N

N

Direct computation of a control vertex position on any
subdivision level
Loic Barthe, Leif Kobbelt

» To cite this version:

Loic Barthe, Leif Kobbelt. Direct computation of a control vertex position on any subdivision level.
The Mathematics of Surfaces, Sep 2003, Leeds, United Kingdom. hal-01538509

HAL Id: hal-01538509
https://hal.science/hal-01538509

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01538509
https://hal.archives-ouvertes.fr

Direct computation of a control vertex position
on any subdivision level

Loic Barthe and Leif Kobbelt

Computer Graphics Group, RWTH Aachen, Ahornstrasse 55, 52074 Aachen,
Germany
{barthe,kobbelt}@cs.rwth-aachen.de,

WWW home page: http://www.rwth-graphics.de/

Abstract. In this paper, we present general closed form equations for
directly computing the position of a vertex at different subdivision levels
for both triangular and quadrilateral meshes. These results are obtained
using simple computations and they lead to very useful applications,
especially for adaptive subdivision. We illustrate our method on Loop’s
and Catmull-Clark’s subdivision schemes.

1 Introduction

Since their introduction to Computer Graphics [1-3], subdivision surfaces have
become a widely used surface representation in both animation and freeform
shape modeling. A subdivision operator globally subdivides a coarse mesh into
a finer one and after several subdivision iterations the meshes quickly converge
to a smooth surface. Since the subdivision operator refines all faces of the mesh,
the number of faces increases exponentially: For a classical diadic subdivision
(like Loop’s or Catmull-Clark’s subdivision [4,1]) the number of polygons is
multiplied by 4 after one subdivision step, and hence by 4% after k steps. A
few steps are enough to generate a massive mesh that even the fastest hardware
cannot handle interactively.

In order to overcome this disadvantage, adaptive subdivision [5,6, 3] allows
us to subdivide the mesh locally, only where some geometric detail is present.
An accurate approximation of the surface is then provided while avoiding the
generation of huge meshes (Fig. 1). Nowadays, adaptive subdivision is a standard
technique used in applications like mesh editing, mesh simplification, and view-
dependent rendering [7-12].

Since more steps of subdivision are performed in some parts of the mesh,
vertices in the direct neighborhood of a central vertex can lie at different sub-
division levels. The drawback is that when approximation schemes are used,
vertices are displaced through subdivision, i.e. the same vertex has different po-
sitions when it is used to compute new vertices at different steps of subdivision.
This requires an easy access to the position of a vertex at different subdivision
levels and the limit position of every vertex has to be known in order to evaluate
the current error. The application of one step of subdivision on a vertex requires

5
4!"‘\"‘\ |

\VPpa = ‘

NS
WL
~J

Fig. 1. Three steps of uniform Loop’s subdivision performed on a 1.4K triangles tricer-
atops model (left) yields a mesh composed of 90K triangles (center). An equivalent
approximation of the limit surface is obtained with only 29K triangles when we use
adaptive subdivision (right).

the knowledge of the position of its neighbors, and since vertices have always
to be evaluated at different subdivision level, either expensive computations or
large memory consumption is to be expected.

A simple method to avoid this phenomenon is rather to interpolate the control
mesh so that the position of the vertices remains unchanged through subdivi-
sion. However standard stationary interpolatory subdivision schemes (like but-
terfly subdivision [13, 14]) are known to provide limit surfaces with artifacts and
oscillations, and small support approximation schemes providing better quality
limit surfaces are still preferable. Therefore, the fundamental requirements that
we have to address are the computation of the position of the mesh vertices at
the limit and at an arbitrary subdivision step.

The computation of the limit position of a vertex has already been stud-
ied [15-17]. Closed form solutions are derived using the eigendecomposition of
the subdivision matrix S, where S is the operator which maps the vicinity of
a central vertex into the same vicinity on the next refinement level. The limit
position is then expressed as an affine combination of vertices of the control
mesh, having its coefficients given by the dominant left eigenvector. Hence, our
main contribution is the inexpensive computation of the vertex position at any
intermediate step of subdivision. Indeed, if this evaluation is too expensive, it
becomes preferable to simply store the different positions of the vertices after
each subdivision step.

The size of the subdivision matrix S grows linearly with the valency of the
central vertex, and different valencies yield different eigendecompositions. There-
fore, complications are to be expected if we try to derive closed form equations
for the different vertex positions from the standard formulation of the subdivi-
sion matrix (as done in [16]). To overcome this disadvantage, a known solution
is to use the Fourier transform of the matrix S [15,17]. However as shown by
Loop [4] for triangular meshes when he studied the convergence of his scheme,

for all valencies, the subdivision matrix S can be represented by a 2 x 2 matrix by
exploiting its block circulant structure. This procedure avoids the computation
of the Fourier transform and it has been later exploited by Kobbelt [18] to pro-
vide his v/3 scheme with simple closed form equations to evaluate the positions
of a vertex at both the limit and after m subdivision steps.

In this paper, we present more general closed form equations for computing
the position of a vertex at any intermediate subdivision level. After initializa-
tion, the evaluation of different vertex positions do not require any access to
the neighbors, which allows us to avoid memory consumption while providing
computationally inexpensive solutions.

The first part is the extension of this approach to its general form for triangu-
lar meshes. It illustrates how this simple computation process leads us to elegant
closed form equations where the position of a vertex after m subdivision steps
is defined as the interpolation between its initial position and its position in the
limit. The general solution is then applied to Loop’s scheme [4] for illustration
purposes.

The second part represents a more important contribution. We apply the
same procedure on quadrilateral meshes and we show how the different struc-
ture of the subdivision matrix leads us to slightly more complicated equations
that have to be handled with a mathematical software. Also in this case, af-
ter initialization, no neighbor information is required and we illustrate on two
versions of Catmull-Clark’s subdivision [1,2,19] that it still provides practical
useful solutions.

2 Triangular lattice

(b)

Fig. 2. One step of standard diadic subdivision performed on the central vertex g"
and its 1-ring neighborhood: (a) on a triangular mesh, and (b) on a rectangular mesh.
The superscript index indicates the subdivision level while the lowerscript index is the
vertex number.

We begin with the study of triangular lattices. Since we only consider small
support subdivision schemes, the vicinity of the central vertex is restricted to its
“l-ring” neighborhood (as illustrated in Figure 2a). Each row of the subdivision
matrix is a smoothing (or subdivision) rule which computes a new vertex as an
affine combination of vertices of the original mesh, and once all the rotational
symmetries are exploited, the subdivision of this set of vertices is written in the
well known form:

q”+1 a0|a1 ay ﬂ
! bolbi b2 -+ by | | PT
Pyt = | bolbe b1 b2 - | BB (1)
pott bo|ba --- by by Dy

with

iaizl,zv:bizl, and hence iaizl—ag,ibizl—bo. (2)
i=0 i=0 i=1 i=1

In equation (1), g™ is the central vertex at the n'® step of subdivision, v is its

valency and vertices p (j = {1,...,v}) are its direct neighbors. Vertex g*t! s
the new position of vertex ¢q™ after one subdivision step, vertices p?“ are new

vertices which are the direct neighbors of vertex ¢"t!. The subdivision matrix
S is the square matrix in Equation (1).
Let us denote P™ as:

1 v
j=1

Equations (1) and (2) allow us to express the sum of the new 1-ring vertices in
terms of the old vertices as:

v v

1 1
Pn+1 - n+l _ — E
T oePi T
j=1 j=1

v
bog" + Z bi—j—i—lp?]

i=1

=boq" + (]. — bo)Pn

Hence, relation (1) can be simplified in a form which simply involves a 2 x 2
matrix in the computation (independent from valencies v):

] _[a l-ao] [q”
Pt T by 1—bo| | P

When m steps of subdivision are performed, the subdivision matrix S is
applied to the power m. This multi-step rule can also be written as an affine
combination of the vertex ¢" and the average of its neighbors P™, and once
the 2 x 2 matrix is expressed in terms of its eigendecomposition we rewrite the
subdivision rules as:

n+m 1—a 1—a n
i pp— i N e TG
P 1—a0+b0 1 -1 O(GO_bO) 1 —1 P

In Equation (3), when m tends to infinity, (ag — bo)™ tends to 0, because
0 < bp < ag < 1 (variational diminishing property), hence, the limit position ¢*°
of vertex ¢™ is directly computed using the following closed form equation:

bo

= n 1-— pPm ith =
q Beoq +(ﬂoo) with B, 1—ao =+ bo

(4)

From equations (3) and (4), we remove the neighbor information and we
derive the expression of the position of vertex ¢™ after m subdivision steps in
terms of its initial position ¢™ and its limit position ¢°°. This leads us to the
expected computation based only on the own vertex information:

‘q"J”” = p(m)q" + (1 — p(m)) ¢* with p(m) = (ag — bo)™ ‘ (5)

The closed form equations (4) and (5) applied to Kobbelt’s v/3 subdivision
scheme are already given in [18] hence we present as an example their application
in the case of Loop’s subdivision [4]:

ap =1—ay withav:%—(%+zcos(2”))2 and b =

ol

3 Quadrilateral lattice

The case of a quadrilateral lattice is more complicated because the 1-ring neigh-
borhood is composed of two different rotationally symmetric sets of vertices
({p}} and {r}}, j = {1,...,v})(see Figure 2b). Therefore, the subdivision of a
vertex ¢" and its 1-ring neigbors is defined by the following equation:

1 _ o
g™t aolay -+ aylavtr - aze | [¢"

n+1 n
2 bo(br --+ by|bys1 --- b2 pr

1

pﬁ+1 = | bo|by -+- by|bysa -+ bug1 | |7
rpt ColC1 ** Cy|Cyt1 -t Cay ry
Kean Lco|c2 ==+ C1|Cyg2 - Cyq1] LTy

The subdivision matrix S has four circulant blocks and in a similar manner
than in Section 2 we express S as a 3 x 3 matrix (independant from valencies v):

g™t a a; l—ag—as]| [¢
Pl =|bg by 1—bg—b, | |P"], (6)
Rt co ¢s 1—co—cs R"

1 v v
where R" = v X‘:r;” and z, = lez for z € {a,b,c}.
= i=

Following the procedure presented in Section 2 we use Matlab code to com-
pute the different closed form equations for 8o, Yoo, #(m) and v(m) in order to
evaluate the different positions of a vertex ¢"*™.

From Equation (6) and its eigendecomposition we obtain the expressions:

¢" =apq" + a,P" + (1 —ag — as)R® (7
¢" " = B(m)q"™ +~y(m)P"™ + (1 — B(m) — ~v(m))R" (8)
4% = Booq" + Yoo P + (1 — oo — Yo0) R" ©)

Using Equations (7) and (9), we remove the neighborhood information from
Equation (8) as follows:

Let
' =] a as 1—ap—as pr|=T|P|,
q> Boo Yoo 1-— Boo — Yoo R R

then ¢"*™ is expressed as

n

g™t =[B(m) v(m) 1-B(m) —~(m)]T~" | g™
qOO

which leads us to the final closed form equation:

‘Q"er = p(m)q" + v(m)g"* + (1 — p(m) — v(m)) ¢* ‘

In actual applications, the equations are greatly simplified and the formulas
provided by the code lead us to practical solutions. These is illustrated for two
versions of Catmull-Clark’s subdivision.

Standard Catmull-Clark’s subdivision [19]: (Table 1)

7 6 3 1 1 1
aozl_@’ G/g:E, bO:g’ by == Co=—, Cs=75

Table 1. Coefficients to compute the positions ¢> and ¢"t™ of a vertex ¢ of the

mesh when it is subdivided using the standard Catmull-Clark’s subdivision.

[Vatency|[e (m) | v(m) |
3 |53 0 6(z)"
4 |55 T (@) +35G8)" 7 ()" -G8)")
5 2 | 2 |-0.3165(0.3225)™ +1.3165(0.0775)™ | 4.0825((0.3225) ™ — (0.0775)™)
6 |l FEA"+3EH)" 23" -7

Bilinear subdivision plus averaging Catmull-Clark’s subdivision [19]:
In this case, the subdivision rules are independant of the vertex valency.

=9 =3 =3 21 1.1
ag 163 as_sa 0 87 s 23 00_4) 03—2
Yo: Poo =Yoo =

4 Conclusion

We have presented a general method for directly computing the position of a
vertex on any subdivision level without accessing neighbor information, and
this, in the case of triangular and quadrilateral lattices. These results can be

directly applied to any subdivision scheme whose mask does not exceed the 1-
ring neighborhood, as illustrated on Loop’s and Catmull-Clark’s subdivision.
If the scheme’s mask exceed one ring, the procedure for quad-meshes can be
applied to derive closed form equations with more terms.

As explained in Section 1, the direct application to adaptive subdivision
makes these closed form equations very useful for practical applications and
they can be used to provide different approximation schemes with adaptive sub-
division as a standard operator for meshes [20].

Acknowledgments: The first author has partially been funded by the E.U.
through the MINGLE project. Contract HPRN-CT-1999-00117

References

1. Catmull, E, Clark, J.: Recursively generated B-spline surfaces on arbitrary topological
meshes. Computer Aided Design 10,6, (1978) 350-355

2. Doo, D., Sabin, M.A.: Analysis of the behaviour of recursive subdivision surfaces near
extraordinary points. Computer Aided Design 10,6, (1978) 356-360

3. Zorin, D., Schréder, P.: Subdivision for modeling and animation. SIGGRAPH 2000 course
notes, (2000)

4. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of
Utah, (1987)

5. Vasilescu, M., Terzopoulos, D.: Adaptive meshes and shells: Irregular triangulation, dis-
continuities and hierarchical subdivision. Proceedings of Computer Vision and Pattern
Recognition, (1992) 829-832

6. Verfiirth, R.: A review of a posteriori error estimation and adaptive mesh refinement
techniques. Wiley-Teubner, (1996)

7. Zorin, D., Schréder, P., Sweldens, W.: Interactive multiresolution mesh editing. Proceed-
ings of SIGGRAPH 1997, ACM, (1997) 259268

8. Xu, Z., Kondo, K.: Local subdivision process with Doo-Sabin subdivision surfaces. Pro-
ceedings of Shape Modeling International, (2002) 7-12

9. Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. Proceedings of SIG-
GRAPH 2000, ACM, (2000) 85-94

10. Hoppe, H.: View-dependent refinement of progressive meshes. Proceedings of SIGGRAPH
1997, ACM, (1997) 189-198

11. Kamen, Y., Shirman, L.: Triangle Rendering Using Adaptive Subdivision. IEEE Computer
Graphics and Applications 18,2, (1998) 356-360

12. Hoppe, H.: Smooth view-dependent level-of-detail control and its application in terrain
rendering. IEEE Visualization, (1998) 35-42

13. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface interpolation
with tension control. ACM Transaction on Graphics, 9,2, (1990) 160-169

14. Zorin, D., Schréder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary
topology. Proceedings of SSIGGRAPH 1997, ACM, (1996) 189-192

15. Halstead, M., Kass, M., DeRose, T.: Efficient, fair interpolation using Catmull-Clark sur-
faces. Proceedings of SIGGRAPH 1993, ACM, (1993) 35-43

16. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M.: Piecewise smooth surfaces recon-
struction. Proceedings of SIGGRAPH 1994, ACM, (1994) 295-302

17. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter
values. Proceedings of SSIGGRAPH 1998, ACM, (1998) 395-404

18. Kobbelt, L.: v/3-subdivision. Proceedings of SIGGRAPH 2000, ACM, (2000) 103-112

19. Warren, J., Weimer, H.: Subdivision methods for geometric design: a constructive ap-
proach. San Fransisco: Morgan Kaufman, (2002) 209-212

20. OpenMesh subdivision tool: http://www.openmesh.org/

