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Characteristic Constraint Modes for Component Mode Synthesis
Matthew P. Castanier, Yung-Chang Tan, and Christophe Pierre 

University of Michigan, Ann Arbor, Michigan 48109-2125

A technique is presented for reducing the size of a model generated by the Craig–Bampton method (Craig,
R. R., and Bampton, M. C. C., “Coupling of Substructures for Dynamic Analyses,” AIAA Journal, Vol. 6, No. 7,
1968, pp. 1313–1319) of component mode synthesis (CMS). An eigenanalysis is performed on the partitions of the
CMS mass and stiffness matrices that correspond to the so-called constraint modes. The resultant eigenvectors
are referred to as characteristic constraint modes because they represent the characteristic motion of the interface
between the component structures. When the characteristic constraint modes are truncated, a CMS model with a
highly reduced number of degrees of freedom may be obtained. An example of a cantilever plate is considered. It is
shown that relatively few characteristic constraint modes are needed to yield accurate approximationsof the lower
naturalfrequencies. Furthermore, this method yieldsphysical insightinto themechanismsofvibrationtransmission
in complex structures, and it provides an excellent framework for the ef� cient calculation of power � ow.

Nomenclature
K = stiffness matrix
k = stiffness matrix partition
k = stiffness matrix partition that has been reduced

in both dimensions (rows and columns)
by coordinate transformationsusing selected sets
of modes

M = mass matrix
m = mass matrix partition
m = mass matrix partition that has been reduced

in both dimensions (rows and columns)
by coordinate transformations
using selected sets of modes

N = number of physical or modal
degrees of freedom (DOF)

x = displacements in physical coordinates,
for example, � nite element DOF

y = generalized coordinates
of the component mode synthesis model

z = generalized coordinates
of the reduced-ordermodel

k = eigenvalue
U = full set of characteristic

constraint eigenvectors
U = selected set of characteristic

constraint eigenvectors
U i = full set of normal modes for

substructure i
U i = selected set of normal modes for substructure i
Á = characteristic constraint

eigenvector (in constraint-modeDOF)
Ái = normal mode for substructure i
W C = full set of Craig–Bampton constraint modes2

Ã = characteristic constraint mode
(in physical coordinates)

Subscripts

C = constraint-modeDOF
= characteristic-constraint-mode DOF

CMS = component mode synthesis model
ROM = reduced-ordermodel
a = physical DOF of substructure 1,

excluding the interface DOF
a C , b C , = coupling terms between physical DOF
C a , C b of a substructure and the interface
b = physical DOF of substructure 2,

excluding the interface DOF
C = physical DOF of the interface

between substructures
1 = normal-mode DOF of substructure 1
2 = normal-mode DOF of substructure 2
1C , 2C , = coupling terms between normal-mode
C1, C2 and constraint-modeDOF
1 , 2 , = coupling terms between normal-mode

1, 2 and characteristic-constraint-mode DOF

Introduction

W HEN modeling the dynamics of a complex structure, it is
often impractical to perform a � nite element analysis of the

entire structure. In some cases, the � nite element model (FEM)
of the full structure has so many degrees of freedom (DOF) that a
global� niteelementanalysisis impossibledue to computermemory
constraints or node limits in the software. Also, it is common for
component structures to be designed or redesigned independently,
which makes it more convenientto performa separate � nite element
analysis for each component.

Component mode synthesis (CMS) was developed as a practical
and ef� cient approach to modeling and analyzing the dynamics of
the global structure in such circumstances.1,2 In CMS, the dynam-
ics of a structure are described by selected sets of normal modes of
the individual component structures, plus a set of static vectors that
account for the coupling at each interface where component struc-
tures are connected.Thus, each componentstructure is dynamically
reduced by a separate modal analysis before being coupled at the
system level, yielding savings in � nite element costs as well as pro-
viding signi� cant order reduction for the CMS model relative to the
FEM of the complex structure. For a review of the CMS literature,
the reader is referred to the work by Craig3 and Seshu.4

One of the most accurate and widely used CMS methods is the
Craig–Bampton method.2,5 In this method, the component normal
modes are calculated with the interface between the component
structures held � xed. Attachment at the interface is achieved by a
set of constraint modes. A constraint mode shape is the static de-
� ection induced in the structure by applying a unit displacement to
one interface DOF while all of the other interface DOF are held
� xed. Thus, the motion at the interface is completely described
by the constraint modes. However, there is a computational cost
associated with these modes because the CMS model must have
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one DOF for each DOF in the interface of the FEM. This means
that, whereas dramatic order reduction may be achieved for the
individual components (normal-mode DOF), there is no order re-
duction for the interface(constraint-modeDOF). In fact, if the � nite
element mesh is suf� ciently � ne, the size of the CMS model may
be dominatedby the constraint-modeDOF. This can make the CMS
model cumbersome to use, for example, in analysis of large-scale
structures with many components or in probabilistic analysis.

In this paper, a new technique is presented for reducing the size
of a CMS model by performing an eigenanalysison the constraint-
mode partitions of the mass and stiffness matrices. The resultant
eigenvectors are called the characteristic constraint ( ) modes.
These modes may then be truncated to yield a highly reduced-
order model. Therefore, the method presented in this paper offers
increased computational ef� ciency for performing analyses with a
CMS model. Furthermore, the modes evidence the characteris-
tic motion of the interface, so that this method provides signi� cant
physical insight into the transmission of vibration energy between
substructures. In particular, a -mode-based model is well suited
to the ef� cient calculationof power � ow in complex structures, due
to the compact representationof the interface motion.

To the authors’ knowledge, the only similar method is that of
Bourquin and d’Hennezel.6,7 They introduced a � xed-interface
CMS method “based on a non-conventional choice of constraint
modes tied to the normal modes of the Poincaré-Steklovoperatoras-
sociatedwith the interface between the substructures.”6 They called
these alternative constraint modes the “coupling modes,” and they
proposed algorithms for handling the various numerical computa-
tions needed to � nd the coupling modes.7 In contrast, the method
proposed here is based on the classic Craig–Bampton method2,5

and employs a straightforward eigenanalysis to � nd the character-
istic constraint modes. Therefore, this new method is quite simple,
both conceptually and computationally.

This paper is organized as follows. In the second section, the
Craig–Bampton method of CMS is brie� y reviewed, and the con-
straint modes are discussed. In the third section, the modes are
introduced as a means of reducing the size of the CMS model, and
the advantagesof a -mode-based representationare covered.For
illustration, traditional constraint modes and modes are com-
pared for two different � nite element models of a two-span beam
on simple supports. In the fourth section, the new CMS method is
applied to an example system of a cantilever plate. The mode
shapes are shown, and the accuracy in calculating the natural fre-
quencies with various sets of modes is discussed. This work is
summarized in the � nal section.

Component Mode Synthesis and Constraint Modes
Considera FEM of a complexstructurethat is partitionedinto two

substructures, that is, component structures. The boundary where
the component structures are connected will be referred to as the
interface. The group of DOF in the interface will be denoted by C ,
and the number of interface DOF by N C . The DOF of substructure
1 (2) that are not in C will be denoted by a (b ), and the number of
these DOF will be denotedby N a (N b ). Then the mass and stiffness
matrices in � nite element coordinatesmay be partitionedas follows:

M

m C 0 0

0 m a 0

0 0 m b

, K

k C k C a k C b

k a C k a 0

k b C 0 k b

(1)

where subscripts denote the associated DOF and double subscripts
indicate coupling terms.

The partitioning scheme of Eq. (1) is chosen for simplicity of
presentation. In general, one may choose to have other active DOF,
such as points where forcing is applied or where a damper is at-
tached. These DOF would then be grouped with the interface DOF.
Also, CMS formulationsare usuallycast in termsof the substructure
matrices.However, for the purposesof this study, it is more straight-
forward to partition the matrices of the full complex structure into

interface and noninterfaceDOF. Furthermore, only two component
structures are considered,but this is not restrictive.

The Craig–Bampton method2 of component mode synthesis em-
ploys � xed-interface component normal modes, as well as a set of
vectors called constraint modes. As mentioned earlier, a constraint
mode is the static de� ection induced in the structure by applying
a unit displacement to one interface DOF while all other interface
DOF are held � xed. Therefore, the interface partition of the con-
straint modes is an identity matrix of dimension N C , and the set of
constraint modes W C is of the form

W C

I

W C
a

W C
b

(2)

where W C
a and W C

b are the static shapes induced in substructures
1 and 2, respectively, by the unit displacements at the interface.
These shapes are determined by posing the following statics prob-
lem:

kC kC a k C b

k a C k a 0

k b C 0 kb

I

W C
a

W C
b

f

0

0

(3)

where f is a vector of forces that would be needed to impose the
successiveunit displacementsat the interface DOF. The two sets of
homogeneous equations in Eq. (3) yield

W C
a (ka ) 1k a C , W C

b (k b ) 1kb C (4)

Using these solutions, the constraint modes of Eq. (2) are known.
Next, the component normal modes are obtained by performing

a modal analysis for each component structure. Because the Craig–

Bampton method uses � xed-interface modes, they are determined
from the following eigenvalue problems:

k a Á1 k m a Á1 , k b Á2 k m b Á2 (5)

In general, thesemodes are truncatedto reduce the sizeof the model.
For example, if U i is the full eigenvectormatrix for substructure i
and Ni modes are selected,

U 1

N a N a

select modes U 1

N a N1

, U 2

N b N b

select modes U 2

N b N2

(6)

Then, by the use of the constraint modes and selected sets of com-
ponent normal modes, the transformationfrom � nite element coor-
dinates x to CMS generalized coordinates y is

x

I 0 0

W C
a U 1 0

W C
b 0 U 2

y (7)

Applying the transformationofEq. (7), the globalmass and stiffness
matrices for the CMS model have the form3

MCMS

mC mC1 mC2

m1C m̂1 0

m2C 0 m̂2

, KCMS

kC 0 0

0 k̂1 0

0 0 k̂2

(8)

Note that this transformationyields only inertial coupling between
the normal modes and the constraint modes.

The number of normal-mode DOF depends, of course, on how
many normal modes are selected for each component structure.
However, the number of constraint-mode DOF is equal to N C , the
number of FEM DOF that are in the interface. Thus, the size of
the constraint-mode partitions is determined by the � nite element
mesh. If there are many � nite element nodes in the interface region,
then the constraint-mode partitions of the CMS matrices may be
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Fig. 1 Two-span beam on simple supports.

Fig. 2 Single constraint mode for the beam-element FEM.

relatively large. Furthermore, as the number of constraintmodes in-
creases, the individual constraint modes may have limited physical
meaning.

To illustrate the last point, consider the simply supported two-
span beam presented in Fig. 1. This system is treated as a complex
structure consisting of two component structures with the interface
at the center support.Each span is treated as a substructure,referred
to as beam 1 and beam 2. (The modeling of power � ow in this
system was examined in detail in an earlier work by the authors.8)
Two different � nite element models were generatedfor this system:
one consisting of Timoshenko beam elements and a second, more
generalFEM consistingofsolidelements.All � niteelementanalysis
in this study was performed using the commercial code ABAQUS.

For the beam-element FEM, the displacement at the center sup-
port is constrained by the pin, so that there is only one (rotational)
DOF at the interface. Thus, there is only one constraintmode in the
corresponding CMS model. This single constraint mode, which is
obtainedby imposing a static angular displacementabout the center
support, is shown in Fig. 2. Only beam 1 is shown. The interface is
at the right end.

In contrast, the solid-element FEM has 25 nodes at the interface.
Note that one horizontalline of nodes in the center of the interface is
� xed to represent a pinned condition. This leaves 20 unconstrained
� nite element nodes (60 DOF) in the interface of the solid-element
FEM, leading to 60 constraint modes in the CMS model. One of
these constraintmodes is shown in Fig. 3. Onlybeam1 is shown.The
interface node at which a unit displacement is imposed is marked
by a dot. Signi� cant local deformation is evident in this constraint
mode. It can also be seen that the offset of the imposeddisplacement
from the pinned line of nodes leads to bending of the beam in the
XY plane. It is easy to imagine that a linear combination of similar
constraint modes could yield a more natural � exural motion, such
as that of the lone constraint mode for the beam-element FEM.
Furthermore, a complete set of these linear combinations could be
de� ned as a new set of constraintmodes that describe the principal
ways in which the interfacedeforms.This idea is consideredin detail
in the next section.

Modes
It is now suggestedthat the numberof necessaryconstraintmodes

may be reduced by seeking a new set of modes that correspond to
more natural physical motion at the interface. This is posed as an
eigenvalue problem for the constraint-mode partitions of the CMS
matrices:

kCÁ k mC Á (9)

Suppose that these eigenvectorsare then truncated,as in a traditional
modal analysis:

U

N C N C

select modes U

N C N

(10)

This selected set of eigenvectorsmay be used to transform the mass
and stiffness matrices to yield a reduced-order model (ROM). The

a)

b)

Fig. 3 One of the 60 constraint modes for the solid-element FEM: a)
side view of beam 1, as in Fig. 1, with the interface at the right end and
b) rotated view of beam 1 with the interface shown in the foreground.

transformation from CMS generalized coordinates y to ROM gen-
eralized coordinates z may be de� ned as

y
U 0 0

0 I 0

0 0 I

z (11)

The mass and stiffness matrices in ROM generalized coordinates
are, thus,

MROM

U
T

mC U U
T

mC1 U
T

mC2

m1C U m̂1 0

m2C U 0 m̂2

m̂ m̂ 1 m̂ 2

m̂1 m̂1 0

m̂2 0 m̂2

(12)

KROM

U
T

kC U 0 0

0 k̂1 0

0 0 k̂2

k̂ 0 0

0 k̂1 0

0 0 k̂2

(13)

Now, compared to the mass and stiffness matrices of Eq. (1), the
size of every matrix partition has been reduced.

Finally, an eigenvector from Eq. (9) may be transformed from
constraint-modecoordinates into � nite element coordinates:

Ã W C Á (14)

Note that Ã is an eigenvector-based linear combination of con-
straint modes. Therefore, it captures some characteristic physical
motion in the interface region, and accordingly, it is called a char-
acteristic constraint ( ) mode. The modes provide, at least in
an approximate sense, the principal modes of deformation for the
interface. In fact, the calculation and selection of the modes is
essentially a secondarymodal analysis, and the bene� ts are similar
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a)

b)

Fig. 4 Comparison of a) single constraint mode for the beam-element
FEM and b) � rst mode for the solid-element FEM.

Fig. 5 Second mode for the solid-element FEM.

to those of a traditional modal analysis. For example, a re� nement
of the � nite element mesh would lead to an increase in the accuracy
of the ROM without requiring an increase in the size of the ROM
because the same number of modes could be retained.

Note that, in certain cases, it might be more bene� cial to perform
an eigenanalysison the full matrices of the CMS model. This would
yield a set of system modes for the complex structure.This idea has
been investigatedby theauthorsin thecontextofmodelingthevibra-
tion of turbomachineryrotors,9,10 but it will not be consideredhere.

To illustrate the characteristic motion that is captured by the
modes, the � rst mode for the solid-element FEM of the beam
system is shown in Fig. 4b. Only beam 1 is shown. The interface
is at the right end. Note that it appears to be identical to the single
constraint mode for the beam-element FEM, which is shown again
in Fig. 4a for comparison. It is clear that the � rst mode captures
the XY-plane � exural motion at the interface. The second mode
for the solid-elementFEM is shown in Fig. 5. It is apparent that the
second mode corresponds to � exural motion in the XZ plane.
Only beam 1 is shown. Figure 5 is a rotated view with the interface
shown in the foreground.

Thus, depending on the type of motion and frequency range of
interest, the modes may be truncated to yield a new CMS model
with a greatly reducednumber of DOF. The ef� ciency and accuracy
of this method will be investigated in the next section.

Example
The cantilever plate shown in Fig. 6 is now considered as an

example structure.The dimensions and material properties are cho-
sen to be the same as those used by Craig and Bampton2: 2024-T3
aluminum,Young’s modulus E 10.5 106 psi (72GPa), Poisson’s
ratio m 0.33,density q 0.101 lb/in.3 (2800kg/m3), and thickness

Fig. 6 Cantilever plate partitioned into two component structures, re-
ferred to as plate 1 and plate 2.

Fig. 7 Error, relative to the 164-DOF CMS model, for the � rst 15
natural frequencies of the cantilever plate calculated for 10 different
ROMs (1–10 retained modes).
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t 0.125 in. (0.3175 cm). The plate is considered to consist of two
substructuresas shown. This partitioning is also the same as that of
Ref. 2.

A FEM of this plate was constructed using a 48 24 1 mesh
of ABAQUS shell elements (element S4R, four nodes/element, six
DOF/node). The analyticalresultsfor the � rst 10naturalfrequencies
of the cantilever plate are given by Gorman,11 and these were used
as a benchmark.The � nite element mesh is suf� ciently � ne that the
� rst 10 FEM natural frequenciesare all within 0.7% of the analytical
results.

A Craig–Bampton CMS model2 of the plate was then generated.
The � rst 10 normal modes were retained for each component struc-
ture. In addition, there were 144 constraint modes, yielding a CMS
model with 164 DOF. For reference, the � rst 15 natural frequencies
of this CMS model are all within 0.9% of the corresponding FEM
natural frequencies.

Next, modes were calculated, and 10 different ROMs were
constructed by keeping only the lowest one to 10 modes. Be-
cause a total of 20 component normal modes were selected for the
CMS model, the smallest ROM considered contains 21 DOF and
the largest contains 30 DOF.

The error for the � rst 15 natural frequenciesof the cantileverplate
is shown vs the number of selected modes in Fig. 7. This error

Fig. 8 First six characteristic constraint modes for the cantilever plate.

is calculated relative to the 164-DOF CMS model because a -
mode-based model will be no more accurate than its parent CMS
model. In fact, if all of the modes are included,no approximation
is made. Note that only 10 modes are needed to drive the error
below 0.01% for the � rst 15 natural frequencies of the cantilever
plate. Therefore, using the present method, a 30-DOF CMS model
is highly accurate relative to the 164-DOF CMS model for the fre-
quency range considered. Note that if the FEM mesh were re� ned,
the full CMS model size would increase. Yet a ROM calculated
using the selected set of modes would become more accurate
without a penalty of any additional DOF.

Insight into the results presented in Fig. 7 may be gained by
comparing the modes to the globalmodes of the cantileverplate.
The � rst six modes for plate 2 are shown in Fig. 8. (Only plate
2 is shown. Views are rotated such that the interface is seen at the
lower left edge, along the y axis.) Consider, for example, the second

mode. It is clear that the second mode captures much of the
interface-inducedmotion seen in the second and third globalmodes,
which are shown in Fig. 9. This explains why the frequency error
decreases by more than two orders of magnitude for these global
modes (Fig. 7) when mode 2 is included in the ROM. In Fig. 9,
for reference, the interface between plates 1 and 2 is marked by a
dark line.
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Fig. 9 Second and third global modes for the cantilever plate.

Returning to Fig. 8, note that the wavelength of the interface
motion decreases with higher modes, as would be expected.
Furthermore, there is an attendant decrease in the in� uence of the
interface motion at the far end of the component structure. Thus, it
appearsthat the lower modescapturemost of theglobal in� uence
of the interface motion. Higher modes, then, would be needed
only to model the details of the local interface motion.

Conclusions
This paper introduceda techniquefor reducingthe sizeof a Craig–

Bampton CMS2,5 model by improving the representationof the in-
terface between component structures. This new method is based
on computing modes. The modes are found by performing
an eigenanalysis of the partitions of the CMS mass and stiffness
matrices that correspond to the Craig–Bampton constraint modes.

It was seen that the modes capture the characteristic motion
of the interface, and thus, they may be truncated as if they were
traditional modes of vibration. This truncation leads to a highly
reduced-orderCMS model. In addition, the modes allow signi� -
cant insight into the physical mechanismsof vibration transmission
between the component structures.This information could be used,

for example, to determine the design parameters that have a critical
impact on power � ow.

The calculation and selection of the modes is essentially a
secondary modal analysis. Therefore, the bene� ts are the same as
those of a traditional modal analysis. For instance, re� ning the � -
nite element mesh would increase the accuracy of a ROM without
introducing any additionalDOF.

In general, this investigation showed that the use of modes
in CMS allows highly ef� cient modeling of the dynamics of com-
plex structures.Also, this techniqueis capableof providingphysical
insight into how the vibration energy � ows through the structure.
Whereas it is believed that this method has wide applicability, it
seems especially suited to predicting power � ow in complex struc-
tures.
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