G. D. Brown, Hidden Killers: Human Fungal Infections, Science Translational Medicine, vol.14, issue.2, pp.165-113, 2012.
DOI : 10.1258/0956462981922728

C. Moran, C. A. Grussemeyer, J. R. Spalding, J. D. Benjamin, and S. D. Reed, CANDIDA ALBICANS AND NON-ALBICANS BLOODSTREAM INFECTIONS IN ADULT AND PEDIATRIC PATIENTS, The Pediatric Infectious Disease Journal, vol.28, issue.5, pp.433-435, 2009.
DOI : 10.1097/INF.0b013e3181920ffd

M. C. Arendrup, Epidemiology of invasive candidiasis, Current Opinion in Critical Care, vol.16, issue.5, pp.445-452, 2010.
DOI : 10.1097/MCC.0b013e32833e84d2

D. Maubon, C. Garnaud, T. Calandra, D. Sanglard, and M. Cornet, Resistance of Candida spp. to antifungal drugs in the ICU: where are we now? Intensive Care Med, pp.1241-1255, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01474519

D. W. Denning and M. J. Bromley, How to bolster the antifungal pipeline, Science, vol.13, issue.11, pp.1414-1416, 2015.
DOI : 10.1016/S1473-3099(12)70293-1

D. Sanglard, Emerging Threats in Antifungal-Resistant Fungal Pathogens, Frontiers in Medicine, vol.58, issue.13, p.11, 2016.
DOI : 10.1111/myc.12380

URL : https://doi.org/10.3389/fmed.2016.00011

D. Hnisz, M. Tscherner, and K. Kuchler, Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious, Epigenomics, vol.6, issue.2, pp.129-132, 2011.
DOI : 10.1111/j.1365-2958.2009.06772.x

C. Garnaud, M. Champleboux, D. Maubon, M. Cornet, and J. Govin, Histone Deacetylases and Their Inhibition in Candida Species, Frontiers in Microbiology, vol.25, issue.e12171, p.1238, 2016.
DOI : 10.1517/13543776.2014.981256

URL : https://hal.archives-ouvertes.fr/hal-01470810

L. Kmetzsch, Histone deacetylases: Targets for antifungal drug development, Virulence, vol.6, issue.6, pp.535-536, 2015.
DOI : 10.1111/j.1567-1364.2007.00276.x

URL : http://www.tandfonline.com/doi/pdf/10.1080/21505594.2015.1049807?needAccess=true

H. Wurtele, Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy, Nature Medicine, vol.45, issue.7, pp.774-780, 2010.
DOI : 10.1016/j.mrfmmm.2005.01.033

J. L. Nishikawa, Inhibiting fungal multidrug resistance by disrupting an activator???Mediator interaction, Nature, vol.60, issue.7591, pp.485-489, 2016.
DOI : 10.1107/S0907444904026460

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860947/pdf

P. Filippakopoulos and S. Knapp, Targeting bromodomains: epigenetic readers of lysine acetylation, Nature Reviews Drug Discovery, vol.4, issue.5, pp.337-356, 2014.
DOI : 10.1093/bioinformatics/bts340

J. Moriniere, Cooperative binding of two acetylation marks on a histone tail by a single bromodomain, Nature, vol.54, issue.7264, pp.664-668, 2009.
DOI : 10.1107/S0907444998003254

URL : https://hal.archives-ouvertes.fr/cea-00909643

P. Filippakopoulos, Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family, Cell, vol.149, issue.1, pp.214-231, 2012.
DOI : 10.1016/j.cell.2012.02.013

E. Nicodeme, Suppression of inflammation by a synthetic histone mimic, Nature, vol.4, issue.7327, pp.1119-1123, 2010.
DOI : 10.1038/nature09589

P. Filippakopoulos, Selective inhibition of BET bromodomains, Nature, vol.4, issue.7327, pp.1067-1073, 2010.
DOI : 10.1016/S0002-9440(10)63049-0

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/pdf

U. Schaefer, Pharmacological Inhibition of Bromodomain-Containing Proteins in Inflammation, Cold Spring Harbor Perspectives in Biology, vol.6, issue.6, pp.18671-18672, 2014.
DOI : 10.1101/cshperspect.a018671

M. Brand, Small Molecule Inhibitors of Bromodomain???Acetyl-lysine Interactions, ACS Chemical Biology, vol.10, issue.1, pp.22-39, 2015.
DOI : 10.1021/cb500996u

C. Y. Wang and P. Filippakopoulos, Beating the odds: BETs in disease, Trends in Biochemical Sciences, vol.40, issue.8, pp.468-479, 2015.
DOI : 10.1016/j.tibs.2015.06.002

E. Ferri, C. Petosa, and C. E. Mckenna, Bromodomains: Structure, function and pharmacology of inhibition, Biochemical Pharmacology, vol.106, pp.1-18, 2016.
DOI : 10.1016/j.bcp.2015.12.005

URL : https://hal.archives-ouvertes.fr/hal-01256715

F. A. Romero, Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inhibitors, Journal of Medicinal Chemistry, vol.59, issue.4, pp.1271-1298, 2016.
DOI : 10.1021/acs.jmedchem.5b01514

A. G. Ladurner, C. Inouye, R. Jain, and R. Tjian, Bromodomains Mediate an Acetyl-Histone Encoded Antisilencing Function at Heterochromatin Boundaries, Molecular Cell, vol.11, issue.2, pp.365-376, 2003.
DOI : 10.1016/S1097-2765(03)00035-2

URL : https://doi.org/10.1016/s1097-2765(03)00035-2

O. Matangkasombut and S. Buratowski, Different Sensitivities of Bromodomain Factors 1 and 2 to Histone H4 Acetylation, Molecular Cell, vol.11, issue.2, pp.353-363, 2003.
DOI : 10.1016/S1097-2765(03)00033-9

E. Garcia-oliver, Bdf1 Bromodomains Are Essential for Meiosis and the Expression of Meiotic-Specific Genes, PLOS Genetics, vol.33, issue.1, p.1006541, 2017.
DOI : 10.1371/journal.pgen.1006541.s013

O. Matangkasombut, R. M. Buratowski, N. W. Swilling, and S. Buratowski, Bromodomain factor 1 corresponds to a missing piece of yeast TFIID, Genes Dev, vol.14, pp.951-962, 2000.

N. J. Krogan, A Snf2 Family ATPase Complex Required for Recruitment of the Histone H2A Variant Htz1, Molecular Cell, vol.12, issue.6, pp.1565-1576, 2003.
DOI : 10.1016/S1097-2765(03)00497-0

G. Mizuguchi, ATP-Driven Exchange of Histone H2AZ Variant Catalyzed by SWR1 Chromatin Remodeling Complex, Science, vol.303, issue.5656, pp.343-348, 2004.
DOI : 10.1126/science.1090701

J. Govin, Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis, Genes & Development, vol.24, issue.16, pp.1772-1786, 2010.
DOI : 10.1101/gad.1954910

J. Fu, The Yeast BDF1 Regulates Endocytosis via LSP1 Under Salt Stress, Current Microbiology, vol.49, issue.5, pp.671-678, 2015.
DOI : 10.1093/jac/dkf001

X. Liu, Genetic and Comparative Transcriptome Analysis of Bromodomain Factor 1 in the Salt Stress Response of Saccharomyces cerevisiae, Current Microbiology, vol.20, issue.34, pp.325-330, 2007.
DOI : 10.1128/MCB.15.7.3685

M. Durant and B. Pugh, NuA4-Directed Chromatin Transactions throughout the Saccharomyces cerevisiae Genome, Molecular and Cellular Biology, vol.27, issue.15, pp.5327-5335, 2007.
DOI : 10.1128/MCB.00468-07

URL : http://mcb.asm.org/content/27/15/5327.full.pdf

I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev, Natural history and evolutionary principles of gene duplication in fungi, Nature, vol.32, issue.7158, pp.54-61, 2007.
DOI : 10.1038/nature06107

T. Roemer, Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery, Molecular Microbiology, vol.285, issue.1, pp.167-181, 2003.
DOI : 10.1128/jb.176.11.3231-3241.1994

M. A. Dawson, Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia, Nature, vol.461, issue.7370, pp.529-533, 2011.
DOI : 10.1038/nature08448

P. V. Fish, Identification of a Chemical Probe for Bromo and Extra C-Terminal Bromodomain Inhibition through Optimization of a Fragment-Derived Hit, Journal of Medicinal Chemistry, vol.55, issue.22, pp.9831-9837, 2012.
DOI : 10.1021/jm3010515

L. M. Douglas and J. B. Konopka, Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans, Journal of Microbiology, vol.18, issue.3, pp.178-191, 2016.
DOI : 10.1038/nsmb.2080

J. M. Francois, Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts, Adv. Exp. Med. Biol, vol.159, pp.11-31, 2016.
DOI : 10.1093/toxsci/kfn034

R. Prasad, M. K. Rawal, and A. H. Shah, Candida Efflux ATPases and Antiporters in Clinical Drug Resistance, Adv. Exp. Med. Biol, vol.291, issue.7, pp.351-376, 2016.
DOI : 10.1126/science.1056957

L. E. Cowen, D. Sanglard, S. J. Howard, P. D. Rogers, and D. S. Perlin, Mechanisms of antifungal drug resistance. Cold Spring Harb, Perspect. Med, vol.5, p.19752, 2014.

C. W. Chung, Discovery and Characterization of Small Molecule Inhibitors of the BET Family Bromodomains, Journal of Medicinal Chemistry, vol.54, issue.11, pp.3827-3838, 2011.
DOI : 10.1021/jm200108t

L. R. Vidler, N. Brown, S. Knapp, and S. Hoelder, Druggability Analysis and Structural Classification of Bromodomain Acetyl-lysine Binding Sites, Journal of Medicinal Chemistry, vol.55, issue.17, pp.7346-7359, 2012.
DOI : 10.1021/jm300346w

S. Picaud, RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain, Proc. Natl Acad. Sci. USA, pp.19754-19759, 2013.
DOI : 10.1093/biostatistics/4.2.249

C. Pivot-pajot, Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein, Molecular and Cellular Biology, vol.23, issue.15, pp.5354-5365, 2003.
DOI : 10.1128/MCB.23.15.5354-5365.2003

URL : http://mcb.asm.org/content/23/15/5354.full.pdf

J. M. Lamonica, Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes, Proc. Natl Acad. Sci. USA, pp.159-168, 2011.
DOI : 10.1038/nature09504

URL : http://www.pnas.org/content/108/22/E159.full.pdf

M. G. Baud, A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes, Science, vol.498, issue.4, pp.638-641, 2014.
DOI : 10.1038/nature12147

M. Tanaka, Design and characterization of bivalent BET inhibitors, Nature Chemical Biology, vol.7, issue.12, pp.1089-1096, 2016.
DOI : 10.1016/0003-2697(89)90213-3

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5117811/pdf

M. J. Waring, Potent and selective bivalent inhibitors of BET bromodomains, Nature Chemical Biology, vol.12, issue.12, pp.1097-1104, 2016.
DOI : 10.1186/s13059-014-0550-8

G. W. Rhyasen, AZD5153: A Novel Bivalent BET Bromodomain Inhibitor Highly Active against Hematologic Malignancies, Molecular Cancer Therapeutics, vol.15, issue.11, pp.2563-2574, 2016.
DOI : 10.1158/1535-7163.MCT-16-0141

G. E. Winter, Phthalimide conjugation as a strategy for in vivo target protein degradation, Science, vol.86, issue.Pt 12 Pt 1, pp.1376-1381, 2015.
DOI : 10.1021/ac502040v

J. Lu, Hijacking the E3??Ubiquitin Ligase Cereblon to Efficiently Target BRD4, Chemistry & Biology, vol.22, issue.6, pp.755-763, 2015.
DOI : 10.1016/j.chembiol.2015.05.009

URL : https://doi.org/10.1016/j.chembiol.2015.05.009

M. Zengerle, K. H. Chan, and A. Ciulli, Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4, ACS Chemical Biology, vol.10, issue.8, pp.1770-1777, 2015.
DOI : 10.1021/acschembio.5b00216

K. Raina, PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer, Proc. Natl Acad. Sci. USA, pp.7124-7129, 2016.
DOI : 10.1016/j.molcel.2014.05.016

J. H. Zhang, T. D. Chung, and K. R. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, Journal of Biomolecular Screening, vol.4, issue.2, pp.67-73, 1999.
DOI : 10.1177/108705719900400206

M. A. Fabian, A small molecule???kinase interaction map for clinical kinase inhibitors, Nature Biotechnology, vol.101, issue.3, pp.329-336, 2005.
DOI : 10.1073/pnas.0405220101

L. M. Wodicka, Activation State-Dependent Binding of Small Molecule Kinase Inhibitors: Structural Insights from Biochemistry, Chemistry & Biology, vol.17, issue.11, pp.1241-1249, 2010.
DOI : 10.1016/j.chembiol.2010.09.010

M. D. Winn, 4 suite and current developments, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.4, pp.235-242, 2011.
DOI : 10.1107/S0907444909037044

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

G. Langer, S. X. Cohen, V. S. Lamzin, and A. Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7, Nature Protocols, vol.60, issue.7, pp.1171-1179, 2008.
DOI : 10.1038/nprot.2008.91

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582149/pdf

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

URL : http://journals.iucr.org/d/issues/2004/12/01/ba5070/ba5070.pdf

A. A. Lebedev, 4 template-restraint library, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.4, pp.431-440, 2012.
DOI : 10.1107/S0907444910045749

URL : http://journals.iucr.org/d/issues/2012/04/00/dz5247/dz5247.pdf

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815670/pdf

V. B. Chen, : all-atom structure validation for macromolecular crystallography, Acta Crystallographica Section D Biological Crystallography, vol.285, issue.1, pp.12-21, 2010.
DOI : 10.1107/S0907444909042073

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803126/pdf

S. Gola, R. Martin, A. Walther, A. Dunkler, and J. Wendland, : rapid and efficient gene targeting using 100 bp of flanking homology region, Yeast, vol.181, issue.16, pp.1339-1347, 2003.
DOI : 10.1016/S0378-1119(99)00509-0

E. Gari, L. Piedrafita, M. Aldea, and E. Herrero, A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae, Yeast, vol.5, issue.9, pp.837-848, 1997.
DOI : 10.1006/abio.1996.0112

A. Walther and J. Wendland, An improved transformation protocol for the human fungal pathogen Candida albicans, Current Genetics, vol.42, issue.6, pp.339-343, 2003.
DOI : 10.1007/s00294-002-0349-0

B. Spellberg, A. S. Ibrahim, J. J. Edwards, and S. G. Filler, Mice with Disseminated Candidiasis Die of Progressive Sepsis, The Journal of Infectious Diseases, vol.192, issue.2, pp.336-343, 2005.
DOI : 10.1086/430952

S. L. Lafayette, PKC Signaling Regulates Drug Resistance of the Fungal Pathogen Candida albicans via Circuitry Comprised of Mkc1, Calcineurin, and Hsp90, PLoS Pathogens, vol.33, issue.8, p.1001069, 2010.
DOI : 10.1371/journal.ppat.1001069.s013

E. M. Flynn, A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications, Structure, vol.23, issue.10, pp.1801-1814, 2015.
DOI : 10.1016/j.str.2015.08.004