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A HYBRID METHOD OF COMPONENT MODE SYNTHESIS 

RICHARD H. MACNEAL 

MacNeal-Schwendler Corporation, 7442 N Figueroa Street, Los Angeles, California, U.S.A. 

Ah&act-A method is described for representing a structural component by means of its vibration modes, 
The modes used to describe the component may have the connection points to the remainder of the structure 
free, or tixed, or some points free and some points fixed. The modes may either be calculated or experi- 
mentally measured. Statically determined deflection influence coethcients may be used to improve the 
accuracy of the representation. 

The advantages claimed for the method derive from the generality of the conditions under which the 
component modes are calculated (or measured). Thus the boundary conditions may be selected to optimize 
accuracy or, in the event that the modes have already been obtained, the method permits the available 
data to be used. Examples are presented that illustrate use of the method, and the significance of the 
improvements derived from static calculations. 

INTRODUCTION 

C~WNENT mode synthesis is a method of solving structural dynamic problems in which 
the degrees of freedom consist, largely or entirely, of the uncoupled vibration modes that 
exist when the structure is divided into several separate parts. The method owes its current 
popularity [l, 2, 3, 43 to the economics of computerized finite element structural analysis. 
It is a matter of common experience that computer time in a vibration analysis increases 
more than linearly with an increase in the number of degrees of freedom (about as the 
square or cube, depending on the eigenvalue extraction method and the type of structure). 
Thus, if a structure is divided into N parts, the N separate component mode analyses 
consume less time than the analysis of the whole structure, and the difference in time will, 
it is hoped, exceed the time required to synthesize the overall solution from the component 
modes. A net saving in time results if this is true, but at the cost of a loss in accuracy due 
to the retention of only a fraction of the component modes in the synthesis. 

Component mode synthesis need not be formulated in a highly sophisticated manner 
in order to be useful. Vibration analysts, and more particularly vibration test engineers, 
often think of appendages and equipment packages as spring-mass combinations in which 
the spring constants are calculated from the masses and the frequencies of the lower 
vibration modes. Electrical engineers, however, were the first to develop a systematic 
approach to the representation of a system in terms of its components. The impetus was 
provided by the need to design networks with specified properties as seen at their terminals; 
as a result, electrical engineers learned to think of groups of circuit components as ‘black 
boxes’ that could be described in terms of their ‘impedances.’ An important early (1924) 
development was Foster’s Reactance Theorem [5] in which the impedance of a general 
two-terminal reactive network was synthesized in terms of electrical components derived 
from the vibration modes (zeros and poles) of the circuit. Two of Foster’s canonical 
forms are shown in Fig. 1. Those readers who are familiar with the mobility analogy [6] 
will recognize the second form as the electrical analog of a parallel collection of sprung 
masses, each of which represents a ‘clamped’ vibration mode of the subsystem. The first 
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FKL 1. Foster’s Canonical forms fcx purely reactive networks. (a) Series ~~~~~~~~ti~~ of 
parallehxonant circuits. (bj Parallel combination of series-resonant circuits. 

form, which is a bit harder for mechanical engineers to interpret, is a series combination 

of circuits each of which represents a ‘free’ vibration mode of the subsystem. 
The author’s attention was first drawn to component mode synthesis by the Reed fur 

an economic representation of substructures in analog computer solutions af structural 
dynamic problems. ‘Economy’ in this sense meant the representation of a substructure 

using only a minimum number of electrical elements. Foster’s Reactance Theurem provided 
a solutian for a substructure with a single connection point (terminal pair), but a generaiiza- 
tion was required for substructures with two or mare connectian points. The viewpoint 
was taken that the connection points of the substructure could be either clamped or free 
(or some damped and some free) when the vibration mudes were evaluated. The properties 
of the substructure modefs were represented exclusively in terms of properties that could 
be obtained from vibration tests. This feature, which is a product of an ekctrical engineer’s 
‘black box’ thinking, contrasts sharply with more recently develupd methods [I* 2, 31 
which require knowledge of the detailed properties (stiffness and mass matrices) of the 
substructure. 

The author’s early work 17, 81 on component mode synthesis was expressed in terms 
of electrical analogies and so remained inaccessible to many mechanical engineers. More 
recently it has been restated in purely mathematical terms as part of the documentation 
for the NASTRAN structural analysis program [!I]; the latter exposition is, however, 
limited to the more elementary aspects of the theury, The purpose of the present paper 
is to present a cumpfete exposition of the author’s hybrid method of component mode 
synthesis, including both published and unpublished results. 

2



A Hybrid Method of Component Mode Synthesis 583 

REPRESENTATIONS IN TERMS OF FREE VIBRATION MODES 

When part of a structure is described by vibration modes, it must first be ascertained 
how the degrees of freedom at which it is connected to the remainder of the structure were 
supported when the vibration modes were measured (or computed). Three cases are 
distinguished : 

(1) All connection coordinates free. 
(2) All connection coordinates restrained. 
(3) Some connection coordinates free and some restrained. 

The first condition is usually employed in vibration tests or analyses of large parts, 
such as an airplane fuselage. The second condition is usually employed in vibration tests 
or analyses of small parts, such as a horizontal stabilizer. Case 3 (some connection co- 
ordinates free and some restrained) contains the first two as subcases. Generality with 
respect to the boundary conditions for the vibration modes is important for two reasons: 
first, if test data or the results of a previous analysis are used, the analyst may have no 
options left regarding the selection of boundary conditions; second, better results will be 
obtained if the boundary conditions for the substructure modes resemble the true conditions 
of the composite structure, e.g., a free boundary condition is better than a restrained 
boundary condition for a point on a heavy structure where a light appendage will be 
attached. 

Case 1 will be discussed first, because it is the simplest. The required data are the 
vibration mode frequencies, Wi, the mode shapes or eigenvectors, (&}, and the modal 
masses, mi. The eigenvectors need not be normalized in any particular manner. Let the 
degrees of freedom at the points of connection to the remainder of the structure be desig- 
nated by the vector {u=}. Then the motions of these points are related to the modal co- 
ordinates {tr) of the substructure by 

I&> = kLl~~i> (1) 

which may be regarded as an equation of constraint between dependent coordinates {uE} 
and independent coordinates (li}. The columns of [4ci] are the eigenvectors, {4,}, 
abbreviated to include only the degrees of freedom at connection points, {IQ}. Usually 
only a finite number of eigenvectors are included in [#ci] and this approximation produces 
an idealized model for the substructure that is too stiff. Specification of the substructure 
is completed by calculating the generalized mass, mi, stiffness, k,, and damping, bi, 
associated with each modal coordinate, rI, as follows. 

ki=CO:mi (3) 

bi =gim,oi (4) 

where g, is a damping factor for the ith mode and [M,] is the mass matrix of the sub- 
structure. Reference [fl describes a method for calculating ml from experimental measure- 
ments at the connection points. This matter need not detain us, however, if we assume 
that the detailed properties of the substructure are known, so that m1 can be evaluated 
from equation (2). 
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The equation of motion for the generalized coordinate, Ti, is 

where (fc> is the vector of forces applied to the substructure at the connection points, 
{4Ci) is the eigenvector, {+i}, abbreviated to include only the degrees of freedom at 
connection points, and p = d/dt. 

Equations (1) and (5) are the equations of state of the idealized model of the sub- 
structure and equations (21, (3) and (4) define its parameters. The way in which they may 
be incorporated into a digital computer program for structural analysis depends on the 
general provisions of the program. The NASTRAN program [9] accepts equations of 
constraint (equation (1)) as input data, permits both generalized scalar coordinates ({i) 
and physical displacement components (II,) to be specified as degrees of freedom, and 
includes lumped masses, springs, and dampers (mi, ki and bJ as structural elements. 
Thus NASTRAN includes all of the necessary provisions for the user to describe the 
structural model of the component to the program. Figure 2 is a schematic representation 
of the model. All of the input data (connections, element properties, and coefficients of 
constraint) are inserted via data cards. The relationship between forces of constraint, 

is automatically satisfied by internal procedures. 
It is not hard to imagine how the procedure could be completely automated so that, 

for example, the results of a vibration analysis of the substructure could be posted directly 
to the analysis of the composite structure. A potential difficulty which should be pointed 
out occurs because the degrees of freedom of the boundary connection points, (u=>, are 
removed from the list of independent degrees of freedom by equation (1). Thus, if addi- 
tional modally synthesized substructures are connected to the same points, an over- 
constraint will result unless the number of modal coordinates, {4i}, in each additional 
substructure equals or exceeds the number of degrees of freedom in {uC>. This difficulty 
can be avoided by employing some of the procedures that will be described later. 

FIG. 2. Representation of part of a structure by its vibration modes when all connection 
points are free while the modes are calculated. 
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A Hybrid Method of Component Mode Synthesis 585 

THE HYBRID REPRESENTATION 

The derivation of an idealized model for the case when some, or all, of the connection 
points are restrained during measurement (or calculation) of the substructure modes, is 
considerably more involved than the derivation for the case of free vibration modes which 
has just been described. A general solution, that was first published in [7l, is developed 
below. The objective is to derive a set of constraint relationships between the modal 
coordinates and the degrees of freedom at connection points (both free and restrained). 
The modal mass, damping, and stiffness properties will, as in the case of free vibration 
modes, be simulated by scalar structural elements. 

Let the degrees of freedom of the substructure be partitioned into {u,}, degrees of 
freedom that are free in the substructure modes, and, {Us}, degrees of freedom that are 
restrained in the substructure modes. The equations of motion for the substructure 
(without damping) can then be written as 

(7) 

{f.} and {fa} are forces applied to the substructure. The mass of the substructure is 
assumed to be concentrated at the free coordinates, {u,}, which include all coordinates 
not restrained in the substructure modes. Any substructure mass on the restrained co- 
ordinates, {ua}, should be lumped into the remainder of the structure because the masses 
on restrained coordinates produce no effect during the vibration modes of the substructure. 
They may, accordingly, be ignored in the modal representation of the substructure. The 
stiffness matrix is partitioned in equation (7) according to free and restrained coordinates, 
Note that {Us) contains the free connection coordinates as a subset. 

The substructure mode shapes are described by a modal transformation between the 
free coordinates, (u,}, and modal coordinates, (g,}. 

The corresponding generalized forces on the modal coordinates are 

By virtue of the orthogonality property of vibration modes 

kLIT[&. +~~Wml[4ail= k + WP’I (10) 

where [kJ and [mt] are diagonal matrices of the modal coefficients computed by equations 
(2) and (3). Thus, using, equations (8), (9) and (10) to transform equation (7) 

It is convenient to separate the inertia forces from equation (11) so that, defining 
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Equation (I 3) is a stiffness equation in standard form. A form that leads more directly 
to a useful physical model is obtained by placing ti on the left-hand side. Thus, 

where, 

and 

[fl/ibl= --fki~-‘k#d-~&b~ (15) 

[~bb~=[Kbbl-[~iblT[kil[l(/ib~ (161 

If the set of restrained points, (tib>, is nonredundant, the matrix [Kbb] is null. This 
condition is assumed in the present discussion. It will be relaxed in the next section. The 
matrix, [$ib], is calculated from properties of the vibration modes as follows. During a 
vibration mode, (%,I “0, and the vector of forces acting on the constraints is, from equations 
(13) and (14), 

{Fb)=-{Jb}=[~lblT{~~fi)=[~iblT[kil{Si) (17) 

Define [&,I to be the matrix of forces on the constraints due to unit values of the modal 
coordinates while the substructure is vibrating in its normal modes, i.e., a matrix of eigen- 
reactions. 

iFbj = [Kbil(ri) (18) 

Then, comparing equations (17) and (18) 

(19) 

or, in other words, ]Gib] is equal to [&ilT with each row divided by the appropriate element 
of [kJ. [$ib] may also be used to define an auxiliary set of modal coordinates 

Then, from the top half of equation (14) 

(J’,~=~kil(~i-50 (21) 

The free connection coordinates {uCj are a subset of (~~1. The relation between (u,f 
and the modal coordinates {{if is 

0&I = tCLH5J (22) 

where [4,:] is the appropriate partition of [~ni]- 
Equations (12), (20), (21) and (22) provide a complete description of the substructures 

They are used to construct the idealized model of the substructure, shown in Fig. 3. The 
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Fro. 3. 

Structural 
Coordinates 

fU,l 

Constralnts Constralnt5 
iu$ - &lIFt3 CC,) - IJtl,?iU,l 

Representation of part of a structure by its vibration modes in the general case 
some connection points are free and some are rigidly constrained. 

when 

modal dampers, b,, are placed across the modal springs, k,, if they simulate structural 
damping. If they simulate damping due to the viscosity of a surrounding fluid environment, 
they should be placed between the modal coordinates and ground. The user may also, if 
he desires, retain some nonconnection coordinates in the model in order to record motions 
at other points in the substructure. This is done by constructing constraints from additional 
rows of equation (8). Equation (20) expresses a new set of constraint equations between 
the auxiliary modal coordinates and the degrees of freedom that are restrained in sub- 
structure modes. 

If the NASTIUN computer program is used, the input data for the substructure 
consist of the coefficients of the equations of constraint, [4, J and [+J, the values of the 
scalar elements, m,, bl and k,, and their connections. Again, the procedure could easily 
be automated to the extent of replacing the data cards by card images obtained from a 
modal analysis of the substructure, but this has not been done in NASTRAN. 

The techniques discussed above provide the capability for complete dynamic partition- 
ing of a structure, since all of its parts, rather than a few, may be represented by their 
respective vibration modes. The general case diagrammed in Fig. 3 is particularly useful 
for this purpose. Consider, for example, the missile structure shown in Fig. 4. The missile 
is physically partitioned with support conditions for the calculation of uncoupled vibration 
modes as shown in the figure. The first partition, (a), is unsupported while the others are 
cantilevered. The lumped element model for the composite system consists of parts with 
the form of Fig. 3 connected in tandem. The directions of the arrows in the constraint 
blocks point from independent coordinates toward dependent coordinates, It is evident 
from the form of the lumped element model that the independent degrees of freedom 
consist of the modal coordinates, {e.}, {[,I, {e,} t e c., and that the displacement sets 
{u,, *}, {C,}, {I(*,~} etc., are all constrained. Furthermore, the overconstraint problem 
mentioned earlier has been avoided. The dynamic equations, when written by the stiffness 
method, are banded with bandwidth equal to the number of modal coordinates in three 
successive partitions. 
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(a) 

(b) 

- t) -----+---- fbf + 

(cl 
ETO. 4. Dynamic partitioning of missile structure. (a) Missile structure, uqxvUioned. 
(b) Support conditions for partitions while calculating substructure vibration modes. 

(c) Portion of composite model. 

THE USE OF STATICATLY DERIVED MATRICES TO IMPROVE 
THE RJlPRESENTATION 

The substructure model developed in the preceding section was derived exclusively 
from modal properties which may be obtained either from analysis or from vibration test. 
Usually only those modes that occur below a user-selected maximum frequency are used 
so that, in general, the subst~ctu~ model is approximate to the extent that the effects of 
its higher modes are omitted. In addition, the stiffness matrix, [&J, due to the presence 
of redundant supports, was ignored. 

The substructure model may be improved by including additional elements derived 
from static approximations to the effects of the higher modes, and by accounting for the 
stiffness matrix due to the redundant supports. The derivation follows. 

Let the restrained coordinates, (zQ,), be partitioned into a set of ~te~nate reaction 
points, (zJ+), and a set of redundant reaction points, (u,). 

(231 
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Note that, in general, (uJ may be null and that {u,) may be deficient. In order to make 
static deflection measurements, however, it is necessary that {u,) he sufficient to prevent 
rigid body motions. 

The quantities that are determined statically are expressed by the following matrix 
equation, which is valid only at frequencies that are low compared to the lowest mode of 
the subsystem. 

In equation (24), the submatrix 

(24) 

(25) 

is the matrix of deflection influence coefficients at the free coordinates and at the redundant 
support coordinates when the determinate reaction coordinates are rigidly restrained. 
The submatrices [S,] and [S,] express the rigid body property of the substructure, namely 
they give the motions at the free and redundant support coordinates due to motions at the 
determinate supports. They are determined by the positions of the connection points and 
by the directions of the components of motion at the connection points. The submatrix 
[M,J expresses the rigid mass property as seen at the determinate reaction points. 

It may not always be practical to supply the submatrices in equation (24). [S,] and 
[SW] can, at least, always be calculated from the coordinate geometry. [M,,] should also 
be relatively easy to obtain. The submatrix components of the deflection in!luence co- 
efficients have varying degrees of importance. The [Z,,] matrix will be approximated by 
the modal part of the representation, so that it may not be important if a large number of 
modes is included. The [Z, J matrix and part of the [Z, J matrix will not be approximated 
by the modal representation, and they may be important if some of the redundant supports 
are far away from the determinate supports. 

For the purpose of deriving the improved model of the substructure, it is convenient 
to interchange the positions of {u,} and {fs> in equation (24). The result is 

(26) 
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where, 

RICHARD H. MACNEAL 

Equation (26) may be consolidated as follows: 

1 (27) 

where, 

(31) 

It may be noted that [j&J in equation (28) is identically equal to [&] in equation (14). 
In some cases t&J, the deflection influence coefficient matrix with alf support points 
restrained, may be more readily available than [Z,,]. This option should be provided to 
the user. 

The improved substructure representation is obtained by adding terms to the modal 
representation, so that it gives results that approach equation (28) at frequencies that are 
low compared to the lowest mode. To this end, the equations of the modal representation 
will be cast in the form of equation (28). The relevant equations of the modal repre~ntation 
are, by consolidation of equations (8), (9), (12), (17), (20), and (21), 

and 

(34) 
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Upon combining equations (32), (33) and (34), we obtain 

(35) 

The first term in equation (35) is in the correct form but the second term is not. If 
the frequency is low, however, it may be assumed that 

and that, using this result in equation (32), 

Thus, employing these approximations, equation (35) may be written as 

} 

(39) 

Let the vector 

consist of a part due to the modal ~pr~ntation, designated by superscript 0, and a 
‘residual’ part, designated by a superscript (r). 

By comparison of equations (28) and (38) 

(40) 

(41) 

where, 

[Zg] = [i&J - [Z$$, the residual flexibility matrix 

[Sg] = [SC,] - [Si?)], the residual geometry matrix 

[A@] = [A$,,&] - [A@], the residual mass matrix. 

(42) 

(43) 

(44) 
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If the support points are determinate, all of the residual matrices will tend to zero as 
the number of modes is increased. Furthermore [Zg’] is positive definite and [A!@] will 
be positive definite if there are no redundant reaction points. The complete improved 
representation of the substructure is shown in Fig. 5. It consists of stiffness, mass, and 
flexibility matrices, and of constraint matrices ([Sg], [4J, and [&,,I). It is, therefore, a 
subsystem that may be included in a dynamic analysis. 

The complete representation may be simplified if all of the connection coordinates 
are free, or if all of the connection coordinates are restrained. These simplified forms are 
shown in Figs. 6 and 7. 

FIG. 5. Improved representation of a sub&ucture for the general case. 

FICL 6. Improved representation for case in which all connection coordinates are free in 
modal cakulation. 

Residual 0 mass 

(Elgenrssctions) 
4 

FIG. 7. Improved represe-ntation fo;nas$r&w~~nnection coordinates are con&rained 
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The simplifkd form shown in Fig. 6 has been extensively studied in [IO]. Some of the 
results are described in the next section. It is shown in [lo] that the residual flexibility 
matrix [Zz] is important for the solution of aeroeiastic problems (unless very many modes 
are used), and that it may be calculated even if the substructure is capable of rigid body 
motion. The following procedure is used when rigid body substructure modes are present : 

(1) Calculate the matrix of deflection influence coefficients [&,,,,,I of the substructure 
at all points (urn) where masses are concentrated, with m?y set of determinate 
supports. 

(2) Calculate 

where [M,,,,,J is the 
modes (one column 

[end = holMnlolT[~mJ (45) 

complete mass matrix and [&,,J is the matrix of rigid body 
for each rigid body mode). 

(3) The elements of [Z, J are in the appropriate rows and columns of 

[Z,J=[~-~,,,J[ZmJ[~-~~T w 

Note that only (c) rows of [B,,,,J need to be calculated. The residual flexibility 
matrix is then calculated from equation (42). 

The derivation of equation (46) given in [lo] is quite lengthy and will not be repeated. 
A somewhat shorter derivation appears in [ll]. The effects of the presence of rigid body 
modes in the general case (i.e., rigid body modes that are not removed by the constrained 
connection coordinates) have not been explored. 

An independent derivation which is equivalent to the simpliki model shown in Fig. 7, 
including use of the term ‘residual mass,’ has recently appeared [12]. It can also be shown 
that ‘residual mass’ is implicitly contained in the Hurty method [l]. The author’s original 
paper [7j includes the residual mass concept directly, where it is called ‘the maas approxi- 
mation to higher modes.’ The improved representation of a substructure for the general 
case of modes computed with hybrid boundary conditions, Fig. 5, has not previously been 
published. 

The discussion of this section will be concluded by displaying the complete equations 
of motion of the substructure for the general case as they would appear in a finite element 
computer program that uses the matrix displacement method. The independent degrees 
of freedom are the connection coordinates {a,} and {u,) and the general&d modal 
coordinates (4,). The complete equations of motion for the substructure are 

(47) 

where, 

[mJ =modal mass matrix 
[M#] =residual mass matrix 

13
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and, by examination of preceding results, 

C&i] = [kl + [4cil’Cz~l-‘C~cJ 

CKlcl= -C4cil’Cz~l-’ 

Ll = - CklChl -I- Cdd’CZ~l- ‘[@I 

C&cl = Pm - l 

[K&J = - [ZZ] - ‘[s$q 

i3d = CGJ + C~iJTCklCJlid + CSWCZ~I-‘Cf%l 

C%I = Cbl 

I (48) 

It is possible, particularly if the input data have been derived from physical tests, that 
a further transformation may be needed to rotate the directions of (uJ and (ub} so as to 
be compatible with the directions used to describe the motions of the adjoining structures. 
Another possibility is that, if many modes are used, the residual flexibility matrix may be 
very small, leading to ill-conditioning of the resulting equations. If this condition is 
suspected, or if the static deflection influence coefficients, [Z,J, are not supplied, the free 
connection coordinates, {u,}, should be considered to be dependent coordinates and 
eliminated by means of equation (1). 

EXAMPLES OF THE USE OF RESIDUAL MASS AND FLEXIBILITY 
MATRICES 

The first example to be considered is a uniform torsion bar that is built in at one end. 
The problem is to calculate the displacement, 8,, at the free end due to a sinusoidal torque, 
T, imposed at radian frequency, o. The problem is sufficiently simple that the results may 
be expressed in closed form and evaluated exactly. The differential equation and boundary 
conditions are 

O=O at x=0 

T=JG? at x-l 
dx - 

14



A Hybrid Method of Component Mode Synthesis 595 

The exact solution of the problem is 

83 1 -=- 
T JG 

where, 

n JG: 
wl=s-z I J 

(50) 

(51) 

is the lowest cantilever mode frequency. 
The cantilever vibration modes of the torsion bar are: 

&(X)=sin k=l, 2, 3, . . . 

with frequencies (52) 
2k-1 it E 

ak=-- - 
2 I J I 

If the solution is synthesized from cantilever modes, the rotation, 8,,, will be a ‘free’ 
coordinate in the terminology developed in previous discussion. The result of the modal 
synthesis is 

03) 

where M is the highest mode included in the synthesis. The residual flexibility, Ztr), is 
the difference between the results produced by equations (50) and (53) for o =0, 

Adding equation (54) to equation (53), the improved result is 

(54) 

(55) 

15



596 RICHARD H. MACNEAL 

TABLE I. 

Results for cantilever torsion problem 

O,.JG 

7-T 
.- -- 

w 0 -2s 
Number 

wz0.5 o-=1.5 
w 01 w 

ofmodes --. --- 
(M) Without With Without With Without With 

ztn z(r) z(r) Z(r) zw Zb) 

0 0 1*0000 0 1aOOO 0 1+0000 

1 0.81057 1*0000 1.08076 1.27019 -0w846 -045903 

2 090063 1*0000 1.17339 1.27276 -0.52838 -0.42901 

3 0.93305 1.0000 l-20614 1 a27309 -049275 -0.42580 

4 094959 1*0000 l-22276 I.27317 -0.47541 - 0.42500 

5 0.95969 l*oooO I.23289 1.27320 -046502 -0.42471 

Exact solution 1*0000 1 a27323 -0.42441 

Equations (53) and (55) are compared in Table 1 for three values of o/o1 and different 
values of M. The improvement provided by residual flexibility is quite apparent. 

As a second example, let the torsion bar be free at the end x=0, and construct a modal 
synthesis based on modes in which the rotation at x = 1 is rigidly constrained to zero. The 
exact solution for forced vibration at x= I is 

T 

s7; (56) 

where, again, wi is the lowest cantilever mode frequency. 
The modal synthesis for the second example is also based on cantilever modes, but 

this time the end x= 1 is restrained. The relationship between the torque, T, and the modal 
parameters is, from inspection of Fig. 3, 

T= -O. s 2 ($,)2 
j=l 

in@ 
2 

J-7 l- ;’ 
(57) 

16



A Hybrid Method of Componeat Mode Synthesis 597 

The force of reaction in each mode is, assuming unit amplitude at the free end 

so that, from equation (19) 

where the modal stiffness 

and, by substitution into equation (57), 

T 2M 2 2 2 -s- Ilw2. - 
00 ?,=1 c ( 2j-1 > 1 - 0 Q) 2 - 

“1 

(59) 

(62) 

The residual mass is the difference between the total inertia of the rod, II, and the 
result given by equation (62) for w/o,-0 : 

The improved solution, obtained by adding -~U%D~ to equation (62) is: 

T _=- Ilo 
00 W) 

Equations (62) and (64) are identical in form to equations (53) and (55), respectively, 
so that the comparison of accuracy shown in Table 1 also applies to the second example. 
In genera& residual mass has the same importance for a synthesis using restrained modes 
that residual flexibility has for a synthesis using free modes. 

Some results from [lo] will be used as a &ml example to illustrate the importance of 
residual flexibility in aeroelastic analysis. The example is the missile configuration shown 
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in Fig. 8 which consists of a slender body and two elastically connected control surfaces. 
The problem is to compute the pitching velocity of the missile in response to sinusoidal 
oscillations of the forward control surface. 

The configuration was initially analyzed on an analog computer by a lumped element 
model including aerodynamic influence coefficients for the control surfaces. The results 
of the initial analysis are shown in Fig. 9a. The vibration modes of the lumped element 
model were computed and used as a basis for a modal synthesis. (The synthesis includes 
two rigid body modes, as many as five elastic modes, and the same aerodynamic influence 
coefficients that were used in the initial analysis.) In addition, residual flexibility was 
computed using equations (46) and (42). 

Typical results, illustrating the effects of including residual flexibility, are shown in 
Figs. 9b, c, d and e. The resonance near 0.7 Hz is the response of the short period pitching 
mode of the vehicle. It is seen that the synthesis without residual flexibility misses the 
peak response of the short period mode by about 5 db (a factor of l-78) and that the 
inclusion of as many as five elastic modes does not improve the accuracy. The addition 
of residual flexibility, on the other hand, reduces the error in the short period mode to 
about one db, even when only one elastic mode is used, and significantly improves the 
accuracy of the response of the elastic modes. 

Call.3rd Stabilizer 
sta. sta. sta. sta. sta. 

0 250 650 900 1200 

I+- -+I 260 in. 

Notes: The body is flexible 

The aerodynanic surfaces have an elastic connection 

Uncouoled frquencies of cantilevered surfaces: 

Canard bending 25 t'~s 
Canard Ditch 2;O ens 
Stabilizer bending IO cps 
Staoilizcr pitch 20 cps 

Coupled frquencies of entire system: 

1.42 c;s 
3.'&2 cps 
5.87 c.Ils 
9.17 q!s 

10.12 CDS 

Fro. 8. Missile configuration, taken from [lo]. 
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I II 
I.0 Frequency, Hz 5-O 10.0 

FIG. 9. Pitching response to control surface oscillation; 6/S. (a) fnitial analysis of lumped 
element model; (b) modal synthesis, one elastic mode, w residual fkxibility ; (c) modal 
synthesis, one elastic mode, wlrlt residual flexibility; (d) five elastic modes, no residual 

flexibility; (e) five elastic modes, with residual flexibility. 

ft is not difficult to discover why residual fle~bi~ty is so important in this example. 
The uncoupled mode data listed in Fig. 8 show that three of the four important control 
surface modes are beyond the frequency range of the modes included in the synthesis, so 
that control surface flexilibilities are largely ignored. They are, however, included in the 
residual flexibility. 

An important lesson to be learned from this example is that it is frequently not sut%eient 
to include only the modes whose frequencies lie in the range of the exciting forces, Either 
enough modes should be included to account for all important flexibilities, or residual 
flexibility should be added to approximate the effects of omitted higher modes. The same 
remarks apply to residual mass in a synthesis using restrained modes, and to both residual 
mass and residual flexibility in a synthesis using hybrid modes. 
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