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Athena Picarelli∗, Christoph Reisinger∗, and Julen Rotaetxe Arto∗

June 13, 2017

Abstract

We study semi-Lagrangian schemes for the Dirichlet problem for second-order de-
generate elliptic PDEs. Like other wide stencil schemes, these schemes have to be
truncated near the boundaries to avoid “over-stepping”. The various modifications
proposed in the literature lead to either reduced consistency orders for those points, or
even a loss of consistency with the differential operator in the usual sense. We propose
a local mesh refinement strategy near domain boundaries which achieves a uniform
order of consistency up to the boundary in the first case, and in both cases reduces
the width of the region where overstepping occurs, so that the practically observed
convergence order is unaffected by overstepping. We demonstrate this numerically for
a linear parabolic equation and a second order HJB equation.

1 Introduction

In this paper, we investigate the convergence behaviour of semi-Lagrangian schemes for
second order degenerate elliptic equations on bounded domains.

For concreteness, we consider the Hamilton-Jacobi-Bellman (HJB) equation

ut(t, x) + sup
α∈A
{−Lα[u](t, x)− cα(t, x)u(t, x)− fα(t, x)} = 0, (t, x) ∈ (0, T ]× Ω, (1)

u(0, x) = ψ(0, x), x ∈ Ω̄, (2)

u(t, x) = ψ(t, x), (t, x) ∈ (0, T ]× ∂Ω, (3)

where QT := (0, T ]× Ω̄ with Ω̄ := Ω ∪ ∂Ω ⊆ Rd, A is a compact set,

Lα[u](t, x) = tr[aα(t, x)D2u(t, x)] + bα(t, x)Du(t, x) (4)

is a second order differential operator, and the known function ψ contains the initial and
spatial boundary values.

Linear parabolic equations are a special case where |A| = 1, while fully-nonlinear
equations of Isaacs-type are written as min max problems. The construction of the scheme
in this paper is analogous in both of these cases.
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The coefficients aα = 1
2σ

ασα,T , bα, cα, fα, and the data ψ in (1) take their values,
respectively, in Sd, the space of d × d symmetric matrices, Rd, R, R, and R, σα ∈ Rd×P ,
such that aα is positive semi-definite. We assume the usual well-posedness conditions,
i.e. Lipschitz continuity of the coefficients in x uniformly in α, Hölder continuity with
exponent 1

2 in time and continuity in α for each (t, x) ∈ QT [12]. This guarantees existence
and uniqueness of the solution in the viscosity sense [7] as well as a comparison principle.

In this paper, we focus on semi-Lagrangian schemes for the approximation of (1)–(3)
as introduced in [6, 14] and analysed more recently in [5, 8, 9, 11]. For convenience of the
reader and to introduce the notation, we briefly describe the specific scheme used here.

Following loosely [8], we define a non-degenerate polyhedral coverage C = {Cj}j∈J of
Ω̄, where J is the index set of the cells. The elements of the set C are chosen to satisfy

int(Cj ∩ Ci) = ∅, ∀ i 6= j,⋃
j∈J

Cj ⊇ Ω̄,

ν∆x ≤ sup
j∈J
{diamBCj} ≤ sup

j∈J
{diamCj} ≤ ∆x,

for some ν ∈ (0, 1), where ‘int’ and ‘diam’ are the interior and the diameter, and BCj is
the greatest ball contained in Cj .

We define the subset of interior cells C = {C ∈ C : C ⊆ Ω̄} as the ones fully contained
in the domain, and the nodes N := {xi}i∈I as the set of all the vertices of elements in C,
where we denote by I the index set of the nodes with Nx := |N |.

We assume non-negative basis functions {wi(·) : i ∈ I} associated with the mesh nodes,
such that for any continuous function φ : Ω→ R

[I∆xφ](x) =
∑
i∈I

φ(xi)wi(x), (5)

for all x ∈ Ω, xi ∈ N . For simplicity, we focus our attention occasionally on cuboid
meshes and multilinear interpolants, defined by the standard piecewise multilinear basis.
The interpolation error is then O

(
∆x2

)
for sufficiently smooth functions, and this is the

only property we will use for the consistency analysis. The non-negativity of the basis
is required only for the monotonicity of the interpolation operation and subsequently for
convergence of the scheme to the viscosity solution.

Writing σα = (σα1 , σ
α
2 , . . . , σ

α
P ) ∈ Rd×P , where σαp ∈ Rd for p ∈ {1, 2, . . . , P} is the p-th

column of σα, by the usual arguments,

1

2
tr
[
σασα,TD2φ(x)

]
=

1

2

P∑
p=1

φ(x+ kσαp )− 2φ(x) + φ(x− kσαp )

k2
+O(k2), (6)

bαDφ(x) =
φ(x+ k2bα)− φ(x)

k2
+O(k2), (7)

for k > 0 and any smooth function φ. For brevity we write bα ≡ bα(t, x) and σα ≡ σα(t, x).
When these approximations are used for points in N , the displaced points x + k2bα and
x ± kσαp do not generally coincide with nodes in N . Then, φ is approximated by its
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interpolant I∆xφ. In the case of linear basis functions, the resulting scheme is referred to
as the Linear Interpolation Semi-Lagrangian (LISL) scheme.

We ignore for the time being the situation where x+ k2bα or x± kσαp lies outside any
of the mesh cells (“oversteps”), which of course will be the focus of the main body of the
article.

The consistency error is easily seen to be (see [8])

O
(
k2 +

∆x2

k2

)
.

The first term is the consistency error for the finite difference approximation of the first
and second order derivatives in (6) and (7), whereas the second term corresponds to the
linear interpolation error when replacing φ by its interpolant in (6) and (7). The optimal
choice k =

√
∆x makes the consistency error proportional to ∆x.

Following the notation in [8], the LISL approximations to (4) can be expressed as

Lα∆x[I∆xφ](t, x) :=

M∑
p=1

[I∆xφ](t, x+ yα,+p (t, x))− 2φ(t, x) + [I∆xφ](t, x+ yα,−p (t, x))

2∆x
, (8)

for x ∈ N , and some M ≥ 1. The functions yα,±· (t, x) determine the stencil of the scheme
at (t, x).

Different spatial schemes can be obtained depending on the values taken by M and
yα,±p (t, x) in (8). In the following, we study specifically the approximation in [8] with

yα,±p = ±
√

∆xσαp , p ≤ P,
yα,±P+1 = ∆xbα, M = P + 1.

Other schemes are defined similarly. The scheme above has more flexibility in defining
consistent boundary modifications, as explained in [16].

Finally, a fully discrete scheme is obtained by combining (8) with a time stepping
scheme. We introduce a time mesh T∆t = {tn : 0 ≤ n ≤ Nt} ⊆ [0, T ], for simplicity with
tn = n∆t, i.e. with uniform step size ∆t > 0. We then define the standard θ-scheme by

u(tn, x)− u(tn−1, x)

∆t
− inf
α∈A
{θLα∆x[I∆xu](tn−1, x) + (1− θ)Lα∆x[I∆xu](tn, x)} = 0, (9)

where we have set c = f = 0 in (1) for simplicity. In the tests we will focus on θ = 0 (explicit
Euler) and θ = 1 (implicit Euler). Although the scheme can in principle be defined in this
way for all x ∈ Ω, we restrict the scheme to x ∈ N .

2 Domain overstepping and stencil truncation

We now focus on the boundary of the domain and the definition of the scheme there. We
take Ω ⊂ Rd for d ≥ 1 a general domain with curved boundary, but for simplicity illustrate
the method for C defined by a Cartesian mesh on Rd with uniform mesh width ∆x. Then
we choose C and N as explained in Section 1. See Figure 1.
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a

b

Ω

C C

Figure 1: An elliptical domain and a mesh made of square cells. In situation a, x +
yα,±p (t, x) /∈ Ω̄, while in situation b, x + yα,±p (t, x) ∈ Ω̄, but the cell it is contained in has
vertices outside Ω̄. The modified stencil in Sections 2.2 –2.4 uses values from the boundary.

2.1 Overstepping

Now consider a mesh node x ∈ N in the vicinity of the boundary. In the two situations
sketched in Fig. 1 the interpolation at the point x+yα,±p (t, x) fails for given t, α and p. We
say in these cases that the stencil “oversteps”. We now discuss several possibilities to deal
with these situations. They are all based on a local modification of the step yα,±p (t, x) and
of k, combined in some cases with a modification of the interpolation weights.

Where the stencil oversteps, we define

ŷα,±p (t, x) = µα,±p (t, x)yα,±p (t, x),

where

µα,±p (t, x) = min
{
µ ≥ 0 : x+ µyα,±p (t, x) ∈ ∂Ω

}
. (10)

In case a in Fig. 1 this means µ < 1, while in case b we have µ > 1.

Remark 2.1. On rectangular domains, the elements of the Cartesian mesh cover exactly
the domain and case b does not occur. Moreover, interior mesh points cannot be arbitrarily
close to the boundary, but are always at least ∆x away. This can be enforced in the general
case by removing the outermost layer of cells in C, such that again a distance of ∆x between
non-boundary mesh points and the domain boundary is ensured. This allows the derivation
of CFL conditions for the explicit schemes as given below (Proposition 2.2 for the scheme
in Section 2.4 and similar for other schemes).
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2.2 Constant extrapolation

When the stencil oversteps, constant extrapolation simply uses instead the value at the
boundary in the direction of the stencil step. This can be written as

L̄α∆x[I∆xφ](t, x) :=

M∑
p=1

[I∆xφ](t, x+ ŷα,+p (t, x))− 2φ(t, x) + [I∆xφ](t, x+ ŷα,−p (t, x))

2∆x
. (11)

Note that the scheme is generally not consistent up to the boundary. A proof of convergence
is not available to the best of our knowledge.

2.3 Stencil cropping

The scheme in [10] shrinks the stencil so that it does not overstep. This corresponds to

L̃α∆x[I∆xφ](t, x) :=

M∑
p=1

[I∆xφ](t, x+ ỹα,+p (t, x))− 2φ(t, x) + [I∆xφ](t, x+ ỹα,−p (t, x))

2k̃2
,

(12)

where
ỹα,±p = ±k̃σαp ∀p = 1 . . . P, ỹα,±P+1 = k̃2bα

and 0 < k̃ ≡ k̃(t, x, α) = θ∆x for θ ∈ (0, 1] is the biggest step such that x+ ỹα,±p ∈ Ω̄, ∀p =
1 . . .M .

Generally this means the scheme is not consistent up to the boundary in the sense of
[3], however, [10] can still prove a generalised consistency condition and convergence for
viscosity solutions on convex domains.

2.4 Stencil truncation

In contrast to the above two schemes, the one in [16] is designed to be consistent in the
whole of the domain. Hence, the objective is to find truncated or extended stencil vectors
ŷα,±p (t, x) and corresponding finite difference weights Aαp ≡ Aαp (t, x) and Bα

p ≡ Bα
p (t, x),

such that x+ ŷα,±p (t, x) ∈ ∂Ω and the truncated scheme

L̂α∆x[I∆xφ](t, x) :=

M∑
p=1

Aαp [I∆xφ](t, x+ ŷα,+p (t, x))− (Aαp +Bα
p )φ(t, x) +Bα

p [I∆xφ](t, x+ ŷα,−p (t, x))

2∆x
(13)

is a consistent approximation of (4) as ∆x → 0. If the stencil does not overstep, we have
that ŷα,±p (t, x) = yα,±p (t, x) and Aαp = Bα

p = 1.

For all p ∈ [[1, P + 1]], let µα,±p ∈ [0, 1] be as in 10, then define

AαP+1 = Bα
P+1 =

1

µα,+P+1

(
=

1

µα,−P+1

)
(14)
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and, for p ∈ [[1, P ]],

Aαp =
2

(µα,+p )2 + µα,+p µα,−p
, Bα

p =
2

(µα,−p )2 + µα,−p µα,+p

. (15)

Proposition 2.1 (Consistency, see Corollary 2.3 in [16]). For the truncated scheme, (13),
(14) and (15), the following holds: The local consistency error for points with truncation
and p 6= P + 1 is O(

√
∆x) if only one side of the stencil oversteps, and O(1) if both sides

overstep.

Remark 2.2. The scheme can be made consistent (of order O(∆x)) for the case where
both sides of the stencil overstep by using the exact boundary value in the truncated scheme
(13) instead of the interpolant. We therefore assume in the following that this is done.

Proposition 2.2 (Monotonicity and stability, see Corollary 2.5 in [16]). In the case of
overstepping and θ < 1 in (9), monotonicity requires that ∆t ≤ C1∆x3/2 if only one side
of the diffusion stencils oversteps, or ∆t ≤ C2∆x2 if both sides overstep. However, if the
stencil is not truncated, the positivity condition remains as in [8], that is ∆t ≤ C3∆x,
where C1, C2, C3 > 0 are sufficiently small constants depending on the coefficients σα, bα

and cα, but independent of ∆x and ∆t.

As the scheme is consistent up to the boundary in the classical sense, convergence
follows directly from the framework in [3].

3 Local mesh refinement

We now consider a refinement of the mesh in boundary layers of width O(
√

∆x) where
the semi-Lagrangian scheme oversteps. The objective is to improve the local consistency
error of the truncated stencil in Section 2.4 from O(

√
∆x) to O(∆x), and for all schemes

to reduce the width of the region where the stencil oversteps from O(
√

∆x) to O(∆x).
For this purpose, we combine a local refinement of the mesh with appropriate changes

to the stencil step k in (6) in the region near the boundary.

3.1 General mesh construction

Let us consider a mesh defined by cells C and Nx nodes N ⊂ Ω with refinement parameter
∆x > 0, as in Section 1. For simplicity, we assume that σα(t, x) = σ(x).

Since it is primarily the overstepping of the diffusion stencil that reduces the local
truncation error, we split N and C into three subsets. We will subsequently define new
step sizes ki for nodes in Ni, and a refinement with mesh size hi for the cells in Ci.

Definition 3.1. Define

C1 = {C ∈ C : ∃x ∈ C, θ ∈ [0, 1], 1 ≤ p ≤ P : x+ θ
√

∆xσp(x) 6∈ Ω or x− θ
√

∆xσp(x) 6∈ Ω}∗

C2 = {C ∈ C\C1 : ∃x ∈ C1, 1 ≤ p ≤ P : x+ k1σp(x) ∈ C or x− k1σp(x) ∈ C}
C3 = C\(C1 ∪ C2).
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Then define N1 = C1 ∩N the nodes of elements in C1, N2 = (C2 ∩N )\N1, the nodes of
elements in C2 which are not already in N1, and N3 = N\(N1 ∪N2).

Therefore, C = C1 ∪ C2 ∪ C3 with Ci ∩ Cj = ∅ for i 6= j and i, j ∈ {1, 2, 3}, and similarly
for the nodes. This ensures that if k1, k2 ≤ k, all nodes that overstep are contained in N1,
and that no node in C1 steps into C3 after refinement.

We emphasise the need for the three region construction, with an overlapping layer C2

of a fine mesh (as in C1) and wide stencil (as in C3). This prevents the situation where a
narrow stencil steps into the coarse mesh, which would spoil consistency.

Next, we refine the mesh elements in C1 and C2 with mesh-refinement parameter pro-
portional to h1 = h2 ∼ ∆xγ , where γ > 1 is a parameter to be determined so that the
resulting local consistency error is at least O(∆x). After refinement, we remove the cells
which are not fully in Ω to create a new set of cells C′ with vertices N ′. By refining C and
then pruning the refined cells outside Ω, the space between C and ∂Ω gets refined, which
would not happen if we simply refined C.

To determine γ, we procede in reverse order starting with C3. As the stencil may step
into the finer regions C1 and C2, the consistency error there is

O
(
k2

3 +
h2

1

k2
3

+
h2

2

k2
3

+
h2

3

k2
3

)
= O

(
k2

3 +
∆x2

k2
3

+
∆x2γ

k2
3

)
,

where the first term corresponds to the consistency error of the finite difference approxi-
mation of the second order derivative and the last terms to the interpolation error in the
original and the refined regions respectively. As γ ≥ 1, we do not modify the stencil step,
i.e. k3 ∼ O(

√
∆x). Similarly, the local consistency error for nodes N2 after refinement is

O
(
k2

2 +
h2

1

k2
2

+
h2

2

k2
2

+
h2

3

k2
2

)
= O

(
k2

2 +
∆x2

k2
2

+
∆x2γ

k2
2

)
.

Choosing k2 ∼ O(
√

∆x) the local consistency error is O(∆x), for all γ ≥ 1.
Finally, the local consistency error for points in C1 after refinement is

O
(
k1 +

h2
1

k2
1

+
h2

2

k2
1

)
= O

(
k1 +

∆x2γ

k2
1

)
,

where we have assumed that the exact boundary value is used in the case of stencil
truncation (see Remark 2.2). Choosing γ = 3

2 and k1 ∼ O(∆x) the truncation error is
O(∆x).

Figure 2 shows a locally refined mesh and describes the effects of the refinement.
Figure 2 gives a distorted view for illustration purposes, where in reality C2 is substan-

tially smaller than C1, and C1 is substantially smaller than C3.

Remark 3.1. Figure 2 shows that the local refinement leaves ‘hanging nodes’ at the
interface between C2 and C3. These nodes do not pose a problem for semi-Lagrangian
discretizations. For the interpolation, the ‘hanging nodes’ are not used for stencil points
with any neighbours belonging to C3.

∗Extrapolation into Ω\C is not problematic as the distance between C and ∂Ω is O(∆x).
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d

e

a

b

c

C1

C2

C3

Figure 2: Locally refined mesh. The regions in Definition 3.1 are shown in different styles:
coarse black mesh for C1, fine black mesh for C2 and fine white mesh for C3. Shown dashed
is also the original coarse mesh. The stencil is shrunk for the nodes a and b from Figure
1 earlier, which both lie in C3, and does not overstep anymore. The stencil for the new
node c oversteps in both ways that a and b did before refinement, but by a lesser distance.
The stencil is not shrunk for nodes in C1 and C2. Point d illustrates the situation where
the larger stencil steps from region C3 into the finer region C2, which can only improve the
interpolation error. In e, the larger stencil steps from region C2 into both the fine region
C1 and the coarse region C3. The latter highlights the importance of the three-region
construction, which guarantees that no fine stencil steps into the coarse mesh. This would
make the scheme inconsistent for those points.
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3.2 Mesh construction in one dimension

In our numerical tests we focus on one-dimensional examples, i.e. the case Ω = (xmin, xmax) ⊂
R. The construction of the refined mesh is simpler in this case and we report here for com-
pleteness its main steps as implemented in the code used in Section 4.

Let
∆max =

√
∆x‖σ‖∞,

where ‖σ‖∞ ≡ sup(t,x,α)∈[0,T ]×Ω×A |σα(t, x)|, denote the maximum step of the SL scheme
subject to the volatility σ. Defining a global maximum step is not strictly necessary and
it is only done to make the a priori definition of the sets Ci, i = 1, 2, 3 easier. The width
of C2 especially is not optimal here, but this does not affect the complexity significantly.
Define

xi1 = min {xi ∈ N : xmin + ∆max ≤ xi} , xi2 = min {xi ∈ N : xi1 + ∆max ≤ xi}
xi3 = max {xi ∈ N : xmax −∆max ≥ xi} , xi4 = max {xi ∈ N : xi3 −∆max ≥ xi} .

Then, the sets Ci are defined as follows:

C1 = [xmin, xi1 ] ∪ [xi3 , xmax], C2 = (xi1 , xi2 ] ∪ [xi4 , xi3), C3 = (xi2 , xi4).

At this point a refinement of the mesh proportional to ∆x3/2 is considered in C1 ∪ C2 (see
Figure 3) defining the new mesh N ′.

xmin xi1 xi2 xi4 xi3 xmax

N ∩ C1 N ∩ C2 N ∩ C3

xmin + ∆max xi1 + ∆max xi3 −∆max xmax −∆max

xmin xi1 xi2 xi4 xi3 xmax

N ′ ∩ C1 N ′ ∩ C2 N ′ ∩ C3

Figure 3: Mesh refinement in one dimension. Definition of sets Ci, i = 1, 2, 3 (top) and
refined mesh (bottom).

Given that the width of the stencil is of length O(
√

∆x), the cardinality of N1 ∪ N2 is
|N1 ∩ N2| ∼ O(

√
Nx). Moreover, after the refinement, the number of nodes in this region

of width O(
√

∆x) is O(Nx).
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3.3 Properties of the refined scheme

Let ∆t,∆x > 0 be the time and space mesh refinement parameters and T∆t ⊆ [0, T ] and
C ⊆ Ω ⊆ C ⊂ Rd as above, with Nt = |T∆t| − 1 and Nx = |N | = O(∆x−d).

The cardinality of the refined mesh N ′ in d dimensions is still O(Nx) = O(∆x−d).
Moreover, the analysis in Section 3.1 gives the following result.

Proposition 3.1 (Complexity and consistency). If we define sets of mesh cells according
to Definition 3.1 and further refine the ones in C1 ∪ C2 with mesh refinement parameter
O(∆x3/2), the complexity of the method is O(NtNx) = O(∆t−1∆x−d). If for the nodes
requiring truncation in N1 we use k1 ∼ O(∆x), then, globally the consistency error of this
modified scheme becomes

|1− 2θ|
2
|φtt|0∆t+ C

(
∆t2|φttt|0 + ∆x(|D2φ|0 + |D3φ|0 + |D4φ|0)

)
. (16)

As shown in Corollary 2.2, an undesirable side-effect of stencil truncation is the wors-
ening of the CFL condition of the scheme. The local refinement of the grid results in a
stricter CFL condition compared to the one in Corollary 2.2, as shown in the following.

Proposition 3.2 (Monotonicity and stability). Additionally, provided that all the nodes
are O(∆x3/2) away from the boundary of the domain, a scheme with θ < 1 requires ∆t ∼
O(∆x5/2) if only one side of the stencil oversteps or ∆t ∼ O(∆x3) if both sides of the
stencil overstep.

Remark 3.2. Similar to Remark 2.1, ensuring that all nodes in the mesh are at least
O(∆x3/2) away from the boundary of the domain can be achieved by removing the outer-
most layer of the cells inside the domain after refinement.

4 Numerical tests

We consider the HJB equation in a bounded set Ω := (xmin, xmax). Denoted by Nx the
number of mesh points, in one dimension,

∆x =
xmax − xmin

Nx − 1
.

Let (xj) be a uniform mesh on [xmin, xmax] with xj = xmin + j∆x, j = 1, . . . , Nx and
tn = n∆t, ∆t = T

Nt
.

We are going to test both the explicit and the implicit scheme (θ = 0 and θ = 1, respectively,
in (9)).

4.1 Test 1: Linear equation

We first test the scheme on a linear second order equation since, already in this simplified
case, the main features of the scheme can be observed. In particular, we consider a classical
Black-Scholes equation in Ω with a smooth initial datum:

ut − 1
2(σx)2uxx − (bx)ux = f(t, x), t ∈ (0, T ), x ∈ Ω, (17)

u(t, x) = v(t, x), t ∈ (0, T ), x ∈ ∂Ω, (18)

u(0, x) = sin(πx), x ∈ Ω, (19)
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Figure 4: (Test 1) Plot of the value function at time t = 0 (left) and t = T (right).

with

f(t, x) =
(1

2
(1− t)(πσx)2 − 1

)
sin

(
π

(
x− t

2

))
− (1− t)

(π
2

+ πbx
)

cos

(
π

(
x− t

2

))
.

The equation has the exact solution:

v(t, x) = (1− t) sin

(
π

(
x− t

2

))
.

xmin xmax b σ T

−1 1 2 1 0.5

Table 1: Parameters used in numerical experiments for Test 1.

Nx
Nt = Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 3.37E-01 - 2.23E-01 - 2.40E-01 -
21 3.68E-01 -0.13 1.30E-01 0.78 1.30E-01 0.89
41 1.82E+04 -15.59 7.16E-02 0.86 7.03E-02 0.88
81 6.53E+16 -41.71 3.73E-02 0.94 3.66E-02 0.94
161 2.20E+48 -104.73 1.89E-02 0.98 1.86E-02 0.98
321 8.83E+123 -251.15 9.48E-03 1.00 9.37E-03 0.99
641 4.96E+299 -583.83 4.72E-03 1.01 4.68E-03 1.00
1281 0.00E+00 NaN 2.35E-03 1.01 2.34E-03 1.00

Table 2: (Test 1) Explicit scheme. Truncated stencil without mesh refinement.

For our numerical tests we used the parameters in Table 1. The initial condition and
the solution at terminal time are shown in Figure 4. The necessity of the CFL condition for

11



Nx
Nt = Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 3.91E+01 - 1.61E-01 - 1.77E-01 -
21 2.52E+08 -22.62 8.90E-02 0.86 8.90E-02 1.00
41 2.11E+27 -62.86 4.83E+63 -215.05 5.90E-02 0.59
81 2.55E+74 -156.40 0.00E+00 NaN 3.20E-02 0.88
161 4.57E+187 -376.22 0.00E+00 NaN 1.74E-02 0.88
321 0.00E+00 NaN 0.00E+00 NaN 9.01E-03 0.95
641 0.00E+00 NaN 0.00E+00 NaN 4.57E-03 0.98
1281 0.00E+00 NaN 0.00E+00 NaN 2.30E-03 0.99

Table 3: (Test 1) Explicit scheme. Truncated stencil with mesh refinement.

Nx
Nt = Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 4.00E-01 - 1.41E-01 - 1.52E-01 -
21 1.05E-01 1.09 1.16E-01 0.28 1.16E-01 0.39
41 7.52E-02 0.48 8.80E-02 0.40 8.86E-02 0.39
81 6.31E-02 0.25 6.73E-02 0.39 6.75E-02 0.39
161 5.38E-02 0.23 5.61E-02 0.26 5.62E-02 0.27
321 4.33E-02 0.31 4.43E-02 0.34 4.43E-02 0.34
641 3.38E-02 0.36 3.42E-02 0.37 3.42E-02 0.37
1281 2.61E-02 0.38 2.62E-02 0.38 2.62E-02 0.38

Table 4: (Test 1) Explicit scheme. Constant extrapolation of boundary conditions without
mesh refinement.

Nx
Nt = Nx−1

2 Nt = b(Nx − 1)3/2c Nt = b (Nx−1)5/2

20 c
L∞-error rate L∞-error rate L∞-error rate

11 3.40E+02 - 1.27E-01 - 1.52E-01 -
21 3.11E+08 -19.80 6.12E-02 1.06 6.83E-02 1.16
41 2.12E+24 -52.60 4.75E-02 0.37 4.92E-02 0.47
81 2.48E+62 -126.46 3.61E+90 -305.22 2.62E-02 0.91
161 1.78E+150 -291.85 0.00E+00 NaN 1.35E-02 0.96
321 3.98E+284 -446.30 0.00E+00 NaN 6.80E-03 0.98
641 0.00E+00 NaN 0.00E+00 NaN 3.37E-03 1.01
1281 0.00E+00 NaN 0.00E+00 NaN 1.70E-03 0.99

Table 5: (Test 1) Explicit scheme. Constant extrapolation of boundary conditions with
mesh refinement.
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Truncated stencil Constant extrapolation

Nx Nt
No refinement With refinement No refinement With refinement
L∞-error rate L∞-error rate L∞-error rate L∞-error rate

21 2 2.15E-01 - 2.15E-01 - 2.15E-01 - 2.15E-01 -
41 4 1.18E-01 0.86 1.21E-01 0.83 1.17E-01 0.88 1.18E-01 0.87
81 8 6.38E-02 0.89 6.43E-02 0.91 8.57E-02 0.45 6.34E-02 0.90
161 16 3.30E-02 0.95 3.31E-02 0.96 6.34E-02 0.43 3.26E-02 0.96
321 32 1.68E-02 0.98 1.69E-02 0.97 4.95E-02 0.36 1.66E-02 0.97
641 64 8.43E-03 0.99 8.52E-03 0.99 3.69E-02 0.42 8.52E-03 0.96
1281 128 4.27E-03 0.98 4.23E-03 1.01 2.72E-02 0.44 4.21E-03 1.01
2561 256 2.13E-03 1.00 2.15E-03 0.97 2.03E-02 0.42 2.11E-03 1.00

Table 6: (Test 1) Implicit scheme.

the explicit schemes (Nt ∼ N3/2
x for the truncated stencil scheme without mesh refinement,

Nt ∼ N
5/2
x for the scheme with mesh refinement) is confirmed by the results in Tables

2 to 5. The mesh refinement has little impact on the performance of the scheme with
truncated stencil (last column of Tables 2 and 3). Clear improvements can be observed if a
constant extrapolation of the boundary conditions is performed outside the domain (Tables
4 and 5). It is worthwhile to recall that in this last case the scheme is not consistent and
the convergence is numerically achieved because consistency is lost only for points within
a distance of

√
∆x of the boundary, and ∆x after mesh refinement. Similar results are

obtained for the implicit scheme (Table 6). Here, no CFL condition is required and this
allows us to take ∆t proportional to ∆x, i.e., Nt proportional to Nx.

4.2 Test 2: Controlled drift-diffusion equation

The second test we propose is a HJB equation with coefficients independent of (t, x):

ut + sup
a1,a2

{
− 1

2a
2uxx − 2aux

}
= 0, t ∈ (0, T ), x ∈ Ω, (20)

u(t, x) = ψ(t, x), t ∈ (0, T ), x ∈ ∂Ω, (21)

u(0, x) = ψ(0, x), x ∈ Ω, (22)

where ψ(0, ·) is defined by

ψ(0, x) =


5x(1 + x)4 if − 1 < x ≤ 0
5x(1− x)4 if 0 ≤ x < 1
0 if |x| ≥ 1.

We use the parameters in Table 7. In order to compare our numerical results we use a
reference numerical solution computed in a larger domain Ω1 = (−5, 5) with zero boundary
conditions, using a second order (in time and space) BDF scheme (see [4]) with Nx =
5121× 5 and Nt = (Nx − 1)/10. The boundary value ψ(t, x) at x = ±1 is obtained using
this reference numerical solution. The initial condition and the solution at terminal time
are shown in Figure 5.
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xmin xmax a1 a2 T

−1 1 0.2 0.6 0.25

Table 7: Parameters used in numerical experiments for Test 2.

Figure 5: (Test 2) Plot of the value function at time t = 0 (left) and t = T (right).

We report here, in Table 8, only the results obtained by the implicit scheme. However,

under the CFL condition Nt ∼ N
5/2
x , similar results can be obtained using the explicit

scheme. The truncated scheme converges with order one (first two columns in Table 8).
The scheme with constant extrapolation of boundary conditions converges with asymptotic
order 1/2 (third column in Table 8) which becomes order 1 applying the mesh refinement
(fourth column in Table 8). We point out that in this example the main contribution to
the error comes from the points where the solution changes concavity (Figure 6), which
correspond to discontinuities in the second order derivative. This explains the almost
absence of differences in Table 8 (columns 1,2,4) and the fact that the order 1/2 in the
third column is recovered after a quite big number of mesh refinements. Figure 6 compares
the error obtained using the constant extrapolation of boundary conditions (left) and the
truncated stencil (right). One can notice that the use of the constant extrapolation creates
some instability at the left hand boundary, that is where such a scheme strongly modifies
the nature of the exact solution outside the computational domain.

4.3 Test 3: Nonsmooth initial data

Let us consider the following problem:

ut + sup
σmin,σmax

{
− 1

2(σx)2uxx

}
− bxux + ru = 0, t ∈ (0, T ), x ∈ Ω, (23)

u(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω, (24)

u(0, x) = ψ(0, x), x ∈ Ω, (25)

where ψ(0, ·) is defined by

ψ(0, x) = max
(
− 2K1|x−K2|+K1, 0

)
14



Truncated stencil Constant extrapolation

Nx Nt
No refinement With refinement No refinement With refinement
L∞-error rate L∞-error rate L∞-error rate L∞-error rate

21 2 2.61E-01 - 2.63E-01 - 2.61E-01 - 2.63E-01 -
41 4 1.75E-01 0.58 1.75E-01 0.58 1.75E-01 0.58 1.75E-01 0.58
81 8 1.05E-01 0.73 1.05E-01 0.73 1.05E-01 0.74 1.05E-01 0.73
161 16 5.62E-02 0.91 5.62E-02 0.91 5.61E-02 0.91 5.61E-02 0.91
321 32 2.88E-02 0.96 2.88E-02 0.96 2.87E-02 0.96 2.88E-02 0.96
641 64 1.41E-02 1.03 1.41E-02 1.03 1.40E-02 1.03 1.41E-02 1.03
1281 128 6.50E-03 1.11 6.50E-03 1.11 1.08E-02 0.38 6.50E-03 1.11
2561 256 3.45E-03 0.91 3.45E-03 0.91 8.58E-03 0.33 3.45E-03 0.91

Table 8: (Test 2) Implicit scheme.

Figure 6: (Test 2) Exact solution (green), numerical solution (blue) and error (red) obtained
with Nx = 161 and Nt = 16 using the constant extrapolation of boundary conditions (left)
and the truncated stencil (right).

with K1,K2 > 0. This type of equations typically arises in financial applications when
pricing options under uncertain volatility model, see [13]. The initial condition ψ(0, ·)
(Figure 7 (left)) has the shape of a butterfly payoff, for which a detailed study of finite
difference numerical approximation has been proposed in [15].
In our numerical tests we use the parameters in Table 9. As in the previous example, in
order to compute errors and rate of convergence, a reference numerical solution computed
using a second order BDF scheme with Nx = 5120 and Nt = (Nx − 1)/10. The initial
condition and the solution at terminal time are shown in Figure 7. The convergence orders
are as previously.

Figure 8 compares the error obtained using the constant extrapolation of boundary
conditions (left) and the truncated stencil (right). The instability at the boundary created
by the constant extrapolation of the boundary conditions is even more evident in this
example.

Last, we test the stencil cropping presented in [10] (see Section 2.3). In order to
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Figure 7: (Test 3) Plot of the value function at time t = 0 (left) and t = T (right).

Figure 8: (Test 3) Exact solution (green), numerical solution (blue) and error (red) obtained
with Nx = 321 and Nt = 32 using the constant extrapolation of boundary conditions (left)
and the truncated stencil (right).
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xmin xmax K1 K2 r b σmin σmax T

0 2 15 1 1 0.1 0.5 0.7 0.25

Table 9: Parameters used in numerical experiments for Test 3.

Truncated stencil Constant extrapolation

Nx Nt
No refinement With refinement No refinement With refinement
L∞-error rate L∞-error rate L∞-error rate L∞-error rate

21 2 1.20E+00 - 1.20E+00 - 1.20E+00 - 1.21E+00 -
41 4 5.71E-01 1.07 5.67E-01 1.08 5.74E-01 1.07 5.69E-01 1.09
81 8 2.91E-01 0.97 2.90E-01 0.97 2.93E-01 0.97 2.90E-01 0.97
161 16 1.48E-01 0.98 1.48E-01 0.97 2.03E-01 0.53 1.48E-01 0.97
321 32 7.51E-02 0.98 7.51E-02 0.98 1.62E-01 0.32 7.52E-02 0.98
641 64 3.77E-02 0.99 3.77E-02 0.99 1.26E-01 0.37 3.77E-02 0.99
1281 128 1.88E-02 1.00 1.88E-02 1.00 9.46E-02 0.41 1.88E-02 1.00
2561 256 9.41E-03 1.00 9.41E-03 1.00 6.88E-02 0.46 9.41E-03 1.00

Table 10: (Test 3) Implicit scheme.

avoid the case where the cropped stencil falls exactly on mesh points (this would make
the scheme consistent since the interpolation would not be performed) we progressively
divide the stencil by π until it fits into the domain Ω. The scheme shows a first order of
convergence even without mesh refinement (Table 11). We observed the same also for the
other examples in this section (not reproduced here). However, since consistency is not
satisfied for those points where the cropping is performed, we cannot expect this to hold
in general and the observed behavior in our tests might also be related to the fact that
our solutions are almost linear close to the boundary, which makes the contribution to the
error coming from the interpolation negligible.

Nx Nt
No refinement With refinement
L∞-error rate L∞-error rate

21 2 1.19E+00 - 1.19E+00 -
41 4 5.72E-01 1.06 5.68E-01 1.07
81 8 2.91E-01 0.97 2.90E-01 0.97
161 16 1.48E-01 0.98 1.48E-01 0.97
321 32 7.52E-02 0.98 7.51E-02 0.98
641 64 3.77E-02 0.99 3.77E-02 0.99
1281 128 1.88E-02 1.00 1.88E-02 1.00
2561 256 9.41E-03 1.00 9.41E-03 1.00

Table 11: (Test 3) Implicit scheme. ‘Cropped’ stencil with and without mesh refinement.
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5 Conclusions

In this paper we have presented and discussed a local mesh refinement for SL schemes
approximating viscosity solutions to second order HJB equations in bounded domains with
Dirichlet boundary conditions. In order to test our mesh refinement, we have considered
different treatments for the ‘overstepping’ phenomena, which typically arise when this kind
of wide stencil schemes is used. When a constant extrapolation of boundary conditions
(Section 2.2) is applied, the local refinement of the mesh improves the observed order
of convergence from order 1/2 to order 1. The scheme remains non-consistent with the
differential operator in the neighborhood of the boundary and the mesh refinement has
only the role of reducing the region of non-consistency. For the scheme with cropped stencil
described in [10] (see also Section 2.3) the tests we performed do not show any benefits
coming from the local mesh refinement since the scheme alone, even if not consistent up
to the boundary, already shows a first order of convergence. The effects of the mesh
refinement on the scheme with truncated stencil defined in [16] (also Section 2.4) consist
in the improvement of the global truncation error from order 1/2 to order 1. Among other
things, this permits to estimate the order of convergence of the scheme using the techniques
in [1, 2, 8]. However, from the numerical point of view, no substancial difference in the
rate of convergence of the scheme is observable, due to the fact that the truncation error
of order

√
∆x of the scheme without mesh refinement only occurs in a region of diameter√

∆x.
In the numerical tests presented in Section 4 only the one-dimensional case was taken

into account. Already in this simple setting the main feature of the scheme and the
effects of the mesh refinement can be clearly observed. Numerical experiments in more
dimensions and a deeper understanding of the numerical instabilities observed when a
constant extrapolation of the boundary conditions is applied are the subject of future
research.
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