A Hybrid High-Order method for nonlinear elasticity

Abstract : In this work we propose and analyze a novel Hybrid High-Order discretization of a class of (linear and) nonlinear elasticity models in the small deformation regime which are of common use in solid mechanics. The proposed method is valid in two and three space dimensions, it supports general meshes including polyhedral elements and nonmatching interfaces, enables arbitrary approximation order, and the resolution cost can be reduced by statically condensing a large subset of the unknowns for linearized versions of the problem. Additionally, the method satisfies a local principle of virtual work inside each mesh element, with interface tractions that obey the law of action and reaction. A complete analysis covering very general stress-strain laws is carried out, and optimal error estimates are proved. Extensive numerical validation on model test problems is also provided on two types of nonlinear models.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2017, 55 (6), pp.2687-2717. 〈10.1137/16M1105943〉
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01539510
Contributeur : Michele Botti <>
Soumis le : vendredi 7 juillet 2017 - 15:20:11
Dernière modification le : dimanche 1 juillet 2018 - 01:14:15
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 07:54:18

Fichier

neh.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Michele Botti, Daniele Di Pietro, Pierre Sochala. A Hybrid High-Order method for nonlinear elasticity. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2017, 55 (6), pp.2687-2717. 〈10.1137/16M1105943〉. 〈hal-01539510v2〉

Partager

Métriques

Consultations de la notice

313

Téléchargements de fichiers

87