M. Cohen and . Jr, The new bone biology: Pathologic, molecular, and clinical correlates, American Journal of Medical Genetics Part A, vol.97, issue.2, pp.2646-2706, 2006.
DOI : 10.1002/ajmg.a.31368

N. Suda, Y. Kitahara, and K. Ohyama, A case of amelogenesis imperfecta, cleft lip and palate and polycystic kidney disease, Orthodontics and Craniofacial Research, vol.266, issue.1, pp.52-56, 2006.
DOI : 10.1016/S0378-1119(96)00525-2

M. A?¨ouba?¨oub, F. Lézot, M. Molla, B. Castaneda, and B. Robert, Msx2 ?/? transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis, Bone, vol.41, issue.5, pp.851-859, 2007.
DOI : 10.1016/j.bone.2007.07.023

A. Berdal, B. Castaneda, M. A?¨ouba?¨oub, J. Néfussi, and C. Mueller, Osteoclasts in the Dental Microenvironment: A Delicate Balance Controls Dental Histogenesis, Cells Tissues Organs, vol.194, issue.2-4, pp.2-4, 2011.
DOI : 10.1159/000324787

M. Molla, V. Descroix, M. A?¨ouba?¨oub, S. Simon, and B. Castañ-eda, Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice, The American Journal of Pathology, vol.177, issue.5, pp.2516-2526, 2010.
DOI : 10.2353/ajpath.2010.091224

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966808

M. Amling, L. Neff, M. Priemel, A. Schilling, and J. Rueger, Progressive increase in bone mass and development of odontomas in aging osteopetrotic c-src-deficient mice, Bone, vol.27, issue.5, pp.603-610, 2000.
DOI : 10.1016/S8756-3282(00)00373-2

X. Lu, H. Rios, B. Jiang, L. Xing, and R. Kadlcek, with odontoma-like proliferations and lack of tooth roots, European Journal of Oral Sciences, vol.72, issue.6, pp.625-635, 2009.
DOI : 10.1111/j.1600-0722.2009.00690.x

V. Duheron, E. Hess, M. Duval, M. Decossas, and B. Castaneda, Receptor activator of NF-?B (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit, Proceedings of the National Academy of Sciences, vol.99, issue.13, pp.5342-5347, 2011.
DOI : 10.1073/pnas.132636999

URL : https://hal.archives-ouvertes.fr/hal-00579674

B. Castaneda, Y. Simon, J. Jacques, E. Hess, and Y. Choi, Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NF-?B (RANK), Journal of Cellular Physiology, vol.228, issue.1, pp.74-85, 2011.
DOI : 10.1002/jcp.22305

J. Davideau, P. Demri, D. Hotton, T. Gu, and M. Macdougall, Comparative Study of MSX-2, DLX-5, and DLX-7 Gene Expression during Early Human Tooth Development, Pediatric Research, vol.17, issue.6, pp.650-656, 1999.
DOI : 10.1203/00006450-199912000-00015

F. Lézot, B. Thomas, S. Greene, D. Hotton, and Z. Yuan, Physiological implications of DLX homeoproteins in enamel formation, Journal of Cellular Physiology, vol.275, issue.90, pp.688-697, 2008.
DOI : 10.1002/jcp.21448

E. Diamond, M. Amen, Q. Hu, H. Espinoza, and B. Amendt, Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2, Nucleic Acids Research, vol.34, issue.20, pp.5951-5965, 2006.
DOI : 10.1093/nar/gkl689

URL : http://doi.org/10.1093/nar/gkl689

T. Yoneda and T. Hiraga, Crosstalk between cancer cells and bone microenvironment in bone metastasis, Biochemical and Biophysical Research Communications, vol.328, issue.3, pp.679-687, 2005.
DOI : 10.1016/j.bbrc.2004.11.070

E. Stelnicki, L. Kömüves, D. Holmes, W. Clavin, and M. Harrison, The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin, Differentiation, vol.62, issue.1, pp.33-41, 1997.
DOI : 10.1046/j.1432-0436.1997.6210033.x

G. Gremel, D. Ryan, M. Rafferty, F. Lanigan, and S. Hegarty, Functional and prognostic relevance of the homeobox protein MSX2 in malignant melanoma, British Journal of Cancer, vol.125, issue.4, pp.565-574, 2011.
DOI : 10.1128/JVI.77.16.8957-8951.2003

J. Depondt, . Shabana-el-h, F. Walker, L. Pibouin, and F. Lezot, Nasal inverted papilloma expresses the muscle segment homeobox gene Msx2: possible prognostic implications, Human Pathology, vol.39, issue.3, pp.350-358, 2008.
DOI : 10.1016/j.humpath.2007.06.017

B. Ruhin-poncelet, S. Ghoul-mazgar, D. Hotton, F. Capron, and M. Jaafoura, Msx and Dlx Homeogene Expression in Epithelial Odontogenic Tumors, Journal of Histochemistry & Cytochemistry, vol.210, issue.1, pp.69-78, 2009.
DOI : 10.1111/j.1601-0825.2005.01177.x

Y. Qian and H. Huang, The role of RANKL and MMP-9 in the bone resorption caused by ameloblastoma, Journal of Oral Pathology & Medicine, vol.203, issue.Suppl. 1, pp.592-598, 2010.
DOI : 10.1111/j.1600-0714.2009.00882.x

M. Morris and K. Ley, Trafficking of Natural Killer Cells, Current Molecular Medicine, vol.4, issue.4, pp.431-438, 2004.
DOI : 10.2174/1566524043360609

K. Soderquest, N. Powell, C. Luci, N. Van-rooijen, and A. Hidalgo, Monocytes control natural killer cell differentiation to effector phenotypes, Blood, vol.117, issue.17, pp.4511-4518, 2011.
DOI : 10.1182/blood-2010-10-312264

K. Redlich and J. Smolen, Inflammatory bone loss: pathogenesis and therapeutic intervention, Nature Reviews Drug Discovery, vol.26, issue.3, pp.234-250, 2012.
DOI : 10.1038/nrd3669

F. Grassi, A. Piacentini, S. Cristino, S. Toneguzzi, and C. Cavallo, Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12, Histochemistry and Cell Biology, vol.120, issue.5, pp.391-400, 2003.
DOI : 10.1007/s00418-003-0587-3

Y. Lee, M. Chittezhath, V. André, H. Zhao, and M. Poidinger, Protumoral role of monocytes in human B-cell precursor acute lymphoblastic leukemia: involvement of the chemokine CXCL10, Blood, vol.119, issue.1, pp.227-237, 2012.
DOI : 10.1182/blood-2011-06-357442

H. Kwak, H. Ha, H. Kim, J. Lee, and H. Kim, Reciprocal cross-talk between RANKL and interferon-??inducible protein 10 is responsible for bone-erosive experimental arthritis, Arthritis & Rheumatism, vol.44, issue.5, pp.1332-1342, 2008.
DOI : 10.1002/art.23372

S. Lei, S. Wu, L. Li, F. Deng, and S. Xiao, An in vivo genome wide gene expression study of circulating monocytes suggested GBP1, STAT1 and CXCL10 as novel risk genes for the differentiation of peak bone mass, Bone, vol.44, issue.5, pp.1010-1014, 2009.
DOI : 10.1016/j.bone.2008.05.016

L. Coelho, M. De-freitas-almeida, G. Mennechet, F. Blangy, A. Uzé et al., Interferon-? and -? differentially regulate osteoclastogenesis: Role of differential induction of chemokine CXCL11 expression, Proceedings of the National Academy of Sciences, vol.1704, issue.2, pp.11917-11922, 2005.
DOI : 10.1172/JCI9232

C. Heise, A. Pahuja, S. Hudson, M. Mistry, and A. Putnam, Pharmacological Characterization of CXC Chemokine Receptor 3 Ligands and a Small Molecule Antagonist, Journal of Pharmacology and Experimental Therapeutics, vol.313, issue.3, pp.1263-1271, 2005.
DOI : 10.1124/jpet.105.083683