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Practical Methods for Constructing

Possibility Distributions

Didier Dubois,∗ Henri Prade

IRIT, CNRS and Université de Toulouse, 31062, Toulouse Cedex 09, France

This survey paper provides an overview of existing methods for building possibility distributions.
We both consider the case of qualitative possibility theory, where the scale remains ordinal, and
the case of quantitative possibility theory, where the scale is the real interval [0, 1]. Methods
may be order-based or similarity-based for qualitative possibility distributions, whereas statistical
methods apply in the quantitative case and then possibilities encode nested random epistemic sets
or upper bounds of probabilities. But distance-based approaches, or expert estimates, may be also
exploited in the quantitative case. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

One of the key questions often raised by scientists when considering fuzzy sets

is how to measure membership degrees. However, this question is hardly meaningful

if no interpretive context for membership functions is provided. One such context

is possibility theory, first outlined by Lotfi Zadeh in 1977.1 Possibility distributions

are the basic building blocks of possibility theory. Zadeh proposes to consider them

as fuzzy set membership functions interpreted in a disjunctive way,2 namely, serv-

ing as elastic constraints restricting the possible values of a single-valued variable.

Different kinds of possibility distributions may be encountered in a variety of ap-

plications ranging from information systems and databases3 to operations research4

and artificial intelligence,5 from computation with ill-known quantities represented

by fuzzy intervals,6 to the set of possible models of a possibilistic logic base7 (see

Ref. 8 for more references). Whatever the situation, having faithful elicitation or

estimation methods for possibility distributions is clearly an important issue.

The idea of graded possibility was thus advocated by Zadeh in the late 1970s.

But before him, the economist G. L. S. Shackle9–11 and the philosopher David

Lewis12 did the same, albeit on the basis of concerns very different from Zadeh’s.

Indeed, Zadeh was mainly motivated by the representation of linguistic terms as a

way of expressing uncertain and imprecise information held by humans, referring

to some appropriate distance to prototypical examples; in contrast, Shackle was
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interested in modeling expectations in terms of degrees of potential surprise (which

turn out to be degrees of impossibility); and Lewis advocated a comparative

possibility-based view of counterfactual conditionals, where the possibility of a

world depends on its similarity (or closeness) to a reference world and is repre-

sented in terms of so-called “systems of nested spheres” around this world.

Depending on the situations and the views, the concept of possibility may refer

to ideas of feasibility (“it is possible to . . . ”) or epistemic consistency (“it is possible

that . . . ”), and its evaluation is in practice either a matter of similarity (or distance)—

a view recently revived by Zadeh,13 or in terms of cost, or yet of frequency (viewing

possibility as upper probability). We shall encounter these different interpretations

in the following survey of techniques for constructing possibility distributions.

The paper is organized as follows: In Section 2, we first provide a refresher

on possibility theory, distinguishing the qualitative and the quantitative views, and

emphasizing the role of information principles in the specification of possibility

distributions. Section 3 is devoted to methods for generating qualitative possibility

distributions as in possibilistic logic, or when dealing with default conditionals.

Section 4 provides an overview of elicitation methods for quantitative possibility

distributions, based on distances, frequencies, or expert knowledge.

2. POSSIBILITY THEORY: A REFRESHER

This brief overview focuses on the possible meanings of a possibility distribu-

tion. We first review the relation between possibility distributions and fuzzy sets,

before introducing possibility distributions as a representation tool for imprecise

or uncertain information, together with the associated set functions for assessing

the plausibility or the certainty of events. We then discuss different qualitative and

quantitative scales for grading possibility, and finally address the relations between

possibility and probability.

2.1. Possibility Distribution and Fuzzy Set

In his paper introducing possibility theory, Zadeh1 starts with the representation

of pieces of information of the form “X is A,” where X is a parameter or attribute

of interest and A is a fuzzy set on the domain of X, often representing a linguistic

category (e.g., John is Tall, where X = height(John), and A is the fuzzy set of Tall

heights for humans). The question is then, knowing that “X is A,” to determine what

is the possibility distribution πX restricting the possible values of X (also assuming

we know the meaning of A, given by a [0, 1]-valued membership function µA).

Then Zadeh represents the piece of information “ X is A” by the elastic restriction

∀u ∈ U, πX(u) = µA(u)

where U is the universe of discourse on which X ranges. Thus, µA is turned into

a kind of likelihood function for X. In the above example, U is the set of human

heights. Note however that πX acts as a disjunctive restriction (X takes a single



value in U ), while, prior to using it as above, A is a conjunctive fuzzy set,2 the fuzzy

set of all values more or less compatible with the meaning of A. Thus the degree of

possibility that X = u is evaluated as the degree of compatibility µA(u) of the value

u with the fuzzy set A.

2.2. Representation of Imprecise Information and Specificity

In more abstract terms, πX is a mapping from a referential U (understood as a

set of mutually exclusive values for the attribute X) to a totally ordered scale L, with

top denoted by 1 and bottom by 0, such as the unit interval [0, 1]. Thus any mapping

from a set of elements, viewed as a mutually exclusive set of alternatives, to [0, 1]

(and more generally to any totally ordered scale) can be seen as acting as an elastic

restriction on the value of a single-valued variable, i.e., can be seen as a possibility

distribution. Apart from the representation of ill-known numerical quantities defined

on continuums, as in the human height example above, another “natural” and simple

use of possibility distributions is the representation of ill-known states of affairs (or

worlds, according to logicians), a concern of interest for Shackle10 from a decision

perspective.

Then U more generally stands for a (mutually exclusive) set of states of affairs

(or descriptions thereof), or states, for short. The function π represents the state

of knowledge of an agent (about the actual state of affairs) distinguishing what is

plausible from what is less plausible, what is the normal course of things from what

is not, what is surprising from what is expected. It represents a flexible restriction

on what is the actual state with the following conventions:a

r π (u) = 0 means that state u is rejected as impossible;
r π (u) = 1 means that state u is totally possible.

If U is exhaustive, at least one of the elements of U should be the actual world,

so that ∃u, π(u) = 1 (normalization). Different values may simultaneously have a

degree of possibility equal to 1. In particular, extreme forms of epistemic states

can be captured, namely: complete knowledge, where for some u0, π(u0) = 1 and

π(u) = 0, ∀u 6= u0 (only u0 is possible), and complete ignorance where π(u) =

1, ∀u ∈ U (all states are possible).

A possibility distribution π is said to be at least as specific as another π ′

if and only if for each state of affairs u, we have π(u) ≤ π ′(u).14 Then, π is

at least as restrictive and informative as π ′. This agrees with Zadeh’s entailment

principle that “X is A” entails “X is B,” as soon as A ⊆ B. In the presence of

pieces of knowledge coming from humans and acting as constraints, possibility

theory is driven by the principle of least commitment called minimal specificity

principle15. It states that any hypothesis not known to be impossible cannot be ruled

out. In other words, if all we know is that “X is A,” any possibility distribution

aThe interpretation for 0 is similar to the case of probability, but Shackle’s potential surprise
scale is stated the other way around: 0 means possible, and the more impossible an event, the more
surprising it is.



for which πX ≤ µA and ∃u, πX(u) < µA(u) would be too restrictive, since we

have no further information that could support the latter strict inequality. Hence,

πX = µA is the right representation, if we have no further information. The minimal

specificity principle justifies the use of the minimum-based combination principle

of n pieces of information of the form “X is Ai ,” in approximate reasoning,16

since πX = minn
i=1 µAi

is the largest possibility distribution such that we have

π ≤ µAi
, ∀i = 1, . . . , n.

Sometimes, the opposite principle must be used. This is when we possess

statistical information that represents data and not knowledge. In this case, we

consider the most specific possibility distribution enclosing the data, assuming, like

in probability density estimation, that what has not been observed is impossible.17

This is similar to the closed-world assumption.

2.3. Possibilistic Set Functions

Given a simple query of the form “does event A occur?” where A is a subset of

states, the response to the query can be obtained by computing degrees of possibility

and necessity, respectively (assuming the possibility scale L = [0, 1]):

5(A) = sup
u∈A

π(u); N(A) = inf
u/∈A

(1 − π(u)).

5(A) evaluates to what extent A is logically consistent with π , whereas N (A)

evaluates to what extent A is certainly implied by π . The possibility-necessity

duality says that a proposition is certain if its opposite is impossible, and this is

expressed by

N(A) = 1 − 5(Ac),

where Ac is the complement of A. Generally, 5(U ) = N (U ) = 1 and 5(∅) =

N(∅) = 0. Possibility measures satisfy the basic “maxitivity” property

5(A ∪ B) = max(5(A), 5(B)).

Necessity measures satisfy a “minitivity axiom” dual to that of possibility measures,

namely

N(A ∩ B) = min(N(A), N(B)),

expressing that being certain that A ∩ B is the same as being certain of A and of B.

Human knowledge is often expressed in a declarative way, using statements to

which belief degrees are attached. This format corresponds to expressing constraints

with which the world is supposed to comply. Certainty-qualified pieces of uncertain

information of the form “(X is A) is certain to degree α” can then be modeled by

the constraint N(A) ≥ α. The least specific possibility distribution reflecting this



information is15:

π(A,α)(u) =

{

1, if u ∈ A

1 − α otherwise.
(1)

Acquiring further pieces of knowledge consistent with the former leads to updat-

ing π(A,α) into some π < π(A,α). Another example where the principle of minimal

specificity is useful is when defining the notion of conditioning in possibility theory.

The most usual form respects an equation of the form

5(A ∩ B) = 5(A|B) ⋆ 5(B), N(A|B) : 1 − 5(Ac|B), (2)

where ⋆ is a t-norm and B 6= ∅. The most justified choices of ⋆ are min and product.18

In the case of product, it looks like probabilistic conditioning applied to possibility

measures and corresponds to Dempster conditioning.19 Using min, the above defi-

nition (3) does not yield a unique conditional possibility. Then the idea is to use the

least specific possibility measure respecting (2), i.e.,

5(A|B) =

{

5(A ∩ B) if 5(A ∩ B) < 5(B),

1 otherwise.
(3)

Apart from 5 and N , a measure of guaranteed possibility or sufficiency can be

defined20,21: 1(A) = infu∈A π(u). It estimates to what extent all states in A are

actually possible according to evidence. 1(A) can be used as a degree of evidential

support for A. In contrast, 5 appears to be a measure of potential possibility.

Uncertain statements of the form “B is possible to degree β” often mean that all

realizations of B are possible to degree β. They can then be modeled by the constraint

1(B) ≥ β. It corresponds to the idea of observed evidence. This type of information

is better exploited by an informational principle opposite to the one discussed above

(minimal specificity would give nothing). The most specific distribution δ(B,β) in

agreement with 1(B) ≥ β is

δ(B,β)(u) =

{

β, if u ∈ B

0 otherwise.

}

Acquiring further pieces of evidence leads to updating δ(B,β) into some wider distri-

bution δ > δ(B,β).
21

2.4. Different Scales for Graded Possibility

There are several representations of epistemic states that are in agreement with

the above setting such as well-ordered partitions,22 Lewis’ systems of spheres,12,23

Spohn’s “ordinal conditional functions” (OCF)22,24 (also called ranking functions25),

and possibilities viewed as upper probabilities. But all these representations of

epistemic states do not have the same expressive power. They range from purely

qualitative to quantitative possibility distributions, using weak orders, qualitative



scales, integers, and reals. In fact, we can distinguish several representation settings

according to the expressiveness of the scale used26:

1. The purely ordinal setting, where an epistemic state on a set of possible worlds is simply
encoded by means of a total preorder º, telling which worlds are more normal, less
surprising than other ones. The quotient set U /∼, built from the equivalence relation ∼
extracted from º, forms a well-ordered partition E1, . . . , Ek such that the greater the
index i, the less plausible or the less likely the possible states in Ei . In that case the
comparative possibility relation º5 is such that A º5 B if and only if ∃u1 ∈ A, ∀u2 ∈
B, u1 º u2. This is the setting used by Lewis12 and by Grove23 and Gärdenfors27 when
modeling belief revision. Only possibility measures can account for such relations.28

2. The qualitative finite setting, with possibility degrees in a finite totally ordered scale:
L = {α0 = 1 > α1 > . . . > αm−1 > 0}. This setting has a classificatory flavor, as we
assign each event to a class in a finite totally ordered set thereof, corresponding to the
finite scale of possibility levels. It is used in possibilistic logic.7 However, note that the
previous purely ordinal representation is less expressive than the qualitative encoding of
a possibility distribution on a totally ordered scale, as the former cannot express absolute
impossibility.

3. The denumerable setting, using a scale of powers L = {α0 = 1 > α1 > . . . > αi >
. . . , 0}, for some α ∈ (0, 1). This is isomorphic to the use of integers in ranking functions
by Spohn,25 where the set of natural integers is used as a disbelief scale.

4. The dense ordinal scale setting using L = [0, 1], seen as an ordinal scale. In this case,
the possibility distribution 5 is defined up to any monotone increasing transformation
f : [0, 1] → [0, 1], f (0) = 0, f (1) = 1. This setting is also used in possibilistic logic.7

5. The dense absolute setting, where L = [0, 1], seen as a genuine numerical scale equipped
with product. In this case, a possibility measure can be viewed as a special case of
Shafer’s plausibility function,29 actually a consonant one, and 1 − π as a potential
surprise function in the sense of Shackle.11

2.5. Quantitative Possibilities and Their Links with Probabilities

The idea of a link between graded possibility and probability is natural since

both acts as modalities for expressing some form of uncertainty. This link may

be stated under the form of a consistency principle1 stating that “what is possible

may not be probable and what is improbable need not be impossible.” Proceeding

further, we may consider that what is probable should be possible, and what is

necessarily (certainly) the case should be probable as well. This amounts to writing

N ≤ P ≤ 5, where N , P , and 5 are, respectively, a necessity, a probability, and a

possibility measure (Ref. 30, p. 138).

Let π be a possibility distribution where π(u) ∈ [0, 1]. Let P(π) be the never

empty set of probability measures P such that P ≤ 5, i.e. ∀A ⊆ U, P (A) ≤ 5(A)

(equivalently, P ≥ N). Then the possibility measure 5 coincides with the up-

per probability function P ∗ such that P ∗(A) = sup{P (A), P ∈ P(π)}, whereas

the necessity measure N is the lower probability function P∗ such that P∗(A) =

inf{P (A), P ∈ P(π)}; see Refs. 31, 32 for details. P and π are said to be compati-

ble if P ∈ P(π). So, 5 and N are coherent upper and lower probabilities in the sense

of Walley,33 as already pointed out very early by Giles.34 The connection between

possibility measures and imprecise probabilistic reasoning is especially interesting

for the efficient representation of nonparametric families of probability functions,

and it makes sense even in the scope of modeling linguistic information.35



A possibility measure can thus be computed from a set of nested confidence

subsets {A1, A2, . . . , Ak}, where Ai ⊂ Ai+1, i = 1 . . . , k − 1. To each confidence

subset Ai is attached a positive confidence level λi interpreted as a lower

bound of P (Ai), hence a necessity degree. The pair (Ai, λi) can be viewed as a

certainty-qualified statement that generates a possibility distribution πi , as recalled

above. The corresponding possibility distribution is obtained by intersecting fuzzy

sets like those in Equation 1:

π(u) = min
i=1,...,k

πi(u) =

{

1 if u ∈ A1

1 − λj−1 if j = max{i : u /∈ Ai} > 1.
(4)

The information modeled by π can also be viewed as a nested random set

{(Ai, m(Ai)), i = 1, . . . , k},

associated with a belief function,36 letting m(Ai) = λi − λi−1.37 This framework

allows for imprecision (reflected by the size of the Ais) and uncertainty (the m(Ai)s).

And m(Ai) is the probability that the agent only knows that Ai contains the actual

state (it is not P (Ai)). The random set view of possibility theory is well adapted

to the idea of imprecise statistical data, as developed in Section 4. Conversely, if

a belief function is consonant then its contour function π(u) =
∑

i:u∈Ai
m(Ai) is

sufficient to recover the belief function, where m is its basic probability assignment

(
∑

i m(Ai) = 1), and the Ais are both the nested focal elements associated with m,

and the level cuts of π .

REMARK 1. Let us mention another possible kind of link between very small prob-

abilities and possibilities. This interpretation has been pointed out by Spohn24 for

his integer-valued ranking functions κ ranging from 0 to +∞ (0 meaning full pos-

sibility, and +∞ full impossibility), where κ(A) may be thought of as a degree of

disbelief modeled by a kind of cost. Namely κ(A) = k is interpreted as a small prob-

ability of the form ǫk with ǫ ≪ 1 (e.g., P (A) = 10−7, when ǫ = 0.1, and k = 7), i.e.,

the probability of a rare event. Indeed if A has a small probability with the order

of magnitude ǫk , and B is another event with a small probability with the order

of magnitude ǫn, the order of magnitude of the probability P (A ∪ B) is ǫmin(k,n),

which mirrors the maxitivity decomposition property of possibility measures, up to

a rescaling from [0, +∞) to [0, 1]38. It suggests an interpretation of possibility (and

necessity) measures in terms of probabilities of rare events.

3. CONSTRUCTION METHODS FOR QUALITATIVE POSSIBILITY

DISTRIBUTIONS

The elicitation of qualitative possibility distributions is made easier by the

qualitative nature of possibility degrees. Indeed, even in a dense ordinal scale

L = [0, 1], the precise values of the degrees do not matter, only their relative values

are important as expressing strict inequalities between possibility levels. In fact, it

basically amounts to determining a well-ordered partition.



In a purely ordinal setting, a possibility ordering is a complete preorder of states

denoted by ≥π , which determines a well-ordered partition {E1, . . . , Ek} of U . It is

the comparative counterpart of a possibility distribution π , i.e., u ≥π u′ if and only

if π(u) ≥ π(u′). By convention E1 contains the most plausible (or normal), or the

most satisfactory (or acceptable) states, Ek the least plausible (or most surprising), or

the least satisfactory ones, depending if we are modeling knowledge, or preferences.

Ordinal counterparts of possibility and necessity measures28 are defined as follows:

{u} ≥5 ∅ for all u ∈ U and

A ≥5 B if and only if max(A) ≥π max(B)

A ≥N B if and only if max(Bc) ≥π max(Ac).

Possibility relations ≥5 are those of Lewis.12 They satisfy the characteristic property

A ≥5 B implies C ∪ A ≥5 C ∪ B,

while necessity relations can also be defined as A ≥N B if and only if Bc ≥5 Ac

and satisfy a similar property:

A ≥N B implies C ∩ A ≥N C ∩ B.

Necessity relations coincide with epistemic entrenchment relations in the sense

of belief revision theory.27,38 In particular, the assertion A >5 Ac expresses the

acceptance of A39 and is the qualitative counterpart of N(A) > 0. This qualitative

setting enables qualitative possibility distributions to be derived either from a set of

certainty-qualified propositions, or from a set of conditional statements.

3.1. Certainty-Qualified Propositions

When an agent states beliefs with their (relative) strengths, it is more natural to

expect that ordinal information, rather than truly numerical information, is supplied.

This gives birth to a knowledge base in the sense of possibilistic logic,7 i.e., a set

of weighted statements K = {(Ai, αi) : i = 1, . . . , m}, each of them representing

a constraint N (Ai) ≥ αi , where Ai represents a subset of possible states or inter-

pretations and αi is the associated certainty level (or priority level) belonging to

a denumerable ordinal scale. Such a base K is semantically associated with the

possibility distribution in (4), where we no longer assume nested events:

πK (u) = min
i=1,...,m

π(Ai ,αi )(u) = min
i=1,...,m

max(µAi
(u), 1 − αi)

and µAi
is the characteristic function of the subset Ai . Besides, the αis may also

have a similarity flavor when some pair (Ai, αi) correspond to the level-cuts of fuzzy

subsets.40,41

Let us mention that a similar construction can be made in an additive setting

where each formula is associated with a cost (in N ∪ {+∞}), the weight (cost)



attached to an interpretation being the sum of the costs of the formulas in the

base violated by the interpretation, as in penalty logic.42 The so-called “cost of

consistency” of a formula is then defined as the minimum of the weights of its

models. It is nothing but a ranking function (OCF) in the sense of Spohn,24 the

counterpart of a possibility measure defined on N ∪ {+∞}, where now 0 expresses

full possibility (free violation), and +∞ complete impossibility (a price that cannot

be paid). However, this view gives a more quantitative flavor to the construction,

thus moving from a qualitative setting to a numerical one.

The construction of πK from the collection of statements in K clearly relies on

the application of the minimal specificity principle. As mentioned in the previous

section, a dual principle may be more appropriate when we start from data, rather

than constraints excluding impossible states. Assume that we have a collection of

weighted data D = {(Bj , βj ), j = 1, . . . , n}, understood as 1(Bj ) ≥ βj , where the

βj s belong to an ordinal scale and reflect, e.g., some similarity-based relevance of the

data. Then by virtue of maximal specificity, we get the lower possibility distribution

(which needs not to be normalized):

δD(u) = max
j=1,...,n

δ(Bj ,βj )(u) = max
j=1,...,n

min(µBi
(u), βj ).

Note that this expression takes the form of the kind of fuzzy conclusions (prior to

defuzzification) obtained from Mamdani fuzzy rule-based systems.43

3.2. Indicative Conditionals

Besides, there exists yet another method to obtain a qualitative possibility

distribution, starting from a set of conditionals, rather than from a set of lower

bounds on the necessity, or the guaranteed possibility, of a collection of subsets. This

method was originally invented for stratifying a set of default rules to design proper

methods for handling exception-tolerant reasoning about incompletely described

cases; see, e.g., Ref. 44. A default rule “if A then B, generally,” denoted A B, is

then understood formally as the conditional constraint

5(A ∩ B) > 5(A ∩ Bc)

on a possibility measure 5, expressing that the examples of the rule (the situa-

tions where A and B hold) are more plausible than its counterexamples (the situa-

tions where A holds and B does not). It is equivalent to the conditional statement

N (B|A) > 0. Remember that, in contrast, the probabilistic interpretation is such

that P (A ∩ B) > P (A ∩ Bc) if and only if P (B|A) > 1/2.

The above possibilistic constraint can be equivalently expressed in terms of a

mere comparative possibility relation, namely A ∩ B >5 A ∩ Bc. Any finite con-

sistent set of constraints of the form Ak ∩ Bk >5 Ak ∩ Bc
k , representing a set of

defaults 1 = {Ak  Bk, k = 1, . . . , r}, is compatible with a nonempty family of

relations >5 and determines a partially defined ranking >π on U that can be com-

pleted according to the principle of minimal specificity. This principle assigns to



each state u the highest possibility level (in forming a well-ordered partition of

U ) without violating the constraints. It defines a unique complete preorder.44 Let

E1, . . . , Ek be the obtained partition. Then u >π u′ if u ∈ Ei and u′ ∈ Ej with

i < j , whereas u ∼π u′ if u ∈ Ei and u′ ∈ Ei (where ∼π means ≥π and ≤π ).

A numerical counterpart to >π on a denumerable finite scale can be defined

by π(u) =
k+1−j

k
if u ∈ Ej , j = 1, . . . , k.44 Note that it is purely a matter of con-

venience to use a numerical scale, and any other numerical counterpart such that

π(u) > π(u′) iff u >π u′ will work as well. Namely, the range of π is used as an

ordinal scale. This approach has an infinitesimal probability counterpart, namely,

a procedure called system Z.45 It has been refined by the numerical system Z+,46

whose possibilistic counterpart corresponds to the handling of “strengthened” con-

straints of the form 5(Aj ∩ Bj ) > ρj · 5(Aj ∩ Bc
j ), where ρj ≥ 1. This approach

can also be expressed in terms of conditioning in the setting of Spohn’s ranking

functions. Note that the latter methods were intended to stratify default knowledge

bases rather than to explicitly derive possibility distributions.

4. CONSTRUCTION METHODS FOR QUANTITATIVE POSSIBILITY

DISTRIBUTIONS

The construction of possibility distributions in the quantitative setting either

rely on numerical similarity or exploit the connection between probability and

possibility inspired by Zadeh1 according to whom what is probable must be possible,

which is understood here by the inequality 5(A) ≥ P (A), for all measurable subsets

A. In the first case, possibility is viewed as a form of renormalized distance to

most plausible values. In the second case, it means that we can derive possibility

distributions from statistical data or from subjective probability elicitation methods.

4.1. Possibility as Similarity

In his approach to the non-Boolean representation of natural language cat-

egories, Zadeh2 uses membership functions representing the extensions of fuzzy

predicates to derive possibility distributions, as recalled in Section 2.1. If we know

the membership function µT all of Tall on the scale of human heights, then the

piece of information John is Tall, accepted as being true, can be represented by a

possibility distribution πhgt(John) equated with µT all:

πhgt(John)(h) = µT all(h).

In other words, the measurement of possibility degrees comes down to the mea-

surement of membership functions of linguistic terms. However, in such a situation,

µT all(h) is often constructed as a function of the distance between the value a and

the closest height ĥ that can be considered prototypical for Tall, i.e., µT all(ĥ) = 1,

for instance,

µT all(h) = f (d(h, ĥ)) (5)



where f is a nonnegative, decreasing function such that f (0) = 1, for instance

f (u) = 1
1+u

, and d(h, ĥ) = min{d(h, x) : µT all(x) = 1}, where d is a distance.

Sudkamp47 points out that conversely, given a possibility distribution π , the two-

place function δ(x, y) = |π(x) − π(y)| is a pseudodistance indeed.

Results of fuzzy clustering methods can be interpreted as distance-based mem-

bership functions. Alternatively, one may define a fuzzy set F from a crisp set A of

prototypes of µT all and a similarity relation S(x, y) on the height scale, such that

S(x, x) = 1 (then 1 − S(x, y) is akin to a distance). Ruspini48 proposes to define

the membership function as a kind of upper approximation of A:

µF (h) = max
u∈A

S(u, h).

Then A stands as the core of the fuzzy set F . We refer the reader to the survey by

Türksen and Bilgic49 for membership degree elicitation using measurement methods

outside the possibility theory view, and more recently to papers by Marchant50,51.

Besides, the idea of relating plausibility and distance also pervades the prob-

abilistic literature: The use of normal distributions as likelihood functions can be

viewed as a way to define degrees of likelihood via the Euclidean distance between

a given number and the most likely value (which in that case coincides with the

mean value of the distribution). In the neurofuzzy literature, one often uses Gaussian

membership functions of the form (5) with f = e−x2

.

4.2. Statistical Interpretations of Possibility Distributions

The use of possibility distributions seems to range far beyond the linguistic

point of view advocated by Zadeh.2 Namely, the use of (normalized) membership

functions interpreted as ruling out the more or less impossible values of an ill-known

quantity X, as well as the maxitivity axiom of possibility measures, are actually

often found in the statistical literature, in connection with the non-Kolmogorovian

aspects of statistics, namely the maximum likelihood principle, the comparison

of probability distributions in terms of dispersion, and the notion of confidence

interval; see Refs. 52, 53, 54 for surveys of such connections between probability

and possibility. In this section, we focus on the derivation of possibility distributions

from a (finite) set of statistical data.

4.2.1. Interval Data

It is useful to cast the problem in a more general setting, namely the one of

set-valued data, and the theory of random sets.55–57 Consider a random variable X

and a (multi)set of data reporting the results of some experiments under the form of

intervals D = {Ii : i = 1, . . . , n} subsets of a real interval U = [a, b]. In general,

due to randomness, one cannot expect this set of intervals to be nested. Representing

it by a possibility distribution will result in an approximation to this information.

Strictly speaking, what is needed to represent this data set exactly is a random set



defined by a mass function m : 2[a,b] → [0, 1] such that

m(E) =
|{Ii : E = Ii}|

n
, ∀E ⊆ [a, b] (6)

Note that this expression is formally related to a belief function Bel(A) =
∑

E⊆A m(E) of Shafer.36 In particular, each focal set E with m(E) > 0 represents

incomplete information, namely that some xi ∈ Ii should have been observed as the

result of the ith experiment, but only an imprecise representation of this observation

could be obtained in the form of Ii . However, in the theory of evidence, Shafer

assumes that m(E) is a subjective probability (the probability that the set E is a

faithful representation of an agent’s knowledge about X). The interval data are more

in conformity with Dempster19 view, since m(E) is the frequency of observing E.

In fact, D = {Ii : i = 1, . . . , n} is interpreted as an epistemic random set,55

i.e., it describes an ill-known standard random variable. It represents the (finite,

hence nonconvex) set of probabilities obtained by all selections of values in the

intervals of D. Let dk = {xk
1 , . . . , xk

n} represent a precise data set compatible with

D in the sense that xk
i ∈ Ii, i = 1, . . . , n. This is denoted by dk ∈ D. Moreover, the

belief function Bel(A) is a lower frequency of A, whereas the plausibility degree

P l(A) =
∑

E∩A6=∅ m(E) is an upper frequency. Let f k(a) be the frequency of u = xk
i

in dk . Then

Bel(A) = min
dk∈D

∑

u∈A

f k(u); P l(A) = max
dk∈D

∑

u∈A

f k(u).

(See Refs. 58, 59, 56 for more on statistics with interval data.)

A straightforward way of deriving a possibility distribution from such statistical

data is to consider what Shafer36 called the contour function of m (actually, the one-

point coverage function of the random set):

π∗(a) =
∑

a∈E

m(E).

Note that this is only a partial view of the data, as it is generally not possible

to reconstruct m from π∗. This view of possibility distributions and fuzzy sets as

random sets was very early pointed out by Kampé de Feriet60 and Goodman.61 From

a possibility theory point of view, it has some drawbacks:

r π∗ is generally not normalized, hence not a proper possibility distribution (unless the data
are not conflicting :

⋂n

i=1 Ii 6= ∅). For instance, π∗ = m is a probability distribution when
data are precise.

r Even when it is normalized, the interval [N∗(A),5∗(A)] determined by π∗ is the widest
interval of this form contained in [Bel(A), P l(A)]62.

One may be more interested to get the narrowest ranges [N(A), 5(A)] con-

taining intervals [Bel(A), P l(A)], as being safer; see Ref. 62 for an extensive

discussion of this difficult problem whose solution is not unique. The idea, first



suggested in Ref. 63 is to choose a family F = {E1 ⊆ . . . ⊆ Eq} of nested inter-

vals such that Ii ⊆ Eq for all intervals Ii , and Ii ⊆ E1 for at least one Ii . Then

it is easy to compute a nested random set mF , as follows: for each interval Ii let

α(i) = min{j : Ii ⊆ Ej }, such that Eα(i) is the most narrow interval in F containing

Ii . Then let mF (Ej ) =
∑

E:E=Ii ,j=α(i) m(E), where m is the original mass function

given by (6). An upper possibility distribution πF is derived such that

πF (a) =
∑

a∈Ei

mF (Ej )

in the sense that [Bel(A), P l(A)] ⊆ [NF (A), 5F (A)]. The difficult point is to choose

a proper family of nested set F . Clearly, the intervals in F should be as narrow as

possible. One may, for instance, choose F in the family of cuts of π∗.

Interestingly, the random set {(Ej , mF (Ej )) : j = 1, . . . , q} can be viewed as a

nested histogram, which is what is expected with empirical possibility distributions

(while building a standard histogram comes down to choosing a partition of [a, b]).

4.2.2. From Large Precise Data Sets to Possibility Distributions

If we consider the special case of a standard point-valued data set, there does

not exist a lower possibility distribution, but it is possible to derive an upper possi-

bility distribution using a nested histogram. Of course, we lose much information, as

we replace precise values by sets containing them. However, the problem of finding

an optimal upper distribution has a solution known for a long time.37,64 Consider a

histogramHmade of a partition {H1, . . . , Hn} of [a, b] with corresponding probabil-

ities p1 > p2 > . . . > pn. Note that it is, strictly speaking, a special case of random

set with disjoint realizations. Then, there is a most specific possibility distribution

π∗ dominating the probability distribution, called optimal transformation, namely

∀a ∈ Hi, π
∗(a) =

∑

j≥i

pj . (7)

Indeed, one can check that P (A) ∈ [N∗(A), 5∗(A)] and 5∗(
⋃j

i=1 Hj ) =

P (
⋃j

i=1 Hj ). The distribution π∗ is known as the Lorentz curve of the vector

(p1, p2, . . . , pn). In fact, the main reason why this transformation is interesting

is that it provides a systematic method for comparing probability distributions in

terms of their relative peakedness (or dispersion). Namely, it has been shown that if

π∗
p and π∗

q are optimal transformations of distributions p and q (sharing the same

order of elements), and π∗
p < π∗

q (the former is more informative than the latter),

then −
∑n

i=1 pi ln pi < −
∑n

i=1 qi ln qi , and this property holds for all entropies.65

Note that many authors suggest another transformation consisting in a mere

renormalization of the probability distribution in the style of possibility theory,



namely

π r (a) =
pi

p1

, if a ∈ Hi . (8)

However, it was already indicated in Ref. 30 (p. 259) that the inequality 5r (A) ≥

P (A) may fail to hold for some events A. In fact, for n = 3, one can prove the

following:

PROPOSITION 1. Consider a probability distribution p1 ≥ p2 ≥ p3 on a three-element

set {1, 2, 3}. Then 5r (A) < P (A) for some A if and only if p1 > 0.5 and p2 <

p1(1 − p1).

Proof. The only problematic event is {2, 3} as 5r (A) ≥ P (A) obviously for other

events. Noticing that p1 = 1 − p2 − p3, the condition 5r ({2, 3}) =
p2

p1
< P ({2, 3})

boils down to the inequality p2 < p1(1 − p1). Moreover, the condition p2 ≥ p3 is

actually p2 ≥ 1 − p1 − p2, i.e., p2 ≥
1−p1

2
. So we need

1−p1

2
< p1(1 − p1), i.e.,

p1 > 0.5. �

For instance, take p1 = 0.6, p2 = p3 = 0.2; then 5r ({2, 3}) = 1/3 <

P ({2, 3}) = 0.4. In the case of more than three elements, one may find proba-

bility values p1 ≥ . . . ≥ pn, such that
pi

p1
< P ({i, . . . , n}), for all i = 2, . . . , n − 1.

It is sufficient to have p1 > 0.5 and then to choose 0 < pi < p1(1 −
∑i−1

j=1 pj ), i =

2, . . . , n − 1 in this order, making sure that pn ≤ pn−1.

4.2.3. Scarce Precise Data

Another case when a possibilistic representation can be envisaged is when

the data set D = {xi : i = 1, . . . , n} is too small. Applying estimation methods to

compute the probability distribution leads to large confidence intervals. Namely,

if p(x|θ) is the density to be estimated via a parameter θ , then we get confidence

intervals Jβ for θ with confidence level β ∈ [0, 1]. Usually, β = 0.95 is selected.

The interval Jβ is random and contains θ with probability at least β. As the con-

fidence intervals are nested, this family of confidence intervals can be modeled by

a possibility distribution over the values of θ , which comes down to a possibility

distribution over probabilistic models p(x|θ). This result is similar to the one we

get from fuzzy probability qualification of a linguistic statement of the form “X is F

is p̃” where p̃ is a fuzzy interval on the probability scale. According to Zadeh,2 this

piece of information comes down to computing the possibility distribution π over

probability measures P (on the range of X) for which π(P ) = µp̃(P (F )) where

P (F ) is the scalar probability of the fuzzy event F .

4.2.3.1. Finite setting. In the case of a multinomial setting with n states,

the identification of the probabilities pi of states i based on observation frequencies

fi also yields confidence intervals. Fixing the confidence level, one gets proba-

bility intervals [li, ui] likely to contain the true probabilities pi . Such probability

intervals lead to upper (and lower) probabilities of events that are submodular (and



supermodular), a property far weaker than the property of possibility and neces-

sity measures.66 They can be approximated by possibility and necessity measures as

done by de Campos and Huete67, Masson and Denoeux68; see also Destercke et al.69.

De Campos and Huete consider a finite set of n possibilities, and a small sample

of N observations, where Ni is the number of observations of class i. Maximum

likelihood gives probabilities pi = Ni

N
, and the statistical literature enables bounds

li ≤ pi ≤ ui to be computed as pi ± cǫ

√

pi (1−pi )

N
(if inside [0, 1]), where cǫ is

the appropriate percentile of the standard normal distribution. These bounds have

the peculiarity that the rankings of the lower bounds, of the upper bounds, and

of the pis are the same. Based on this ranking, the authors consider extending

possibility-probability transformations (7) and (8) to probability intervals (as well

as the converse of the pignistic transform (11) presented later in this paper) in such

a way as to verify a number of expected properties:

1. The obtained possibility degrees for each class should be in agreement with the ranking
provided by the sample sizes Ni ;

2. The wider the intervals [li, ui], the less specific the possibility distribution;
3. The larger the sample size N , the more specific the possibility distribution;
4. The possibility distribution obtained from any probability assignment in the intervals and

in agreement with the sample size should be more specific than the possibility distribution
obtained from the intervals.

These transformations are simple to compute. In contrast, Masson and

Denoeux68 consider the probability intervals as being partially ordered and con-

sider the transforms of all probability distributions consistent with these intervals

according to all rankings extending the partial order. The obtained possibility dis-

tribution is covering all of them. This method is combinatorially more demanding.

4.2.3.2. Continuous setting. An extreme case of scarce data is when a single

observation x = x0 on the real line has been obtained. Mauris70 has shown that if

we assume that the generation process is based on a unimodal distribution with

mode M = x0, it is possible to compute a possibility distribution whose associated

necessity functions bounds the probability of events from below. This perhaps

surprising fact comes from the following result71 used by Mauris: For any value t > 1

and any interval It = [x − |x|t, x + |x|t] containing the mode M of the distribution,

it holds that P (It ) ≥ 1 − 2
1−t

, ∀t > 1. Then if the observed value x0 > 0 is supposed

to coincide with the mode of the distribution, we can derive a possibility distribution

π(x0(1 − t)) = π(x0(1 + t)) =

{

2
1−t

if t > 1

1 otherwise.

This is done by interpreting 1 − 2
1−t

as a degree of necessity and by applying the

minimal specificity principle to all such inequality constraints. Then, we know that

whatever the underlying probability measure with mode x0, we get P (A) ≥ N(A),

where N is constructed from π . The above result of Mauris70 can be improved if more

assumptions are made (symmetry, shape of the distribution) or if several observations



obtained. Also, if the variable of interest is known to be bounded, i.e., to lie inside an

interval [a, b], Dubois et al.73 have shown that the triangular possibility distribution

with mode x0 and support [a, b] also dominates the probability of any event A for

all unimodal probability distributions with mode x0 and support in [a, b] (including

uniform ones); see Mauris53,54 for a more extensive view of the role of possibility

distributions in statistics (evaluation of dispersion, estimation methods, etc.).

4.2.4. Possibility Measures and Cumulative Distributions

Possibility distributions, when related to probability measures, are closely

related to cumulative distributions, as already suggested by expression (7). Namely,

given a family It = [at , bt ], t ∈ [0, 1] of nested intervals, such that t < s implies

Is ⊂ It , I1 = {x̂}, and a probability measure P whose support lies in [a0, b0], letting

π(at ) = π(bt ) = 1 − P (It ), t ∈ [0, 1]

yields a possibility distribution (it is the membership function of a fuzzy interval)

that is compatible with P . Now, 1 − P (It ) = P ((−∞, at )) + P ((bt , +∞)) making

it clear that the possibility distribution coincides with a two-sided cumulative

distribution function. Choosing It = {x : p(x) ≥ t} for t ∈ [0, sup p], where p is the

density of P , one gets the most specific possibility distribution compatible with P 72.

It has the same shape as p and x̂ is the mode of p. It is the continuous counterpart

of equation (7). It provides a faithfull description of the dispersion of P 72.

Conversely, given a possibility distribution in π the form of a fuzzy interval,

then the set of probability measures P(π) dominated by its possibility measure 5 is

equal to {P : P (πα) ≥ 1 − α, ∀α ∈ (0, 1]}, where πα = {x : π(x) ≥ α}, the α-cut

of π , is a closed interval [aα, bα].73,74

When π is an increasing function, it is generally the cumulative distribution of a

unique probability measure such that P ((−∞, x)) = π(x). Otherwise, a possibility

distribution π does not determine a unique probability distribution P , contrary to

the situation with usual continuous cumulative distributions. Namely, there is not

a unique probability measure such that α = 1 − P (πα), ∀α ∈ (0, 1]. To show there

are many probability measures such that α = 1 − P (πα), first consider the upper

and lower distributions functions F+ and F− determined by π as follows:

F+(x) = 5((−∞, x]), F−(x) = N((−∞, x]) (9)

It should be clear that if P + and P − are the probability measures associated with

cumulative distributions F+ and F−, we do have that α = 1 − P +(πα), and α =

1 − P −(πα), ∀α ∈ (0, 1]. Indeed, 1 − P +(πα) = P +((−∞, aα)) + P +((bα, +∞)).

However, P +((bα, +∞)) = 0 since the support of P + lies at the right-hand side of

the core of π . Hence 1 − P +(πα) = 5((−∞, aα)) = α. A similar reasoning holds

for P −, if we notice that P −((−∞, aα)) = 0. In fact, we have a more general result:

PROPOSITION 2. Consider the cumulative distribution function Fλ = λF+ + (1 −

λ)F− with λ ∈ [0, 1], and Pλ the associated probability measure. Then ∀λ ∈

[0, 1], Pλ(πα) = 1 − α.



Proof. Note that

Fλ(x) =







λπ(x) if x ≤ a1

λ if x ∈ [a1, b1]

λ + (1 − λ)(1 − π(x)) if x ≥ b1

Now: Pλ(πα) = Fλ(bα) − Fλ(aα) = λ + (1 − λ)(1 − α) − λα = 1 − α �

We also have the following result, laying bare the connection between possibil-

ity distributions and the thin clouds of Neumaier,75 already discussed by Destercke

et al.69:

PROPOSITION 3. The set of probability measures for which ∀α ∈ [0, 1], P (πα) =

1 − α, where π is the membership function of a fuzzy interval, is P(π) ∩ P(1 − π).

Proof. We already know that P(π) = {P : ∀α ∈ [0, 1], P (πα) ≥ 1 − α}. Now con-

sider the other inequality P (πα) ≤ 1 − α. Let π̄ = 1 − π and note that for con-

tinuous membership functions we have that (π̄ )α = π1−α . Now, P (πα) ≤ 1 − α is

equivalent to P (πα) ≥ α, i.e., P ((π̄ )1−α) ≥ α, or, equivalently, P ((π̄ )α) ≥ 1 − α.

So, {P : ∀α ∈ [0, 1], P (πα) ≤ 1 − α} = P(1 − π). �

(See Ref. 76 for examples of probability measures whose cumulative distribu-

tions lie between F− and F+ but are not in the credal set P(π).) Providing a precise

description of the content of P(π) is an interesting topic of research.

4.2.5. Possibility Distributions as Likelihood Functions

Another interpretation of numerical possibility distributions is the likelihood

function in non-Bayesian statistics (Smets77, Dubois et al.78). In the framework of

an estimation problem, the problem is to determine the value of some parameter

θ ∈ 2 that characterizes a probability distribution P (· | θ) over U . Suppose that our

observations are summarized by the data set d̂ . The function P (d̂ | θ), θ ∈ 2 is not a

probability distribution, but a likelihood function L(θ): A value a of θ is considered

as being all the more plausible as P (d̂ | a) is higher, and the hypothesis θ = a will

be rejected if P (d̂ | a) = 0 (or is below some relevance threshold). If we extend the

likelihood of elementary hypotheses λ(θ) = cP (d̂|θ) (it is defined up to a positive

multiplicative constant c (Ref. 79)), viewed as a representation of uncertainty about

θ , to disjunctions of hypotheses, the corresponding set-function 3 should obey the

laws of possibility measures52,80 in the absence of a probabilistic prior, namely, the

following properties look reasonable for such a set-function 3:

r The properties of probability theory enforce ∀T ⊆ 2,3(T ) ≤ maxθ∈T λ(θ );
r A set-function representing likelihood should be monotonic with respect to inclusion: If

θ ∈ T , 3(T ) ≥ λ(θ );
r Keeping the same scale as probability functions, we assume 3(2) = 1.



Then it is clear that

λ(θ) =
P (d̂|θ)

maxθ∈2 P (d̂|θ)
,

and 3(T ) = maxθ∈T λ(θ), i.e., the extended likelihood function is a possibility

measure, and the coefficient c is then fixed. We recover Shafer’s proposal of a

consonant belief function derived from likelihood information,36 more recently

studied by Aickin.81 What is interesting to notice is that a conditional probability

P (A | B) conveys two meanings. It generally represents frequentist information

about the frequency of randomly generated objects having property A in class B;

conversely, it represents epistemic (nonfrequentist) uncertainty about the class B for

an object having property A. It is a bifaced notion with one side that is probabilistic

and another side possibilistic. Clearly, acquiring likelihood functions is one way of

constructing possibility distributions.

4.3. Possibility Distributions Induced by Human-Originated Estimates

Another source of information for building possibility distributions consists in

estimates supplied by human experts on the value of an unknown quantity X of

interest, for instance, a failure rate.

4.3.1. Intervals with Confidence Levels

In the most elementary case, such information from a witness or an expert

will most naturally take the form of an interval I = [a, b], since we cannot expect

precise knowledge generally. A confidence level λ will be attached to this interval,

either because the expert expresses some doubts about the estimate, or because

the receiver does not fully trust the competence of the expert. This information

can be modeled, following Shafer,36 by a simple support belief function with mass

m([a, b]) = λ, while the mass 1 − λ will be allocated to the widest possible range U

for the unknown quantity X, expressing ignorance. Clearly, this procedure yields the

hat-shaped possibility distribution π , presented in Equation 1, of the form π(u) = 1

if u ∈ [a, b], and 1 − λ otherwise.

Now the receiver may sometimes find the interval [a, b] too wide to be infor-

mative, or, on the contrary, too narrow to be safe enough. It is natural to collect

several such human-originated intervals of various sizes and levels of confidence.

In contrast with intervals obtained from the imperfect observation of random ex-

periments, intervals coming from one expert will generally be nested, if the latter

displays self-consistency. Considering that there is full dependency between these

information items (they come from the same person), the collection of nested in-

tervals I1 ⊆ . . . ⊆ In with confidence levels λi can be viewed as a kind of possi-

bilistic knowledge base and correspond to the “double-staircase-shaped” possibility



distribution of Equation 4

π(u) =
n

min
i=1

max(Ii(u), 1 − λi) =
∑

i:u∈Ii

m(Ii)

where m(Ii) = λi − λi−1. Should the pieces of information (Ii, λi) come from in-

dependent sources, one would be led to replace min by product in this expression

(which would be in full agreement with Dempster’s rule of combination). However,

the intervals would have less chance to be nested.

One may be inspired by the way probability distributions are elicited from

experts. In this case, information is requested in the form of quantiles of the

distributions, typically, the interval [a, b] is such that P ((−∞, a]) = 0.05 and

P ([b, +∞)) = 0.05. Clearly, the hat-shaped possibility distribution induced by the

piece of information [a, b] with confidence 0.1 is a weak form of the information

supplied by the two quantiles. This information is sometimes augmented by the 0.5

quantile (the median). In that case, a more faithful representation of this information

is in the form of a belief function with disjoint focal sets.

4.3.2. Expert-Originated Statistical Parameters

Another kind of information experts may supply consists of parameters of an

otherwise unknown distribution when the unknown quantity is a random variable. In

this case, one may use probabilistic inequalities to derive a possibility distribution.

For instance, if the expert has a clear idea of the mean x̂ of the probability measure

P , and of its standard deviation σ , the Chebychev inequality gives us a family

of inequalities P (Aλ) ≤ min(1, 1
λ2 ), where Aλ = [x̂ − λ · σ, x̂ + λ · σ ]. This nested

family corresponds to the possibility distribution π(x̂ − λ · σ ) = π(x̂ + λ · σ ) =

min(1, 1
λ2 ).73 It is consistent with any probability measure with mean x̂ and standard

deviation σ . The work of Mauris70 presented above allows to derive a nontrivial

possibility distribution from the mere knowledge of the mode of a distribution. Note

that the mode corresponds to the idea of most frequently observed values and sounds

like a more likely information to be supplied by one expert than for instance the

mean value, or even the median. The mode is generally not unique but corresponds

to the idea of usual value, whereas the mean value may correspond to seldom

observed values, e.g., located between modes. If the information about the mode is

supplemented by a safe range for the unknown quantity, the triangular fuzzy number

with such mode and support is a faithful representation of this information,70,73 and

it a special case of Gauss inequality,82 which dates back to 1823; see Baudrit and

Dubois76 for more details on possibility distributions induced by the knowledge of

statistical parameters.

4.3.3. From Subjective Probabilities to Subjective Possibilities

One traditional approach to elicitate probability distributions is via fair betting

rates. Namely, the subjective probability P (A) of a singular event A, as per an agent,



is viewed as the fair price of a lottery ticket that provides one dollar to this agent

if this event occurs. Fairness means that the buyer would accept to sell the lottery

ticket at the same price. It is clear that for any k mutually exclusive and exhaustive

events A1, . . . , Ak , we must have that
∑k

i=1 P (Ai) = 1 by fear of losing money

otherwise. If there is no reason to consider one event more likely than another then

P (Ai) = 1/k for such all events.

The legitimacy of this representation of the epistemic state of an agent has been

questioned.33,36,83 In particular, it can be considered ambiguous. It presupposes a

one-to-one function between epistemic states and probability distributions. However,

the subjective distribution would be uniform in both cases where the agent is fully

ignorant and when he perfectly knows that the stochastic process generating the

events is pure randomness. So it is actually a many-to-one mapping, and, given a

subjective probability assignment provided by an expert following the betting rate

protocol, there is no clue about the precise epistemic state that led to those betting

rates.

If we stick to the Bayesian methodology of eliciting fair betting rates from the

agent, but we reject the assumption that degrees of beliefs coincide with these betting

rates, it follows that the subjective probability distribution supplied by an agent is

only a trace of this agent’s beliefs. While, in the presence of partial information,

beliefs can be more faithfully represented by a set of probabilities, the agent is

forced to be additive by the postulates of exchangeable bets. In the transferable

belief model,84 the agent’s epistemic state is supposed to be represented by a random

epistemic set with mass m, and the subjective probability provided by the Bayesian

protocol is called the pignistic probability85 (also known as Shapley value in the

game-theoretic literature86):

pp(ui) =
∑

j :ui∈Ej

m(Ej )

|Ej |
. (10)

This is an extension of the Laplace principle of insufficient reason, whereby uniform

betting rates are assumed inside each focal set. Then, given a subjective probability,

the problem consists in reconstructing the underlying belief function.

There are clearly several random sets {(Ei, m(Ei)) : i = 1 . . . n} correspond-

ing to a given pignistic probability. It is in agreement with the minimal specificity

principle to consider, by default, the least informative among those. It means adopt-

ing a pessimistic view on the agent’s knowledge. This is in contrast with the case

of statistical probability distributions where the available information consists of

observed data. Here, the available information being provided by an agent, it is

not assumed that the epistemic state is a unique probability distribution. The most

elementary way of comparing belief functions in terms of informativeness consists

in comparing contour functions in terms of the specificity ordering of possibility

distributions. Dubois et al.87 proved that the least informative random set with a

prescribed pignistic probability pi = pp(ui), i = 1, . . . , n is unique and consonant.

It is based on a possibility distribution π sub, previously suggested in Ref. 88 with a



totally different rationale:

π sub(ui) =

n
∑

j=1

min(pj , pi). (11)

More precisely, let F(p) be the set of random sets R with pignistic probability

p. Let πR be the possibility distribution induced by R using the one-point cov-

erage Equation (6). Define R1 to be at least as informative a random set as R2

whenever πR1
≤ πR2

. Then, the least informative R in F(p) is precisely the con-

sonant one such that πR = π sub. Note that, mathematically, Equation 10, when

restricted to consonant masses of possibility measures, defines the converse func-

tion of Equation 11, i.e., they define a bijection between possibility and proba-

bility distributions. Namely, starting from π1 ≥ . . . ≥ πn defining the possibility

distribution π , computing its associated pignistic probability pp, we have that

π sub(ui) =
∑n

j=1 min(pp(uj ), pp(ui)) = πi .

By construction, π sub is a subjective possibility distribution. Its merit is that

it does not assume human knowledge is precise, like in the subjective probability

school. The subjective possibility distribution (11) is less specific than the optimal

transformation (7), as expected, i.e., π sub > πp, generally. The transformation (11)

was first proposed in Ref. 88 for objective probability, interpreting the empirical

necessity of an event as the sum of excesses of probability of realizations of this event

with respect to the probability of the most likely realization of the opposite event.

5. CONCLUSION

One of the most promising seminal off-spring of fuzzy sets introduced in

Zadeh’s 1965 paper89 is possibility theory. Possibility theory bridges the gap be-

tween artificial intelligence and statistics. The above survey of methods for deriving

possibility distributions from data or human knowledge suggests that this framework

is one way to go in the problem of membership function assessment. Of course,

not all fuzzy sets are possibility distributions, especially those representing utility

functions, or those fuzzy sets with a conjunctive interpretation,2 like a vector of

ratings in multifactorial evaluations. However, possibility theory clarifies the role of

fuzzy sets in uncertainty management and explains why probability degrees, viewed

as frequency or betting rates, can be used to derive membership functions.
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