to ∇su in L2pΩ,Rdˆdq. Notice that
our results are slightly stronger than [2323, Theorem 3.5] (cf. also Remark 3.6 therein) because the
HHO discretization is compact as proved in Lemma 1818. If, additionally, strict monotonicity holds for
σ , the strain tensor strongly converges and convergence extends to the whole sequence. An optimal
energy-norm error estimate in hk`1 is then proved in Theorem 1515 under the additional conditions
of Lipschitz continuity and strong monotonicity on the stress-strain law; cf. Assumption 1313. The
performance of the method is investigated in Section 66 on a complete panel of model problems using
stress-strain laws corresponding to real materials.

The rest of the paper is organized as follows. In Section 22 we formulate the assumptions on the stress-
strain function σ , provide several examples of models relevant in the engineering practice, and write
the weak formulation of problem (11). In Section 33 we introduce the notation for the mesh and recall
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a few known results. In Section 44 we discuss the choice of DOFs, formulate the local reconstructions,
and state the discrete problem along with the main results, collected in Theorems 88, 1010, and 1515.
In Section 55 we show that the HHO method satisfies on each mesh element a discrete counterpart
of the principle of virtual work, and that interface tractions obey the law of action and reaction.
Section 66 contains numerical tests, while the proofs of the main results are given in Section 77. Finally,
Appendix AA contains the proofs of intermediate technical results. This structure allows different levels
of reading. In particular, readers mainly interested in the numerical recipe and results may focus
primarily on the material of Sections 22–66.

2 Setting and examples

For the stress-strain function, we make the following

Assumption 1 (Stress-strain function I). The stress-strain function σ : Ω ˆ Rdˆdsym Ñ Rdˆdsym is a
Caratheodory function, namely

σpx, ¨q is continuous on Rdˆdsym for a.e. x P Ω, (2a)

σp¨, τ q is measurable on Ω for all τ P Rdˆdsym , (2b)

and it holds σp¨,0q P L2pΩ;Rdˆdq. Moreover, there exist real numbers σ, σ P p0,`8q such that, for
a.e. x P Ω, and all τ ,η P Rdˆdsym , the following conditions hold:

}σpx, τ q ´ σpx,0q}dˆd ď σ}τ }dˆd, (growth) (2c)

σpx, τ q : τ ě σ}τ }2dˆd, (coercivity) (2d)
pσpx, τ q ´ σpx,ηqq : pτ ´ ηq ě 0, (monotonicity) (2e)

where τ : η :“ řd
i,j“1 τi,jηi,j and }τ }2dˆd :“ τ : τ .

We next discuss a number of meaningful models that satisfy the above assumptions.

Example 2 (Linear elasticity). The linear elasticity model corresponds to

σp¨,∇suq “ Cp¨q∇su,

where C is a fourth order tensor. Being linear, the previous stress-strain relation clearly satisfies
Assumption 11 provided that C is uniformly elliptic. A particular case of the previous stress-strain
relation is the usual linear elasticity Cauchy stress tensor

σp∇suq “ λ trp∇suqId ` 2µ∇su, (3)

where trpτ q :“ τ : Id and λ, µ P R are Lamé’s parameters.

Example 3 (Hencky–Mises model). The nonlinear Hencky–Mises model of [2727, 3434] corresponds to
the stress-strain relation

σp∇suq “ λ̃pdevp∇suqq trp∇suqId ` 2µ̃pdevp∇suqq∇su, (4)

where λ̃ and µ̃ are the nonlinear Lamé’s scalar functions and dev : Rdˆdsym Ñ R defined by devpτ q “
trpτ 2q´ 1

d trpτ q2 is the deviatoric operator. Conditions on λ̃ and µ̃ such that σ satisfies Assumption 11
can be found in [11,44].

Example 4 (An isotropic damage model). The isotropic damage model of [99] corresponds to the
stress-strain relation

σp¨,∇suq “ p1´Dp∇suqqCp¨q∇su, (5)

where D : Rdˆdsym Ñ R is the scalar damage function. If there exists a continuous and bounded function
f : r0,`8q Ñ ra, bs for some 0 ă a ď b, such that s P r0,`8q Ñ sfpsq is non-decreasing and, for all
τ P Rdˆdsym , Dpτ q “ 1´ fp|τ |q, the damage model constitutive relation satisfies Assumption 11.
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In the numerical experiments of Section 66 we will also consider the following model, relevant in
engineering applications, which however does not satisfy Assumption 11 in general.

Example 5 (The second-order elasticity model). The nonlinear second-order isotropic elasticity
model of [1212,3030,3131] corresponds to the stress-strain relation

σp∇suq “ λ trp∇suqId ` 2µ∇su

`B trpp∇suq2qId ` 2B trp∇suq∇su ` C trp∇suq2Id `Ap∇suq2, (6)

where λ and µ are the standard Lamé’s parameter, and A,B,C P R are the second-order moduli.

Remark 6 (Energy density functions). Examples 22, 33, and 55, used in numerical tests of Section 66, can
be interpreted in the framework of hyperelasticity. Hyperelasticity is a type of constitutive model
for ideally elastic materials in which the stress-strain relation derives from a stored energy density
function Ψ : Rdˆdsym Ñ R, namely

σpτ q :“ BΨpτ q
Bτ .

The stored energy density function leading to the linear Cauchy stress tensor (33) is

Ψlinpτ q :“ λ

2
trpτ q2 ` µ trpτ 2q, (7)

while, in the Hencky–Mises model (44), it is defined such that

Ψhmpτ q :“ α

2
trpτ q2 ` Φpdevpτ qq. (8)

Here α P p0,`8q, while Φ : r0,`8q Ñ R is a function of class C2 satisfying, for some positive
constants C1, C2, and C3,

C1 ď Φ1pρq ă α , |ρΦ2pρq| ď C2 and Φ1pρq ` 2ρΦ2pρq ě C3 @ρ P r0,`8q. (9)

Deriving the energy density function (88) yields the stress-strain relation (44) with nonlinear Lamé’s
functions µ̃pρq :“ Φ1pρq and λ̃pρq :“ α ´ Φ1pρq. Taking α “ λ` µ and Φpρq “ µρ in (88) leads to the
linear case. Finally, the second-order elasticity model (66) is obtained by adding third-order terms to
the linear stored energy density function defined in (77):

Ψsndpτ q :“ λ

2
trpτ q2 ` µ tr

`
τ 2

˘` C

3
trpτ q3 `B trpτ q trpτ 2q ` A

3
trpτ 3q. (10)

The weak formulation of problem (11) that will serve as a starting point for the development and
analysis of the HHO method reads

Find u P H1
0 pΩ;Rdq such that apu,vq “

ż

Ω

f ¨ v @v P H1
0 pΩ;Rdq, (11)

whereH1
0 pΩ;Rdq is the zero-trace subspace ofH1pΩ;Rdq and the function a : H1

0 pΩ;RdqˆH1
0 pΩ;Rdq Ñ

R is such that
apv ,wq :“

ż

Ω

σpx,∇svpxqq : ∇swpxqdx.
Throughout the rest of the paper, to alleviate the notation, we omit the dependence on the space
variable x and the differential dx from integrals.

3 Notation and basic results

Denote by H Ă R`̊ a countable set of meshsizes having 0 as its unique accumulation point. We
consider refined mesh sequences pThqhPH where each Th is a finite collection of nonempty disjoint
open polyhedral elements T with boundary BT such that Ω “ Ť

TPTh T and h “ maxTPTh hT with
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hT diameter of T . We assume that mesh regularity holds in the sense of [1616, Definition 1.38], i.e.,
for all h P H, Th admits a matching simplicial submesh Th and there exists a real number % ą 0
independent of h such that, for all h P H, (i) for all simplex S P Th of diameter hS and inradius rS ,
%hS ď rS and (ii) for all T P Th and all S P Th such that S Ă T , %hT ď hS .

We define a face F as a hyperplanar closed connected subset of Ω with positive pd´1q-dimensional
Hausdorff measure such that (i) either there exist distinct T1, T2 P Th such that F Ă BT1 X BT2 and
F is called an interface or (ii) there exists T P Th such that F Ă BT X Γ and F is called a boundary
face. Interfaces are collected in the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

h YFb
h . For all

T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces contained in BT and, for all F P FT , nTF
is the unit normal to F pointing out of T .

Let X be a mesh element or face. For an integer l ě 0, we denote by PlpX;Rq the space spanned
by the restriction to X of scalar-valued, d-variate polynomials of total degree l. The L2-projector
πlX : L1pX;Rq Ñ PlpX;Rq is defined such that, for all v P L1pX;Rq,

ż

X

pπlXv ´ vq “ 0 @w P PlpX;Rq. (12)

When dealing with the vector-valued polynomial space PlpX;Rdq or with the tensor-valued polynomial
space PlpX;Rdˆdq, we use the boldface notation πlX for the corresponding L2-orthogonal projectors
acting component-wise.

On regular mesh sequences, we have the following optimal approximation properties for πlT (for a
proof, cf. [1616, Lemmas 1.58 and 1.59] and, in a more general framework, [1414, Lemmas 3.4 and 3.6]):
There exists a real number Capp ą 0 such that, for all s P t1, . . . , l` 1u, all h P H, all T P Th, and all
v P HspT ;Rq,

|v ´ πlT v|HmpT ;Rq ď Capph
s´m
T |v|HspT ;Rq @m P t0, . . . , su, (13a)

|v ´ πlT v|HmpFT ;Rq ď Capph
s´m´ 1

2

T |v|HspT ;Rq @m P t0, . . . , s´ 1u. (13b)

Other useful geometric and functional analytic results on regular mesh sequences can be found in [1616,
Chapter 1] and [1313,1414].

At the global level, we define broken versions of polynomial and Sobolev spaces. In particular, for an
integer l ě 0, we denote by PlpTh;Rq, PlpTh;Rdq, and PlpTh;Rdˆdq, respectively, the space of scalar-
valued, vector-valued, and tensor-valued broken polynomial functions on Th of total degree l. The
space of broken vector-valued polynomial functions of total degree l on the trace of the mesh on the
domain boundary Γ is denoted by PlpFb

h ;Rdq. Similarly, for an integer s ě 1, HspTh;Rq, HspTh;Rdq,
and HspTh;Rdˆdq are the scalar-valued, vector-valued, and tensor-valued broken Sobolev spaces of
index s.

Throughout the rest of the paper, for X Ă Ω, we denote by }¨}X the standard norm in L2pX;Rq,
with the convention that the subscript is omitted whenever X “ Ω. The same notation is used for
the vector- and tensor-valued spaces L2pX;Rdq and L2pX;Rdˆdq.

4 The Hybrid High-Order method

In this section we define the space of DOFs and the local reconstructions, and we state the discrete
problem along with the main results (whose proof is postponed to Section 77).

4.1 Degrees of freedom

Let a polynomial degree k ě 1 be fixed. The DOFs for the displacement are collected in the space

Uk
h :“

˜ą

TPTh
PkpT ;Rdq

¸
ˆ
˜ ą

FPFh
PkpF ;Rdq

¸
,

5



DOFs and reduction map I
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Figure: Uk
T for k P t1, 2u

For k • 1 and all T P Th, we define the local space of DOFs

Uk
T :“ Pk

dpT qd ˆ
# °

F PFT

Pk
d´1pF qd

+

The global space has single-valued interface DOFs

Uk
h :“

# °

T PTh

Pk
dpT qd

+
ˆ

# °

F PFh

Pk
d´1pF qd

+

76 / 94

Figure 1: Local DOFs for k “ 1 (left) and k “ 2 (right). Shaded DOFs can be locally eliminated by static condensation
when solving linearized versions of problem (2424).

see Figure 11. For a generic collection of DOFs in Uk
h, we use the notation vh :“ `pvT qTPTh , pvF qFPFh

˘
.

We also denote by vh P PkpTh;Rdq and vΓ,h P PkpFb
h ;Rdq (not underlined) the broken polynomial

functions such that

pvhq|T “ vT @T P Th and pvΓ,hq|F “ vF @F P Fb
h .

The restrictions of Uk
h and vh to a mesh element T are denoted by Uk

T and vT “
`
vT , pvF qFPFT

˘
,

respectively. The space Uk
h is equipped with the following discrete strain semi-norm:

}vh}ε,h :“
˜ ÿ

TPTh
}vh}2ε,T

¸1{2
, }vh}2ε,T :“ }∇svT }2T `

ÿ

FPFT
h´1
F }vF ´ vT }2F . (14)

The DOFs corresponding to a given function v P H1pΩ;Rdq are obtained by means of the reduction
map Ikh : H1pΩ;Rdq Ñ Uk

h such that

Ikhv :“ `pπkTvqTPTh , pπkFvqFPFh
˘
, (15)

where we remind the reader that πkT and πkF denote the L2-orthogonal projectors on PkpT ;Rdq and
PkpF ;Rdq, respectively. For all mesh elements T P Th, the local reduction map IkT : H1pT ;Rdq Ñ Uk

T

is obtained by a restriction of Ikh, and is therefore such that for all v P H1pT ;Rdq
IkTv “

`
πkTv , pπkFvqFPFT

˘
. (16)

4.2 Local reconstructions

We introduce symmetric gradient and displacement reconstruction operators devised at the element
level that are instrumental in the formulation of the method.

Let a mesh element T P Th be fixed. The local symmetric gradient reconstruction operator Gk
s,T :

Uk
T Ñ PkpT ;Rdˆdsymq is obtained by solving the following pure traction problem: For a given local

collection of DOFs vT “
`
vT , pvF qFPFT

˘ P Uk
T , find G

k
s,TvT P PkpT ;Rdˆdsymq such that, for all τ P

PkpT ;Rdˆdsymq,
ż

T

Gk
s,TvT : τ “ ´

ż

T

vT ¨ p∇¨τ q `
ÿ

FPFT

ż

F

vF ¨ pτnTF q (17a)

“
ż

T

∇svT : τ `
ÿ

FPFT

ż

F

pvF ´ vT q ¨ pτnTF q. (17b)

The right-hand side of (17a17a) is designed to resemble an integration by parts formula where the role
of the function represented by the DOFs in vT is played by vT inside the volumetric integral and by
pvF qFPFT inside boundary integrals. The reformulation (17b17b), obtained integrating by parts the first
term in the right-hand side of (17a17a), highlights the fact that our method is nonconforming, as the
second addend accounts for the difference between vF and vT .
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The definition of the symmetric gradient reconstruction is justified observing that, using the defini-
tions (1616) of the local reduction map IkT and (1212) of the L2-orthogonal projectors πkT and πkF in (17a17a),
one can prove the following commuting property: For all T P Th and all v P H1pT ;Rdq,

Gk
s,T I

k
Tv “ πkT p∇svq. (18)

As a result of (1818) and (1313), Gk
s,T I

k
T has optimal approximation properties in PkpT ;Rdˆdsymq.

From Gk
s,T , one can define the local displacement reconstruction operator rk`1

T : Uk
T Ñ Pk`1pT ;Rdq

such that, for all vT P Uk
T , ∇sr

k`1
T vT is the orthogonal projection of Gk

s,TvT on ∇sPk`1pT ;Rdq Ă
PkpT ;Rdˆdsymq and rigid-body motions are prescribed according to [1717, Eq. (15)]. More precisely, we let
rk`1
T vT be such that for all w P Pk`1pT ;Rdq it holds

ż

T

p∇sr
k`1
T vT ´Gk

s,TvT q : ∇sw “ 0

and, denoting by ∇ss the skew-symmetric part of the gradient operator, we have
ż

T

rk`1
T vT “

ż

T

vT ,

ż

T

∇ssr
k`1
T vT “

ÿ

FPFT

ż

F

1

2
pnTF b vF ´ vF b nTF q .

Notice that, for a given vT P Uk
T , the displacement reconstruction rk`1

T vT is a vector-valued poly-
nomial function one degree higher than the element-based DOFs vT . It was proved in [1717, Lemma 2]
that rk`1

T IkT has optimal approximation properties in Pk`1pT ;Rdq.
In what follows, we will also need the global counterparts of the discrete gradient and displacement
operators Gk

s,h : Uk
h Ñ PkpTh;Rdˆdsymq and rk`1

h : Uk
h Ñ Pk`1pTh;Rdq defined setting, for all vh P Uk

h

and all T P Th,
pGk

s,hvhq|T “ Gk
s,TvT , prk`1

h vhq|T “ rk`1
T vT (19)

The following consistency properties for Gk
s,h play a fundamental role in the convergence analysis

carried out in Section 77.

Proposition 7 (Consistency of the discrete symmetric gradient operator). Let pThqhPH be a regular
mesh sequence, and let Gk

s,h be as in (1919) with Gk
s,T defined by (1717) for all T P Th.

1) Strong consistency. For all v P H1pΩ;Rdq with Ikh defined by (1515), it holds as hÑ 0

Gk
s,hI

k
hv Ñ∇sv strongly in L2pΩ;Rdˆdq. (20)

2) Sequential consistency. For all h P H, define the discrete integration by parts residual Rh :
Uk
h ˆH1pΩ;Rdˆdsymq Ñ R such that, for all vh P Uk

h and all τ P H1pΩ;Rdˆdsymq,

Rhpvh, τ q :“
ˇ̌
ˇ̌
ż

Ω

Gk
s,hvh : τ ´

ż

Γ

vΓ,h ¨ γnpτ q `
ż

Ω

vh ¨ p∇¨τ q
ˇ̌
ˇ̌ , (21)

where γnpτ q is the normal trace of τ . Then, for all τ P H1pΩ;Rdˆdsymq,

lim
hÑ0

˜
max

vhPUkh, }vh}ε,h“1
Rhpvh, τ q

¸
“ 0. (22)

Proof. See Appendix A.1A.1.
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4.3 Discrete problem

We define the following subspace of Uk
h strongly accounting for the homogeneous Dirichlet boundary

condition (1b1b):
Uk
h,0 :“

!
vh P Uk

h | vF “ 0 @F P Fb
h

)
, (23)

and we notice that the map }¨}ε,h defined by (1414) is a norm on Uk
h,0. The HHO approximation of

problem (1111) reads:

Find uh P Uk
h,0 such that ahpuh,vhq :“ Ahpuh,vhq ` shpuh,vhq “

ż

Ω

f ¨ vh @vh P Uk
h,0, (24)

where the consistency contribution Ah : Uk
hˆUk

h Ñ R and the stability contribution sh : Uk
hˆUk

h Ñ
R are respectively defined setting

Ahpuh,vhq :“
ż

Ω

σp¨,Gk
s,huhq : Gk

s,hvh, (25)

shpuh,vhq :“
ÿ

TPTh
sT puT ,vT q, with sT puT ,vT q :“ γ

hF

ż

F

∆k
TFuT ¨∆k

TFvT . (26)

A possible choice for the user dependent scaling parameter γ ą 0 in (2626) is γ “ σ . In sT , we penalize
in a least-square sense the face-based residual ∆k

TF : Uk
T Ñ PkpF ;Rdq such that, for all T P Th, all

vT P Uk
T , and all F P FT ,

∆k
TFvT :“ πkF prk`1

T vT ´ vF q ´ πkT prk`1
T vT ´ vT q. (27)

This particular choice ensures that ∆k
TF vanishes whenever its argument is of the form IkTw with

w P Pk`1pT ;Rdq, a crucial property to obtain an energy-norm error estimate in hk`1; cf. Theorem 1515.
Additionally, sh is stabilizing in the sense that the following uniform norm equivalence holds (the
proof is a straightforward modification of [1717, Lemma 4]; cf. also Corollary 6 therein): There exists
a real number η ą 0 independent of h such that, for all vh P Uk

h,0,

η´1}vh}2ε,h ď }Gk
s,hvh}2 ` shpvh,vhq ď η}vh}2ε,h. (28)

By (2d2d), this implies the coercivity of ah.

4.4 Main results

In this section we collect the main results of this paper. The proofs are postponed to Section 77. We
start by discussing existence and uniqueness of the discrete solution.

Theorem 8 (Existence and uniqueness of a discrete solution). Let Assumption 11 hold and let pThqhPH
be a regular mesh sequence. Then, for all h P H, there exists at least one solution uh P Uk

h,0 to
problem (2424). Additionally, if the stress-strain function σ is strictly monotone (i.e., if the inequality
in (2e2e) is strict for τ ‰ η), the solution is unique.

Proof. See Section 7.17.1.

Remark 9 (Strict monotonicity of the stress-strain function). The strict monotonicity assumption is
fulfilled, e.g., by the Hencky–Mises model (44) and by the damage model (55) when Dpτ q “ 1´ fp|τ |q,
with f continuous, bounded, and such that r0,`8q Q s ÞÑ sfpsq is strictly increasing. We observe, in
passing, that the strict monotonicity is weaker than the strong monotonicity (30b30b) used in Theorem 1515
to prove error estimates.

We then consider the convergence to solutions that only exhibit the minimal regularity required by
the variational formulation (1111).
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Theorem 10 (Convergence). Let Assumption 11 hold, let k ě 1, and let pThqhPH be a regular mesh
sequence. Further assume the existence of a real number CK ą 0 depending on Ω, %, and on k but
independent of h such that, for all vh P Uk

h,0,

}vh} ` }∇hvh} ď CK}vh}ε,h, (29)

where ∇h denotes the broken gradient on H1pTh;Rdq. For all h P H, let uh P Uk
h,0 be a solution to

the discrete problem (2424) on Th. Then, for all q such that 1 ď q ă `8 if d “ 2 or 1 ď q ă 6 if d “ 3,
as hÑ 0, up to a subsequence,

• uh Ñ u strongly in LqpΩ;Rdq,
• Gk

s,huh Ñ∇su weakly in L2pΩ;Rdˆdq,
where u P H1

0 pΩ;Rdq solves the weak formulation (1111). Moreover, if we assume strict monotonicity
for σ (i.e., the inequality in (2e2e) is strict for τ ‰ η), it holds that

• Gk
s,huh Ñ∇su strongly in L2pΩ;Rdˆdq.

Finally, if the solution to (1111) is unique, convergence extends to the whole sequence.

Proof. See Section 7.27.2.

Remark 11 (Existence of a solution to the continuous problem). Notice that a side result of the exis-
tence of discrete solutions proved in Theorem 88 together with the convergence results of Theorem 1010
is the existence of a solution to the weak formulation (1111).
Remark 12 (Discrete Korn inequality). In Proposition 1919 we give a proof of the discrete Korn in-
equality (2929) based on the results of [77], which require further assumptions on the mesh. While we
have the feeling that these assumptions could probably be relaxed, we postpone this topic to a future
work. Notice that inequality (2929) is not required to prove the error estimate of Theorem 1515.

In order to prove error estimates, we stipulate the following additional assumptions on the stress-strain
function σ .

Assumption 13 (Stress-strain relation II). There exist real numbers σ˚, σ˚ P p0,`8q such that, for
a.e. x P Ω, and all τ ,η P Rdˆdsym ,

}σpx, τ q ´ σpx,ηq}dˆd ď σ˚}τ ´ η}dˆd, (Lipschitz continuity) (30a)

pσpx, τ q ´ σpx,ηqq : pτ ´ ηq ě σ˚}τ ´ η}2dˆd. (strong monotonicity) (30b)

Remark 14 (Lipschitz continuity and strong monotonocity). It has been proved in [11, Lemma 4.1] that,
under the assumptions (99), the stress-strain tensor function for the Hencky–Mises model is strongly
monotone and Lipschitz-continuous, namely Assumption 1313 holds. Also the isotropic damage model
satisfies Assumption 1313 if the damage function in (55) is, for instance, such thatDp|τ |q “ 1´p1`|τ |q´ 1

2 .

Theorem 15 (Error estimate). Let Assumptions 11 and 1313 hold, and let pThqhPH be a regular mesh
sequence. Let u be the unique solution to (11). Let a polynomial degree k ě 1 be fixed, and, for all
h P H, let uh be the unique solution to (2424) on the mesh Th. Then, under the additional regularity
u P Hk`2pTh;Rdq and σp¨,∇suq P Hk`1pTh;Rdˆdq, it holds

}∇su ´Gk
s,huh} ` shpuh,uhq1{2 ď Chk`1

`}u}Hk`2pTh;Rdq ` }σp¨,∇suq}Hk`1pTh;Rdˆdq
˘
, (31)

where C is a positive constant depending only on Ω, k, the mesh regularity parameter %, the real
numbers σ, σ, σ˚, σ˚ appearing in (22) and in (3030), and an upper bound of }f }.

Proof. See Section 7.37.3.
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5 Local principle of virtual work and law of action and reaction

We show in this section that the solution of the discrete problem (2424) satisfies a local principle
of virtual work with numerical tractions that obey the law of action and reaction. This property
is important from both the mathematical and engineering points of view, and it can simplify the
derivation of a posteriori error estimators based on equilibrated tractions.

Define, for all T P Th, the space
Dk
BT :“

ą

FPFT
PkpF ;Rdq,

as well as the boundary difference operator δkBT : Uk
T ÑDk

BT such that, for all vT P Uk
T ,

δkBTvT “ pδkFvT qFPFT :“ pvF ´ vT qFPFT .
The following proposition shows that the stabilization can be reformulated in terms of boundary
differences.

Proposition 16 (Reformulation of the local stabilization bilinear form). For all mesh element T P Th,
the local stabilization bilinear form sT defined by (2626) satisfies, for all uT ,vT P Uk

T ,

sT puT ,vT q “ s̃T pδkBTuT , δkBTvT q,
with bilinear form s̃T : Dk

BT ˆDk
BT Ñ R such that, for all αBT ,βBT PDk

BT ,

s̃T pαBT ,βBT q :“ sT pp0,αBT q, p0,βBT qq. (32)

Proof. Let a mesh element T P Th be fixed. Using the fact that rk`1
T IkTvT “ vT for all vT P PkpT qd

(this because rk`1
T IkT is a projector on Pk`1pT ;Rdq, cf. [1717, Eq. (20)]) together with the linearity of

rk`1
T , it is inferred that, for all F P FT , the face-based residual defined by (2727) satisfies

∆k
TFvT “ πkF prk`1

T p0, δkBTvT q ´ δkFvT q ´ πkTrk`1
T p0, δkBTvT q “ ∆k

TF p0, δkBTvT q

for all vT P Uk
T . Plugging this expression into (2626) yields the assertion.

Define the boundary residual operator Rk
BT : Uk

T Ñ Dk
BT such that, for all vT P Uk

T , R
k
BTvT :“

pRk
TFvT qFPFT satisfies

´
ÿ

FPFT

ż

F

Rk
TFvT ¨αF “ s̃T pδkBTvT ,αBT q @αBT PDk

BT . (33)

Problem (3333) is well-posed, and computing Rk
TFvT requires to invert the boundary mass matrix.

Lemma 17 (Local principle of virtual work and law of action and reaction). Denote by uh P Uk
h,0 a

solution of problem (2424) and, for all T P Th and all F P FT , define the numerical traction

T TF puT q :“ ´πkTσp¨,Gk
s,TuT qnTF `Rk

TFuT .

Then, for all T P Th we have the following discrete principle of virtual work: For all vT P PkpT ;Rdq,
ż

T

σp¨,Gk
s,TuT q : ∇svT `

ÿ

FPFT

ż

F

T TF puT q ¨ vT “
ż

T

f ¨ vT , (34)

and, for any interface F P FT1 X FT2 , the numerical tractions satisfy the law of action and reaction:

T T1F puT1
q ` T T2F puT2

q “ 0. (35)
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Figure 2: Triangular, hexagonal-dominant, Voronoi, and nonmatching quadrangular meshes for the numerical tests.
The triangular and nonmatching quadrangular meshes were originally proposed for the FVCA5 benchmark [2929]. The
(predominantly) hexagonal was used in [1818]. The Voronoi mesh family was obtained using the PolyMesher algorithm
of [3939].

Proof. For all T P Th, use the definition (1717) of Gk
s,TvT with τ “ πkTσp¨Gk

s,TuT q in Ah and the
rewriting (3232) of sT together with the definition (3333) of Rk

TF to infer that it holds, for all vh P Uk
h,

ż

Ω

f ¨ vh “ Ahpuh,vhq ` shpuh,vhq “
ÿ

TPTh

˜ż

T

σp¨,Gk
s,TuT q : ∇svT `

ÿ

FPFT

ż

F

pπkTσp¨,Gk
s,TuT qnTF ´Rk

TFuT q ¨ pvF ´ vT q
¸
,

where to cancel πkT inside the first integral in the second line we have used the fact that ∇svT P
Pk´1pT ;Rdˆdq for all T P Th. Selecting vh such that vT spans PkpT ;Rdq for a selected mesh element
T P Th while vT 1 ” 0 for all T 1 P ThztT u and vF ” 0 for all F P Fh, we obtain (3434). On the
other hand, selecting vh such that vT ” 0 for all T P Th, vF spans PkpF ;Rdq for a selected interface
F P FT1 X FT2 , and vF 1 ” 0 for all F 1 P FhztF u yields (3535).

6 Numerical results

In this section we present a comprehensive set of numerical tests to assess the properties of our
method using the models of Examples 22, 33, and 55 (cf. also Remark 66).

6.1 Convergence for the Hencky–Mises model

In order to check the error estimates stated in Theorem 1515, we first solve a manufactured two-
dimensional hyperelasticity problem. We consider the Henky–Mises model with Φpρq “ µpe´ρ ` 2ρq
and α “ λ`µ in (88), so that conditions (99) are satisfied. This choice leads to the following stress-strain
relation:

σp∇suq “ ppλ´ µq ` µe´ devp∇suqq trp∇suqId ` µp2´ e´ devp∇suqq∇su. (36)

We consider the unit square domain Ω “ p0, 1q2 and take µ “ 2, λ “ 1, and an exact displacement u
given by

upxq “ `
sinpπx1q sinpπx2q, sinpπx1q sinpπx2q

˘
.

The volumetric load f “ ´∇¨σp∇suq is inferred from the exact solution u. In this case, since the
selected exact displacement vanishes on Γ, we simply consider homogeneous Dirichlet conditions. We
consider the triangular, hexagonal, Voronoi, and nonmatching quadrangular mesh families depicted
in Figure 22 and polynomial degrees k ranging from 1 to 4. The nonmatching mesh is simply meant
to show that the method supports nonconforming interfaces: refining in the corner has no particular
meaning for the selected solution. Furthermore, the initialization of our iterative linearization pro-
cedure (Newton scheme) is obtained solving the linear elasticity model. This initial guess leads to
a 40% reduction of the number of iterations with respect to a null initial guess. The energy-norm
convergence rates displayed in the left column of Figure 33 are in agreement with the theoretical pre-
dictions. For the sake of completeness, we also display in the right column of Figure 33 the L2-norm of
the error defined as the difference between the L2-projection πkhu of the exact solution on PkpTh;Rdq
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and the broken polynomial function uh obtained from element-based DOFs. In this case, orders of
convergence up to hk`2 are observed.

6.2 Tensile and shear test cases

We next consider the two test cases schematically depicted in Figures 44 and 55. On the unit square
domain Ω, we solve problem (11) considering three different models of hyperelasticity (see Remark 66):

(i) Linear. The linear model corresponding to the stored energy density function (77) with Lamé’s
parameters

λ “ 11ˆ 105Pa, µ “ 82ˆ 104Pa. (37)

(ii) Hencky–Mises. The Hencky–Mises model (44) obtained by taking Φpρq “ µpρ2 ` p1 ` ρq1{2q and
α “ λ`µ in (88), with λ, µ as in (3737) (also in this case conditions (99) hold). This choice leads to

σp∇suq “ ppλ` µ

2
q´ µ

2
p1`devp∇suqq´1{2qq trp∇suqId`µp1`p1`devp∇suqq´1{2q∇su. (38)

The Lamé’s functions of the previous relation are inspired from those proposed in [44, Section
5.1]. In particular, the function µ̃pρq “ µp1 ` p1 ` devp∇suqq´1{2q corresponds to the Carreau
law for viscoplastic materials.

(iii) Second-order. The second-order model (66) with Lamé’s parameter as in (3737) and second-order
moduli

A “ 11ˆ 106Pa, B “ ´48ˆ 105Pa, C “ 13.2ˆ 105Pa.

These values correspond to the estimates provided in [3030] for the Armco Iron. We recall that the
second-order elasticity stress-strain relation does not satisfy in general the assumptions under
which we are able to prove the convergence and error estimates. In particular, we observe that
the stored energy density function defined in (1010) is not convex.

The bottom part of the boundary of the domain is assumed to be fixed, the normal stress is equal
to zero on the two lateral parts, and a traction is imposed at the top of the boundary. So, mixed
boundary conditions are imposed as follows

u “ 0 on tx P Γ, x2 “ 0u, (39a)
σn “ T on tx P Γ, x2 “ 1u, (39b)
σn “ 0 on tx P Γ, x1 “ 0u, (39c)
σn “ 0 on tx P Γ, x1 “ 1u. (39d)

For the tensile case, we impose a vertical traction at the top of the boundary equal to T “
p0, 3.2 ˆ 105Paq. This type of boundary conditions produces large normal stresses (i.e., the diag-
onal components of σ) and minor shear stresses (i.e., the off-diagonal components of σ). It can be
observed in Figure 44, where the components of the stress tensor are depicted for the linear case.
In Figure 66 we plot the stress norm on the deformed domain obtained for the three hyperelasticity
models. The results of Fig. 44, 55, 66, and 77 are obtained on a mesh with 3584 triangles (corresponding
to a typical mesh-size of 3.84 ˆ 10´3) and with polynomial degree k “ 2. Obviously, the symmetry
of the results is visible, and we observe that the three displacement fields are very close. This is
motivated by the fact that, with our choice of the parameters in (3737) and in (3838), the linear model
exactly corresponds to the linear approximation at the origin of the nonlinear ones. The maximum
value of the stress concentrates on the two bottom corners due to the homogeneous Dirichlet condition
that totally locks the displacement when x1 “ 0. The repartition of the stress on the domain with
the second-order model is visibly different from those obtained with the linear and Hencky–Mises
models. At the energy level, we also have a higher difference between the second-order model and
the linear one since |Elin ´ Ehm|{Elin “ 0.44% while |Elin ´ Esnd|{Elin “ 4.45%, where E‚ is the total
elastic energy obtained by integrating over the domain the strain energy density functions defined
by (77), (88), and (1010):

E‚ :“
ż

Ω

Ψ‚, with ‚ P tlin,hm, sndu.
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Figure 3: Convergence rates for polynomial degree k from 1 to 4 and mesh families of Figure 22.
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Figure 4: Tensile test description and resulting stress components for the linear case. Values in 105Pa
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(b) σ1,1
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(c) σ1,2
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(d) σ2,2

Figure 5: Shear test description and resulting stress components for the linear case. Values in 105Pa

The reference values for the total energy, used in Figure 88 in order to assess convergence, are obtained
on a fine Cartesian mesh having a mesh-size of 1.95ˆ 10´3 and k “ 3.

For the shear case, we consider an horizontal traction equal to T “ p4.5ˆ104Pa, 0q which induces the
stress pattern illustrated in Figure 55. The computed stress norm on the deformed domain is depicted
in Figure 77, and we can see that the displacement fields associated with the three models are very
close as for the tensile test case. Here, the maximum values of the stress are localized in the lower
part of the domain near the lateral parts. Unlike the tensile test, the difference between the three
models is tiny as confirmed by the elastic energy equal to 3180 J, 3184 J, and 3190 J respectively.
The decreasing of the energy difference in comparison with the previous test can be explained by the
fact that the value of the Neumann boundary data on the top is divided by a factor 7 in order to
obtain maximum displacements roughly equal to 15%.

(a) Linear (b) Hencky–Mises (c) Second order

Figure 6: Tensile test case: Stress norm on the deformed domain. Values in 105Pa
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(a) Linear (b) Hencky–Mises (c) Second order

Figure 7: Shear test case: Stress norm on the deformed domain. Values in 105Pa

7 Analysis

We collect here the proofs of the results stated in Section 4.44.4. To alleviate the notation, from this
point on we abridge into a À b the inequality a ď Cb with real number C ą 0 independent of h.

7.1 Existence and uniqueness

Proof of Theorem 88. 1) Existence. We follow the argument of [1111, Theorem 3.3]. If pE, p¨, ¨qE , }¨}Eq
is a Euclidean space and Φ : E Ñ E is a continuous map such that pΦpxq,xqE}x}E Ñ `8, as }x}E Ñ `8,
then Φ is surjective. We take E “ Uk

h,0, endowed with the inner product

pvT ,wT qε,h :“
ÿ

TPTh

˜ż

T

∇svT : ∇swT `
ÿ

FPFT

1

hF

ż

F

pvF ´ vT q ¨ pwF ´wT q
¸
,

and we define Φ : Uk
h,0 Ñ Uk

h,0 such that, for all vh P Uk
h,0, pΦpvhq,whqε,h “ ahpvh,whq for all

wh P Uk
h,0. The coercivity (2d2d) of σ together with the norm equivalence (2828) yields pΦpvhq,vhqε,h ě

mint1, σuη´1}vh}2ε,h for all vh P Uk
h,0, so that Φ is surjective. Let now y

h
P Uk

h,0 be such that
py
h
,whqε,h “

ş
Ω
f ¨wh for all wh P Uk

h,0. By the surjectivity of Φ, there exists uh P Uk
h,0 such that

Φpuhq “ yh. By definition of Φ and y
h
, uh is a solution to the problem (2424).

2) Uniqueness. Let uh,1,uh,2 P Uk
h,0 solve (2424). We assume uh,1 ‰ uh,2 and proceed by contradic-

tion. Subtracting (2424) for uh,2 from (2424) for uh,1, it is inferred that ahpuh,1,vhq ´ apuh,2,vhq “ 0

for all vh P Uk
h,0. Hence in particular, taking vh “ uh,1 ´ uh,2 we obtain that

ahpuh,1,uh,1 ´ uh,2q ´ ahpuh,2,uh,1 ´ uh,2q “ 0

On the other hand, owing to the strict monotonicity of σ and to the fact that the bilinear form sh is
positive semidefinite, we have that

ahpuh,1,uh,1 ´ uh,2q ´ ahpuh,2,uh,1 ´ uh,2q
“
ż

Ω

`
σp¨,Gk

s,huh,1q ´ σp¨,Gk
s,huh,2q

˘
: Gk

s,hpuh,1 ´ uh,2q ` shpuh,1 ´ uh,2,uh,1 ´ uh,2q ą 0.

Hence, uh,1 “ uh,2 and the conclusion follows.

7.2 Convergence

This section contains the proof of Theorem 1010 preceeded by a discrete Rellich–Kondrachov Lemma
(cf. [88, Theorem 9.16]).
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Figure 8: Energy vs h, tensile and shear test cases
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Lemma 18 (Discrete compactness). Let the assumptions of Theorem 1010 hold. Let pvhqhPH P
pUk

h,0qhPH, and assume that there is a real number C ě 0 such that

}vh}ε,h ď C @h P H. (40)

Then, for all q such that 1 ď q ă `8 if d “ 2 or 1 ď q ă 6 if d “ 3, the sequence pvhqhPH P
pPkpTh;RdqqhPH is relatively compact in LqpΩ;Rdq. As a consequence, there is a function v P
LqpΩ;Rdq such that as hÑ 0, up to a subsequence, vh Ñ v strongly in LqpΩ;Rdq.

Proof. In the proof we use the same notation for functions in L2pΩ;Rdq Ă L1pΩ;Rdq and for their
extension by zero outside Ω. Let pvhqhPH P pUk

h,0qhPH be such that (4040) holds. Define the space of
integrable functions with bounded variation BVpRdq :“ tv P L1pRd;Rdq | }v}BV ă `8u, where

}v}BV :“
dÿ

i“1

sup

"ż

Rd
v ¨ Biφ | φ P C8c pRd;Rdq, }φ}L8pRd;Rdq ď 1

*
.

Here Biφ denotes the i-th column of ∇φ. Let φ P C8c pRd;Rdq with }φ}L8pRd;Rdq ď 1. Integrating by
parts and using the fact that

ř
TPTh

ř
FPFT

ş
F
pvF ¨ φqnTF “ 0, we have that

ż

Rd
vh ¨ Biφ “

ÿ

TPTh

ż

T

pp∇φqTvT qi “ ´
ÿ

TPTh

˜ż

T

pp∇vT qTφqi `
ÿ

FPFT

ż

F

pvF ¨ φ´ vT ¨ φqpnTF qi
¸

ď
ÿ

TPTh

˜ż

T

dÿ

j“1

|p∇vT qji| `
ÿ

FPFT

ż

F

dÿ

j“1

|pvF ´ vT qjpnTF qi|
¸
,

where, in order to pass to the second line, we have used }φ}L8pRd;Rdq ď 1. Therefore, summing over
i P t1, ..., du, observing that, for all T P Th and all F P FT , we have

řd
i“1 |pnTF qi| ď d1{2, and using

the Lebesgue embeddings arising from the Hölder inequality on bounded domain, leads to

}vh}BV À
ÿ

TPTh

˜
|T |1{2d }∇vT }T `

ÿ

FPFT
|F |1{2d´1}vF ´ vT }F

¸
,

where |¨|d denotes the d-dimensional Hausdorff measure. Moreover, using the Cauchy–Schwarz in-
equality together with the geometric bound |F |d´1hF À |T |d, we obtain that

}vh}BV À |Ω|1{2d
˜ ÿ

TPTh

«
}∇vT }2T `

ÿ

FPFT
h´1
F }vF ´ vT }2F

ff¸1{2
.

Thus, using the discrete Korn inequality (2929), it is readily inferred that

}vh}BV À }vh}ε,h À 1. (41)

Owing to the Helly selection principle [2525, Section 5.2.3], the sequence pvhqhPH is relatively compact
in L1pRd;Rdq and thus in L1pΩ;Rdq. It only remains to prove that the sequence is also relatively
compact in LqpΩ;Rdq, with 1 ă q ă `8 if d “ 2 or 1 ă q ă 6 if d “ 3. Owing to the discrete
Sobolev embeddings [1515, Proposition 5.4] together with the discrete Korn inequality (2929), it holds,
with r “ q ` 1 if d “ 2 and r “ 6 if d “ 3, that

}vh}LrpΩ;Rdq À
˜ ÿ

TPTh

«
}∇vT }2T `

ÿ

FPFT
h´1
F }vF ´ vT }2F

ff¸1{2
À 1,

Thus, we can complete the proof by means of the interpolation inequality [88, Remark 2 p. 93]. For
all h, h1 P H we have with θ :“ r´q

qpr´1q P p0, 1q,
}vh ´ vh1}LqpΩ;Rdq ď }vh ´ vh1}θL1pΩ;Rdq}vh ´ vh1}1´θLrpΩ;Rdq À }vh ´ vh1}θL1pΩ;Rdq.

Therefore, up to a subsequence, pvhqhPH is a Cauchy sequence in LqpΩ;Rdq, so it converges.
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We are now ready to prove convergence.

Proof of Theorem 1010. The proof is subdivided into four steps: in Step 1 we prove a uniform a priori
bound on the solutions of the discrete problem (2424); in Step 2 we infer the existence of a limit for
the sequence of discrete solutions and investigate its regularity; in Step 3 we show that this limit
solves the continuous problem (1111); finally, in Step 4 we prove strong convergence.

Step 1: A priori bound. We start by showing the following uniform a priori bound on the sequence
of discrete solutions:

}uh}ε,h ď C}f }, (42)

where the real number C ą 0 only depends on Ω, σ, %, and k. Making vh “ uh in (2424) and using the
coercivity property (2d2d) of σ in the left-hand side together with the Cauchy–Schwarz inequality in
the right-hand side yields

ÿ

TPTh

˜
σ}Gk

s,TuT }2T `
ÿ

FPFh
h´1
F }∆k

TFuT }2F
¸
ď }f }}uh}.

Owing to the norm equivalence (2828), and using the discrete Korn inequality (2929) to estimate the
right-hand side of the previous inequality, it is inferred that

η´1 minp1, σq}uh}2ε,h ď }f }}uh} ď CK}f }}uh}ε,h.
Dividing by }uh}ε,h yields (4242) with C “ ηminp1, σq´1CK.

Step 2: Existence of a limit and regularity. Let 1 ď q ă `8 if d “ 2 or 1 ď q ă 6 if
d “ 3. Owing to the a priori bound (4242) and the norm equivalence (2828), the sequences p}uh}ε,hqhPH
and p}Gk

s,huh}qhPH are uniformly bounded. Therefore, Lemma 1818 and the Kakutani theorem [88,
Theorem 3.17] yield the existence of u P LqpΩ;Rdq and G P L2pΩ;Rdˆdq such that as hÑ 0, up to a
subsequence,

uh Ñ u strongly in LqpΩ;Rdq and Gk
s,huh Ñ G weakly in L2pΩ;Rdˆdq. (43)

This together with the fact that uh,Γ “ 0 on Γ, shows that, for any τ P H1pΩ;Rdˆdsymq,
ˇ̌
ˇ̌
ż

Ω

G : τ ` u ¨ p∇¨τ q
ˇ̌
ˇ̌ “ lim

hÑ0

ˇ̌
ˇ̌
ż

Ω

Gk
s,huh : τ ` uh ¨ p∇¨τ q ´

ż

Γ

uh,Γ ¨ γnpτ q
ˇ̌
ˇ̌

ď lim
hÑ0

˜
}uh}ε,h max

whPUkh, }wh}ε,h“1
Rhpwh, τ q

¸
“ 0,

(44)

with Rh defined by (2121). To pass to the second line in (4444) we have used the uniform bound (4242)
on }uh}ε,h and the sequential consistency (2222) of Gk

s,h. Applying the previous relation with τ P
C8c pΩ;Rdˆdsymq leads to

ş
Ω
G : τ `u ¨ p∇¨τ q “ 0, thus G “∇su in the sense of distributions on Ω. As

a result, owing to the isomorphism of Hilbert spaces between H1pΩ;Rdq and tv P L2pΩ;Rdq |∇sv P
L2pΩ;Rdˆdsymqu proved in [2424, Theorem 3.1], we infer that u P H1pΩ;Rdq. Using again (4444) with
τ P H1pΩ;Rdˆdsymq and integrating by parts, we obtain

ş
Γ
γpuq ¨ γnpτ q “ 0 with γpuq denoting the

trace of u. As the set tγnpτ q|Γ : τ P H1pΩ;Rdˆdsymqu is dense in L2pΓ;Rdq, we deduce that γpuq “ 0
on Γ. In conclusion, with convergences up to a subsequence,

u P H1
0 pΩ;Rdq, uh Ñ u strongly in LqpΩ;Rdq, and Gk

s,huh Ñ∇su weakly in L2pΩ;Rdˆdq.

Step 3: Identification of the limit. Let us now prove that u is a solution to (1111). The growth
property (2c2c) on σ and the bound on p}Gk

s,huh}qhPH ensure that the sequence pσp¨,Gk
s,huhqqhPH

is bounded in L2pΩ;Rdˆdsymq. Hence, there exists η P L2pΩ;Rdˆdsymq such that, up to a subsequence as
hÑ 0,

σp¨,Gk
s,huhq Ñ η weakly in L2pΩ;Rdˆdq. (45)
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Plugging into (2424) vh “ Ikhφ, with φ P C8c pΩ;Rdq, gives
ż

Ω

σp¨,Gk
s,huhq : Gk

s,hI
k
hφ “

ż

Ω

f ¨ πkhφ´ shpuh, Ikhφq, (46)

with πkh denoting the L2-projector on the broken polynomial spaces PkpTh;Rdq and sh defined by (2626).
Using the Cauchy–Schwarz inequality followed by the norm equivalence (2828) to bound the first factor,
we infer

|shpuh, Ikhφq| ď shpuh,uhq1{2shpIkhφ, Ikhφq1{2 ď }uh}ε,hshpIkhφ, Ikhφq1{2. (47)

It was proved in [1717, Eq. (35)] using the optimal approximation properties of rk`1
T IkT that it holds

for all h P H, all T P Th, all v P Hk`2pT ;Rdq, and all F P FT that

h
´1{2
F }∆k

TF I
k
Tv}F À hk`1

T }v}Hk`2pT ;Rdq, (48)

with ∆k
TF defined by (2727). As a consequence, recalling the definition (2626) of sh, we have the following

convergence result:

@v P H1pΩ;Rdq XH2pTh;Rdq, lim
hÑ0

shpIkhv , Ikhvq “ 0. (49)

Recalling the a priori bound (4242) on the discrete solution and the convergence property (4949), it follows
from (4747) that |shpuh, Ikhφq| Ñ 0 as h Ñ 0. Additionally, by the approximation property (13a13a) of
the L2-projector, one has πkhφ Ñ φ strongly in L2pΩ;Rdq and, by virtue of Proposition 77, that
Gk

s,hI
k
hφÑ∇sφ strongly in L2pΩ;Rdˆdq. Thus, we can pass to the limit hÑ 0 in (4646) and obtain

ż

Ω

η : ∇sφ “
ż

Ω

f ¨ φ. (50)

By density of C8c pΩ;Rdq in H1
0 pΩ;Rdq, this relation still holds if φ P H1

0 pΩ;Rdq. On the other hand,
plugging vh “ uh into (2424) and using the fact that shpuh,uhq ě 0, we obtain

Th :“
ż

Ω

σp¨,Gk
s,huhq : Gk

s,huh ď
ż

Ω

f ¨ uh.

Thus, using the previous bound, the strong convergence uh Ñ u, and (5050), it is inferred that

lim
hÑ0

Th ď
ż

Ω

f ¨ u “
ż

Ω

η : ∇su. (51)

We now use the monotonicity assumption on σ and the Minty trick [3333] to prove that η “ σp¨,∇suq.
Let Λ P L2pΩ;Rdˆdq and write, using the monotonicity (2e2e) of σ , the convergence (4545) of σp¨,Gk

s,huhq,
and the bound (5151),

0 ď lim
hÑ0

ˆż

Ω

pσp¨,Gk
s,huhq ´ σp¨,Λqq : pGk

s,huh ´Λq
˙
ď
ż

Ω

pη ´ σp¨,Λqq : p∇su ´Λq. (52)

Applying the previous relation with Λ “∇su ˘ t∇sv , for t ą 0 and v P H1
0 pΩ;Rdq, and dividing by

t, leads to

0 ď ˘
ż

Ω

pη ´ σp¨,∇su ¯ t∇svqq : ∇sv .

Owing to the growth property (2c2c) and the Caratheodory property (2a2a) of σ , we can let t Ñ 0
and pass the limit inside the integral and then inside the argument of σ . In conclusion, for all
v P H1

0 pΩ;Rdq, we infer
ż

Ω

σp¨,∇suq : ∇sv “
ż

Ω

η : ∇sv “
ż

Ω

f ¨ v ,

where we have used (5050) with φ “ v in order to obtain the second equality. The above equation
shows that η “ σp¨,∇suq and that u solves (1111).
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Step 4: Strong convergence. We prove that if σ is strictly monotone then Gk
s,huh Ñ ∇su

strongly in L2pΩ;Rdˆdq. We define the function Dh : Ω Ñ R such that

Dh :“ pσp¨,Gk
s,huhq ´ σp¨,∇suqq : pGk

s,huh ´∇suq.
For all h P H, the function Dh is non-negative as a result of the monotonicity property (2e2e) and,
by (5252) with Λ “∇su, it is inferred that limhÑ0

ş
Ω
Dh “ 0. Hence, pDhqhPH converges to 0 in L1pΩq

and, therefore, also almost everywhere on Ω up to a subsequence. Let us take x P Ω such that the
above mentioned convergence hold at x. Developing the products in Dh and using the coercivity and
growth properties (2d2d) and (2c2c) of σ one has

Dhpxq ě σ}Gk
s,huhpxq}2dˆd ´ 2σ}Gk

s,huhpxq}dˆd}∇supxq}dˆd ` σ}∇supxq}2dˆd.

Since the right hand side is quadratic in }Gk
s,huhpxq}dˆd and pDhpxqqhPH is bounded, we deduce that

also pGk
s,huhpxqqhPH is bounded. Passing to the limit in the definition of Dhpxq yields

pσpx,Lxq ´ σpx,∇supxqqq : pLx ´∇supxqq “ 0,

where Lx is an adherence value of pGk
s,huhpxqqhPH. The strict monotonicity assumption forces

Lx “ ∇supxq to be the unique adherence value of pGk
s,huhpxqqhPH and therefore the sequence

converges to this value. As a result

Gk
s,huh Ñ∇su a.e. on Ω. (53)

Using (5151) together with Fatou’s Lemma, we see that

lim
hÑ0

ż

Ω

σp¨,Gk
s,huhq : Gk

s,huh “
ż

Ω

σp¨,∇suq : ∇su.

Moreover, owing to (5353), pσp¨,Gk
s,huhq : Gk

s,huhqhPH is a non-negative sequence converging almost
everywhere on Ω. Using [2121, Lemma 8.4] we see that this sequence also converges in L1pΩq and,
therefore, it is equi-integrable in L1pΩq. Thus, the coercivity (2d2d) of σ ensures that pGk

s,huhqhPH is
equi-integrable in L2pΩ;Rdˆdq and Vitali’s theorem shows that

Gk
s,huh Ñ∇su strongly in L2pΩ;Rdˆdq.

7.3 Error estimate

Proof of Theorem 1515. For the sake of conciseness, throughout the proof we let puh :“ Ikhu and use
the following abridged notations for the constraint field and its approximations:

ς :“ σp¨,∇suq and, for all T P Th, ςT :“ σp¨,Gk
s,TuT q and pςT :“ σp¨,Gk

s,T puT q.
First we want to show that (3131) holds assuming that

}uh ´ puh}ε,h À hk`1
`}u}Hk`2pTh;Rdq ` }ς }Hk`1pTh;Rdˆdq

˘
. (54)

Using the triangle inequality, we obtain

}Gk
s,huh ´∇su} ` shpuh,uhq1{2 ď }Gk

s,hpuh ´ puhq} ` shpuh ´ puh,uh ´ puhq1{2
` }Gk

s,hpuh ´∇su} ` shppuh, puhq1{2.
(55)

Using the norm equivalence (2828) followed by (5454) we obtain for the terms in the first line of (5555)

}Gk
s,hpuh ´ puhq} ` shpuh ´ puh,uh ´ puhq1{2 À hk`1

`}u}Hk`2pTh;Rdq ` }ς }Hk`1pTh;Rdˆdq
˘
.
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For the terms in the second line, using the approximation properties of Gk
s,h resulting from (1818)

together with (13a13a) for the first addend and (4848) for the second, we get

}Gk
s,hpuh ´∇su} ` shppuh, puhq1{2 À hk`1}u}Hk`2pTh;Rdq.

It only remains to prove (5454), which we do in two steps: in Step 1 we prove a basic estimate in terms
of a conformity error, which is then bounded in Step 2.

Step 1: Basic error estimate. Using for all T P Th the strong monotonicity (30b30b) with τ “
Gk

s,T puT and η “ Gk
s,TuT , we infer

}Gk
s,hppuh ´ uhq}2 À

ÿ

TPTh

ż

T

ppςT ´ ςT q : Gk
s,T ppuT ´ uT q.

Owing to the norm equivalence (2828) and the previous bound, we get

}puh ´ uh}2ε,h À
ÿ

TPTh

ż

T

ppςT ´ ςT q : Gk
s,T ppuT ´ uT q ` shppuh ´ uh, puh ´ uhq

“ ahppuh, puh ´ uhq ´
ż

Ω

f ¨ ppuh ´ uhq.

where we have used the discrete problem (2424) to conclude. Hence, dividing by }puh ´ uh}ε,h and
passing to the supremum in the right-hand side, we arrive at the following error estimate:

}puh ´ uh}ε,h À sup
vhPUkh,0, }vh}ε,h“1

Ehpvhq, (56)

with conformity error such that, for all vh P Uk
h,0,

Ehpvhq :“
ÿ

TPTh

ż

T

pςT : Gk
s,TvT ´

ż

Ω

f ¨ vh ` shppuh,vhq. (57)

Step 2: Bound of the conformity error. We bound the quantity Ehpvhq defined above for a
generic vh P Uk

h,0. Denote by T1, T2, and T3 the three addends in the right-hand side of (5757).

Using for all T P Th the definition (1717) of Gk
s,T with τ “ πkTpςT , we have that

T1 “
ÿ

TPTh

˜ż

T

pςT : ∇svT `
ÿ

FPFT

ż

F

πkTpςTnTF ¨ pvF ´ vT q
¸
, (58)

where we have used the fact that ∇svT P Pk´1pT ;Rdˆdq together with the definition (1212) of the
orthogonal projector to cancel πkT in the first term.

On the other hand, using the fact that f “ ´∇¨ς a.e. in Ω and integrating by parts element by
element, we get that

T2 “ ´
ÿ

TPTh

˜ż

T

ς : ∇svT `
ÿ

FPFT

ż

F

ςnTF ¨ pvF ´ vT q
¸
, (59)

where we have additionally used that ς |T1
nT1F ` ς |T2

nT2F “ 0 for all interfaces F Ă BT1 X BT2 and
that vF vanishes on Γ (cf. (2323)) to insert vF into the second term.

Summing (5858) and (5959), taking absolute values, and using the Cauchy–Schwarz inequality to bound
the right-hand side, we infer that

|T1 ` T2| ď
˜ ÿ

TPTh

`}ς ´ pςT }2T ` hT }ς ´ πkTpςT }2BT
˘
¸1{2

}vh}ε,h. (60)
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It only remains to bound the first factor. Let a mesh element T P Th be fixed. Using the Lipschitz
continuity (30a30a) with τ “ Gk

s,T puT and η “∇su and the optimal approximation properties ofGk
s,T I

k
T

resulting from (1818) together with (13a13a) with m “ 1 and s “ k ` 2, leads to

}ς ´ pςT }T À }∇su ´Gk
s,T puT }T À hk`1}u}Hk`2pT ;Rdq, (61)

which provides an estimate for the first term inside the summation in the right-hand side of (6060).
To estimate the second term, we use the triangle inequality, the discrete trace inequality of [1616,
Lemma 1.46], and the boundedness of πkT to write

h
1{2
T }ς ´ πkTpςT }BT À }πkT pς ´ pςT q}T ` h1{2

T }ς ´ πkT ς }BT ď }ς ´ pςT }T ` h1{2
T }ς ´ πkT ς }BT .

The first term in the right-hand side is bounded by (6161). For the second, using the approximation
properties (13b13b) of πkT with m “ 0 and s “ k ` 1, we get h

1{2
T }ς ´ πkT ς }BT À hk`1}ς }Hk`1pT ;Rdˆdq so

that, in conclusion,

h
1{2
T }ς ´ πkTpςT }BT À hk`1

`}u}Hk`2pT ;Rdq ` }ς }Hk`1pT ;Rdˆdq
˘
. (62)

Plugging the estimates (6161) and (6262) into (6060) finally yields

|T1 ` T2| À hk`1
`}u}Hk`2pTh;Rdq ` }ς }Hk`1pTh;Rdˆdq

˘ }vh}ε,h. (63)

It only remains to bound T3 “ shppuh,vhq. Using the Cauchy–Schwarz inequality, the definition (2626)
of sh, the approximation property (4848) of ∆k

TF , and the norm equivalence (2828), we infer

|T3| À
˜ ÿ

TPTh

ÿ

FPFT
h´1
F }∆k

TF puT }2F
¸1{2

shpvh,vhq1{2 À hk`1}u}Hk`2pTh;Rdq}vh}ε,h. (64)

Using (6363) and (6464), we finally get that, for all vh P Uk
h,0,

Ehpvhq À hk`1
`}u}Hk`2pTh;Rdq ` }ς }Hk`1pTh;Rdˆdq

˘ }vh}ε,h. (65)

Thus, using (6565) to bound the right-hand side of (5656), (5454) follows.

A Technical results

This appendix contains the proofs of two technical results: the approximation properties of the
discrete symmetric gradient Gk

s,h stated in Proposition 77 and the discrete Korn inequality (2929).

A.1 Consistency of the discrete symmetric gradient operator

Proof of Proposition 77. Throughout the proof, we write A À B for A ďMB, where M ą 0 does not
depend on h.

1) Strong consistency. We first assume that v P H2pΩ;Rdq. Owing to the commuting property (1818)
and the approximation property (13a13a) with m “ 1 and s “ 2, it is inferred that }Gk

s,T I
k
Tv´∇sv}T À

h}v}H2pT ;Rdq. Squaring, summing over T P Th, and taking the square root of the resulting inequality
gives

}Gk
s,hI

k
hv ´∇sv} À h}v}H2pΩ;Rdq. (66)

If v P H1pΩ;Rdq we reason by density, namely we take a sequence pvεqεą0 Ă H2pΩ;Rdq that converges
to v in H1pΩ;Rdq as εÑ 0 and, using twice the triangular inequality, we write

}Gk
s,hI

k
hv ´∇sv} ď }Gk

s,hI
k
hpv ´ vεq} ` }Gk

s,hI
k
hvε ´∇svε} ` }∇spv ´ vεq}. (67)
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By (6666), the second term in the right-hand side tends to 0 as h Ñ 0. Moreover, owing to the
commuting property (1818) and the H1-boundedness of πkT , one has

}Gk
s,hI

k
hpv ´ vεq} “

˜ ÿ

TPTh
}πkT∇spv ´ vεq}2T

¸1{2
ď
˜ ÿ

TPTh
}∇spv ´ vεq}2T

¸1{2
ď }∇spv ´ vεq}.

Therefore, taking the supremum limit as h Ñ 0 and then the supremum limit as ε Ñ 0, concludes
the proof of (2020) (notice that the order in which the limits are taken is important).

2) Sequential consistency. In order to prove (2222) we observe that, by the definitions (1919) of Gk
s,h

and (17b17b) of Gk
s,T one has, for all τ P H1pΩ;Rdˆdsymq and all vh P Uk

h,
ż

Ω

Gk
s,hvh : τ “

ÿ

TPTh

ż

T

Gk
s,TvT : τ

“
ÿ

TPTh

ż

T

pGk
s,TvT ´∇svT q : pτ ´ π0

T τ q `
ÿ

TPTh

ż

T

pGk
s,TvT ´∇svT q : π0

T τ `
ÿ

TPTh

ż

T

∇svT : τ

“ T1 `
ÿ

TPTh

ÿ

FPFT

ż

F

pvF ´ vT q ¨ pπ0
T τ qnTF `

ÿ

TPTh

ż

T

∇svT : τ

“ T1 `
ÿ

TPTh

ÿ

FPFT

ż

F

pvF ´ vT q ¨ pπ0
T τ ´ τ qnTF ´

ÿ

TPTh

ż

T

vT ¨ p∇¨τ q `
ÿ

FPFb
h

ż

F

vF ¨ pτnTF q

“ T1 ` T2 ´
ż

Ω

vh ¨ p∇¨τ q `
ż

Γ

vΓ,h ¨ γnpτ q.
(68)

In the fourth line, we used an element-wise integration by parts together with the relation

ÿ

TPTh

ÿ

FPFTXF i
h

ż

F

vF ¨ pτnTF q “
ÿ

FPF i
h

ż

F

vF ¨ pτnT1F ` τnT2F q “ 0,

where for all F P F i
h, T1, T2 P Th are such that F Ă BT1 X BT2. Owing to (6868), the conclusion

follows once we prove that |T1 ` T2| À h}vh}ε,h}τ }H1pΩ;Rdˆdq. By (13a13a) (with m “ 0 and s “ 1) we
have }τ ´ π0

T τ }T À hT }τ }H1pT ;Rdˆdq and thus, using the Cauchy–Schwarz and triangle inequalities
followed by the norm equivalence (2828),

|T1| ď
˜ ÿ

TPTh
}Gk

s,TvT ´∇svT }2T
¸1{2 ˜ ÿ

TPTh
}τ ´ π0

T τ }2T
¸1{2

À h
´
}Gk

s,hvh}2 ` }vh}2ε,h
¯1{2 }τ }H1pΩ;Rdˆdq À h}vh}ε,h}τ }H1pΩ;Rdˆdq.

(69)

In a similar way, we obtain an upper bound for T2. By (13b13b) (with m “ 0 and s “ 1), for all F P FT ,
we have }τ ´ π0

T τ }F À h
1{2
T }τ }H1pT ;Rdˆdq À h

1{2
F }τ }H1pT ;Rdˆdq and thus, using the Cauchy–Schwarz

inequality,

|T2| À
ÿ

TPTh

ÿ

FPFT
h

1{2
F }vF ´ vT }F }τ }H1pT ;Rdˆdq À h}vh}ε,h}τ }H1pΩ;Rdˆdq. (70)

Owing to (6969) and (7070), the triangle inequality |T1 ` T2| ď |T1| ` |T2| yields the conclusion.

A.2 A discrete Korn inequality

Proposition 19 (Discrete Korn inequality). Assume that the mesh further verifies the assumption
of [77, Theorem 4.2] if d “ 2 and [77, Theorem 5.2] if d “ 3. Then, the discrete Korn inequality (2929)
holds.
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Proof. Using the broken Korn inequality [77, Eq. (1.22)] on H1pTh;Rdq followed by the Cauchy–
Schwarz inequality, one has

}vh}2 ` }∇hvh}2 À }∇s,hvh}2 `
ÿ

FPF i
h

h´1
F }rvhsF }2F ` sup

mPP1pTh;Rdq, }γnpmq}Γ“1

ˆż

Γ

γpvhq ¨ γnpmq
˙2

À }∇s,hvh}2 `
ÿ

FPF i
h

h´1
F }rvhsF }2F `

ÿ

FPFb
h

}vh|F }2F .

(71)
For an interface F P FT1

X FT2
, we have introduced the jump rvhsF :“ vT1

´ vT2
. Thus, using the

triangle inequality, we get }rvhsF }F ď }vF ´vT1
}F `}vF ´vT2

}F . For a boundary face F P Fb
h such

that F P FT XFb
h for some T P Th we have, on the other hand, }vh|F }F “ }vF ´ vT }F since vF ” 0

(cf. (2323)). Using these relations in the right-hand side of (7171) and rearranging the sums leads to

}vh}2 ` }∇hvh}2 À
ÿ

TPTh

¨
˝}∇svT }2T `

ÿ

FPFTXF i
h

h´1
F }vF ´ vT }2F

˛
‚` h

ÿ

FPFb
h

h´1
F }vF ´ vh|F }2F

À maxt1, dΩu
ÿ

TPTh

˜
}∇svT }2T `

ÿ

FPFT
h´1
F }vF ´ vT }2F

¸
,

where dΩ denotes the diameter of Ω. Owing to the definition (1414) of the discrete strain seminorm,
the latter yields the assertion.
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