
HAL Id: hal-01536390
https://hal.science/hal-01536390

Submitted on 11 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A PROPOSAL OF USING DEVS MODEL FOR
PROCESS MINING

Yan Wang, Grégory Zacharewicz, David Chen, Mamadou Kaba Traoré

To cite this version:
Yan Wang, Grégory Zacharewicz, David Chen, Mamadou Kaba Traoré. A PROPOSAL OF US-
ING DEVS MODEL FOR PROCESS MINING. 27th European Modeling & Simulation Symposium
(Simulation in Industry), Sep 2015, Bergeggi, Italy. pp.403-409. �hal-01536390�

https://hal.science/hal-01536390
https://hal.archives-ouvertes.fr

A PROPOSAL OF USING DEVS MODEL FOR PROCESS MINING

Yan Wang
(a)

, Grégory Zacharewicz
(b)

, David Chen
(c)

, Mamadou Kaba Traoré
(d)

(a),(b),(c)

 IMS, University of Bordeaux, 33405 Talence Cedex, France
(d)

 LIMOS, Université Blaise Pascal, 63173 Aubiere Cedex, France

(a)

yan.wang@etu.u-bordeaux.fr,
(b)

gregory.zacharewicz@u-bordeaux.fr,
(c)

david.chen@ims-bordeaux.fr,
(d)

traore@isima.fr

ABSTRACT

Process mining is a relative young research area which

consists of process modeling and data mining. Process

discovery as a part of the process mining focuses on

converting event logs into process models. Petri Nets

formalism is identified as the most convenient resulting

process model. However, it is not entirely satisfying and

needs to be improved with the purpose of covering the

temporal aspects of the studied system. Compared with

it, DEVS has the advantage of explicit and concurrent

time and separating model from simulation. The

objective of this paper is to specify DEVS model as the

resulting process model. Based on the existing Two-

Phased Approaches in process mining, a region-based

approach with the suitable mapping is designed to

convert the transition system directly to DEVS. A study

case is presented to implement this approach. This

paper is a position paper and it needs to be completed.

In addition, a dynamic semantic should be designed to

solve some typical representational limitations and a

simulation engine should be selected.

Keywords: process mining, process discovery, DEVS,

dynamic semantic, time

1. INTRODUCTION

Nowadays, the development of the information systems

cannot be separated by the operational process.

Moreover, more and more events with abundant process

information are recorded. Despite the omnipresence of

event data, most of the organizations analyze and build

models based on expert assumption rather than

quantified collected fact. Thanks to process mining

[Van der Aalst, 2011], it provides the methods to

discover monitor and improve actual processes by using

event data to extract process-related information.

Process mining combines process design by model-

driven approaches and data mining. It includes three

types: process discovery, process conformance and

process enhancement. This paper anticipates and lays a

cornerstone to make a breakthrough on the process

discovery area.

The purpose of discovery technique is to extract an

event log with using recorded historical information and

produce a model for simulation. In the process mining,

many models can be selected as the resulting model for

business process for example workflow nets and

BPMN, whereas Petri Nets [Peterson, 1977] is

frequently identified as the direct resulting process

models because Petri nets is formal, simple and

graphical while still allowing for the modeling of

concurrency, choices, and iteration. When considering

about the representational bias such as concurrency,

loops and even OR-splits/joins, not every process model

can be totally satisfied. Petri Nets is able to discover the

concurrency in spite of OR-splits. As there are many

potentially concurrent activities, Petri Nets may either

reach some limits in describing time or distinguish

information in the process. The Discrete Event System

Specification (DEVS) [Zeigler et al., 2000] provides a

hierarchical and modular formalism to describe a state

and event based system. It contains the basic

components like explicit time, inputs, outputs, states

and functions. The characteristic of separating model

and simulation makes DEVS able to demonstrate the

same function in Petri Nets. The semantic execution of

DEVS can satisfy various potential requirements, such

as distinguishing different information processing, and

solve representational limitations. So we are trying to

design a new approach to discover DEVS model as the

resulting process model for business process simulation.

The paper is organized as follow. Section 2 provides the

background of DEVS formalism in comparison with the

Petri net and an introduction about transition systems.

Section 3 gives the introduction about process

discovery, XES standard and DEVS related research.

Two-phased approach is also presented. Section 4

proposes to construct a complex and meaningful

modeling and simulation structure and presents the

methodology design with the mapping. Section 5 makes

the simulation based on a study case. Section 6 shows

the limitation and indicates the future works. The paper

ends with a conclusion.

2. BACKGROUND

2.1. DEVS Formalism

The DEVS formalism for modeling and simulation is

based on discrete events, and provides a framework

with mathematical concepts based on the set theory and

mailto:yan.wang@etu.u-bordeaux.fr
mailto:gregory.zacharewicz@u-bordeaux.fr
mailto:david.chen@ims-bordeaux.fr
mailto:traore@isima.fr

the system theory concepts to describe the structure and

the behavior of the system [Zeigler et al., 2000]. A real

system modeled by DEVS is described as a number of

connected behavioral (atomic) and structural (coupled)

components. A DEVS atomic model is formally defined

as:

M = <X, Y, S, δint, δext, λ, ta>.

Where X is the set of input values; S is the set of states;

Y is the set of output values; δint is the internal transition

function; δext is the external transition function; λ is the

output function; ta is the duration function. From the

semantics of DEVS formalism [Zeigler et al., 2000], we

know that each atomic model has the duration specified

by ta(s). When the elapsed time e = ta(s), the state

duration expires and the atomic model will send the

output λ(s) and performs an internal transition to a new

state specified by δint(s). However, state transition can

also happen due to arrival of an external event which

will place the model into a new state specified by

δext(s,e,x); where s is the current state, e is the elapsed

time, and x is the input value. The time advance

function ta(s) can take any real value from 0 to ∞. A

state with ta(s) value of zero is called transient state,

and on the other hand, if ta(s) is equal to ∞ the state is

said to be passive, in which the system will remain in

this state until receiving an external event.

The graphical notation is also used for simulation in this

paper [Song et al., 1994]. Each node represents an

activity or a state, dotted arc denotes an internal

transition and solid arc denotes an external transition.

The output events in both internal transition and

external transition have different labels. An output event

p!m means that a message m is output at the port p.

Similarly, an input event p?m means that a message m

is input at the input port p.

A coupled DEVS model consists of atomic and other

coupled models connected together. They are formally

defined as:

N = <X, Y, D, EIC, EOC, IC>.

Both X and Y respectively define the sets of input and

output events. D is a set of indices for the components.

The external input coupling (EIC) specifies the

connections between external and component inputs,

while the external output coupling (EOC) describes the

connections between component and external outputs.

The connections between the components themselves

are defined by the internal coupling (IC). The coupling

and transformation between separating atomic models

make it possible to construct a more complicated

hierarchical model.

2.2. Petri Nets

Petri Nets is a modeling formalism originally developed

by C.A Petri [Peterson, 1977]. A Petri net is a bipartite

graph consisting of place and transition. Arc is used to

connect between place and transition. The network

structure is static and token flows through the network.

Despite the four parameters, the state of a Petri net is

determined by the distribution of tokens and is referred

as marking. Enabling and firing are the main operating

rules. Comparing with DEVS, Petri Nets can be

embedded into DEVS because a DEVS model can

represent any discrete event behavior. Also, DEVS

model has the timing characteristics connected with the

reality whereas Petri Nets cannot present. Zeigler

[Zacharewicz et al., 2008] discusses how DEVS

modeling is more accurate than Petri nets modeling due

to the following facts.

 DEVS gives a more general framework for

modeling and simulation of complex systems.

 DEVS integrates naturally the notion of time

contrary to Petri nets which require an

extension of the formalism.

 DEVS offers a formal (and separated from

model) definition of the simulator.

2.3. Transition Systems

Transition systems are considered as the original

transformation process model in this paper. Robert

[Robert, 1976] gives a formal definition about a

transition system. It is a pair (S, →) where S is a set of

states and → is a binary relation on S, called the set of

transitions. A named transition system is a triple (S, →,

∑) where (S, →) is a transition system and each

transition system is assigned one or more names in the

set ∑. A visualized transition system [Van der Aalst,

2011] consists of states and transitions. The states are

represented by black circles. There are one initial state

and one final state. Each state has a unique label. This

label is merely an identifier and has no meaning.

Transitions are represented by arcs. Each transition

connects two states and is labeled with the name of an

activity. Multiple arcs can bear the same label.

Given a transition system one can reason about its

behavior. The transition starts in one of the initial states.

Any path in the graph starting in such a state

corresponds to a possible execution sequence. A path

terminates successfully if it ends in one of the final

states. A path deadlocks if it reaches a non-final state

without any outgoing transition. The transition system

may live-lock if some transitions are still enabled but it

is impossible to reach one of the final states.

3. THE STATE OF THE ART

3.1. Process discovery

Process discovery as a part of process mining is the

main area we want to develop. General process

discovery problem [Van der Aalst, 2011] is defined like

this. Let L be an event log specified by the XES

standard. A process discovery algorithm is a function

that maps L onto a process model such that the model is

“representative” for the behavior seen in the event log.

The challenge is to find such an algorithm.

Until recently, the de facto standard for storing and

exchanging events logs was MXML (Mining eXtensible

Markup Language). MXML emerged in 2003 and was

later adopted by the process mining tool ProM. XES is

the successor of MXML. Based on many practical

experiences with MXML, the XES format has been

made less restrictive and truly extendible. An XES

document (i.e., XML file) contains one log consisting of

any number of traces. Each trace describes a sequential

list of events corresponding to a particular case. The

log, its traces, and its events may have any number of

attributes. To provide semantics for such attributes, the

log refers to so-called extensions.

There are many different approaches to do the actual

discovery. Two-Phase Approaches is one of the

identified approaches. It first constructs a “low-level

model” and then converts into a “high-level model” and

other more advanced control-flow patterns. There are

four steps in this approach: extract event logs; create a

transition system based on one abstraction; convert the

transition system into a Petri net; convert the Petri net

into other notations (e.g., BPMN). In this new approach,

we reuse the first two steps as the input and design a

new approach of the transformation between transition

system and DEVS model.

3.2. DEVS related research

DEVS can be easily transformed from Petri Nets or

BPMN although we don’t need this transformation.

Jacques and Wainer [Jacques et al., 2002] propose an

approach of mapping of the Petri Net modeling

formalism into the DEVS modeling formalism using an

unmodified DEVS simulator. They also show that

DEVS simulation results can simply be filtered through

a parsing tool to give them a stronger PN flavor.

Bazoun et al. [Bazoun et al., 2014] define a

transformation approach of BPMN models into DEVS

simulation models based on the meta-model approach

and describe the enrichment of obtained DEVS models

through performance indicators. This approach includes

an exhaustive mapping, the transformation architecture

and an implementation in SLMToolBox M&S tool.

Zacharewicz et al. [Zacharewicz et al., 2008] describe a

language for workflow processes and a new

transformation algorithm from Workflow XML

specification to G-DEVS model. This language supports

algorithms to transform the Workflow model.

Some other researches also focus on discovering the

interoperability of DEVS. Wainer et al. [Wainer, 2009]

standardize the simulation middleware to interface

different simulation environments and allow

synchronization for the same simulation run across a

distributed network regardless of their model

representation. They provide several approaches for

example DEVS/SOA distributed simulation platform,

DDSP, the shared abstract model, RISE and DEVS

namespaces which standardize DEVS simulation

middleware in different ways.

DEVS has already been widely used in many areas.

Until now, there are many professional descriptions

about its application. Song et al. [Song et al., 1994]

introduces concepts of inverse DEVS and defines

controllability of discrete event systems expressed in

the DEVS formalism. A graphical notation is presented

to visualize DEVS models. The concurrency is also

discussed to analyze the dynamics of a system

consisting of several subsystems. Zeigler and

Sarjoughian [Zeigler et al., 2005] present the systems

entity structure/model base (SES/MB) framework for

simulation process. First it sets up a DEVS model base

as the organized libraries. There are FIFO, generator,

transducer and processor model inside the model base.

The knowledge of the desired system is represented by

the SES. Then through retrieving component and

coupling them together, we can get the synthesized

model. At last, this model is evaluated via simulation.

This framework can be identified as the basis to

construct the semantic of the proposition.

4. DESIGN AND IMPLEMENTATION

4.1. Approach design

Figure 1: Proposed framework

Figure 1 shows the general view of the proposed

framework. We reuse the discovery technique and take

the transition system instead of Petri Nets or BPMN as

input. In the resource part, we need to provide the

DEVS model base to support the new approach. As the

reuse of the discovery technique is operated in the

process mining tool ProM, we continue to use it in the

new approach. A lot of plug-ins implementing various

techniques can be used in the ProM and it is a challenge

to design a new plug-in for the DEVS model. The

representational bias, noise and incompleteness appear

when we try to transform the event logs into other

formalism because the result isn’t always optimal and

desired. Furthermore, it will limit the search space of

simulation. According to the representational bias,

parallel DEVS models with multiple inputs and outputs

and time segments can solve the problem of

concurrency, a switch network can solve the problem of

OR-splits, generator coupled model can solve the

problem of loop and duplicate actions. All these models

will be designed in the DEVS model base. As the

process discovery is tightly connected with the reality,

more and more limitations will describe the enrichment

of DEVS model base semantic. The noise defines event

logs contain rare and infrequent behavior not

representative for the typical behavior of the process.

The incompleteness is defined as that the event logs

contain too few events to be able to discover some of

the underlying control-flow structures. Besides, time is

another very important constraint which will lead to

desired state scheduling. A time-related approach will

be designed to make selections on transitions according

to the semantics of DEVS formalism. At last, we wish

to implement a structured and meaningful model used

for anticipating optimal business process.

Figure 2: Process of mapping transition system to

DEVS model

Figure 2 shows the main process of Modeling &

Simulation by integrating DEVS model with process

mining. The black part has already been done in the

process mining and the red part is the main work of this

paper. First we need to extract the useful information

from the list of event logs. Using the state abstraction,

we can automatically construct a transition system

based on the event logs. The main part of this approach

is to implement the transformation between transition

system and DEVS model. To start to implement the

region-based approach, we divide the transition system

in several regions. In this case all activities can be

classified into entering the region, leaving the region

and non-crossing. An activity cannot be entering the

region in one part of the transition system and exiting

the region in some other part. The mapping in the next

section makes contribution on implementing this

transformation and a new DEVS model is discovered.

The discovered DEVS model will be used for business

process simulation. The green part is to extend the

ontology of the DEVS model. It is necessary to

construct the DEVS model base. As DEVS model has

the characteristic of separating model simulation, each

region can be mapped with one component in the model

base. It has atomic model and coupled model with

special functions which we have talked in the last

paragraph. These models will be used as components to

support the transformation. Moreover, we need to

extend various perspectives (organizational perspective,

time perspective, data perspective, etc.) based on

ontology in order to be more meaningful and visualized

like a map. The blue part is to design a time-related

approach in order to predict the desired process flow

and provide a more intuitive visualization. As the time

is not considered in the transition systems, it is

necessary to design a method to obtain the time directly

from event logs.

4.2. Mapping design

From Two-Phased Approaches, we know that it

converts the transition systems to the Petri Nets. Table 1

shows the mapping between transition systems and Petri

Nets. Transition systems are divided by several regions

and each region is converted into Place in Petri Nets.

Transitions in the transition systems are used to create

transition in Petri Nets with the name of activity. Also,

transition and place are connected by arc which

constructs the whole structure of Petri Nets. If the

activities are entering into the region, we set the arc

from transition to place. If the activities are leaving the

region, we set the arrow from place to transition. Only

the first place has the marking which is converted from

the initial state.

Table 1: Mapping between transition systems and Petri

Nets

Transition Systems Petri Nets

Region Place

Transition
Transition

Activity

State Marking

Based on table 1, we design the mapping between

transition systems and DEVS as illustrated in table 2.

Region is transformed to atomic model in DEVS. Each

atomic model has a unique label as identify. The initial

state is also transformed into the first atomic model. We

extract the activities from transition system and

transform into the associated input and output event. As

the transition in transition systems contains the name

and the value of transition, we take the name as the port

of each atomic model and the value of transition as the

message. To avoid the name repeat, we combine the

name of source and target as the name of the transition.

If the message is related to “start”, we identify it as

internal transition with output event. If the message is

related to “finish”, we identify it as external transition

with input event. The transition is visualized by arc and

connects the source and target atomic model. In the

future work, as the transition system don’t have the

information about time, we extract the time directly

from event logs and set time duration in atomic model

by using time related approach. Each execution of the

transition is decided by the time and such visualizations

are important to get insight into the desired process

flow.

Table 2: Mapping between transition systems and

DEVS

Transition system DEVS

Region Atomic model

Transition
Internal transition

External transition

Activity
Input event

Output event

State State

4.3. Time concurrency

The transition system in figure 3 was obtained from log

[{a, b, c, d}
3
, {a, c, b, d}

2
, {a, e, d}]. This demonstrates

that region-based approach can be used to convert

transition systems to DEVS by using mapping.

Consider for example Region R1 = {[a], [a, b]}. All a

labeled transitions in the transition system enter R1

(there is only one), all c labeled transition exit R1 (there

are two such transitions), all e labeled transition exit R1

(there are only one), and all other transitions in the

transition system do not cross R1. Hence, R1 is a region

corresponding to atomic model M2 with input event and

output event c and e. In the transition systems, there are

six minimal regions and b and c are concurrent.

However, in the DEVS model every atomic model is

discrete and independent model. Every atomic model

has several time durations with associated transition. It

shows a strong concurrency because each transition is

controlled by the time. For example b and c is OR-split

relationship in transition systems and it means we don’t

know which one happen first. But in the DEVS model,

M1 has time duration t1 and M2 has time duration t2. If

t1 is bigger than t2, c24?complete will execute first. If

t1 is smaller than t2, b13?complete will execute first.

This demonstrates that each transition in DEVS is

independent corresponding to the time duration with a

unique label. The discrete modeling simulation can

solve many complicated process discovery.

Figure 3: Transition system is converted into DEVS

using mapping

5. STUDY CASE

A list of event logs is used as input for process

discovery as shown in figure 4. An event can have any

number of attributes. However, an extension gives

semantics to particular attributes. There are four

extensions in these event logs. The concept extension

defines the name attribute for traces and events. The

lifecycle extension defines the transition attribute for

events. Time extension defines a timestamp attribute

and both the data and time are recorded. The

organizational extension defines a resource attribute.

The resource attribute refers to the resource that

triggered or executed the event. This example log in

figure 4 specifies two lists of global attributes (one is

hidden). Traces have one global attribute: attribute

concept:name is mandatory for all traces. Events have

two global attributes: attributes lifecycle:transition and

concept:name are mandatory for all events. It also

defines three classifiers in these event logs. Each

classifier is specified by a list of attributes. There are

four traces in these event logs but only one is visible.

Case 1 has four events and each event has four

attributes. When mining transition systems starts, the

event name and transition is classified as activities and

transformed into transition. Time is not considered and

resource is all undefined. The information is classified

and extracted by the plug-in openXES based on XES

standard.

Figure 4: XES document for event logs

After these event logs are extracted, we get the mined

transition system as shown in figure 5. It has an initial

state represented by dotted line and an acceptance state

represented by double line. Each state has an identity

label and each transition has the label of activity. The

state and the transition are connected to provide several

possible execution sequences.

Figure 5: Mined transition system in ProM

Figure 6: DEVS model is converted from transition

system using region-based approach in ProM

After we get the transition system, we start to use the

region-based approach to transform transition system

into DEVS as shown in figure 6. We transform the

components in the transition system to the related

DEVS components according to the mapping. First we

check if the transition system meets the forward-closure

property. Transition system is divided into regions and

then transformed to atomic model. Each atomic model

has a unique identity number and each transition has a

unique name which represents event and message.

External transition which contains the message

“complete” is visualized as a classical arrow and

internal transition which contains the message “start” is

visualized as a diamond arrow. The name of the

transition is the combination of the source activity and

the target activity. Each state (we call here state, the

state variable phase) with a leaving internal transition is

given a time life function not infinite to be defined.

Each state with no internal transition has its time life

function set to infinite. The initial state is converted into

the atomic model with label of 1. In this study case the

time in the atomic model is not extracted from the event

logs. The business process starts with the first atomic

model and continues the transitions automatically until

it reaches the desired state.

6. PERSPECTIVE

Region-based approach has reached the first step to

integrate DEVS model in the process mining. However,

it is still a big challenge to design DEVS for business

process simulation. How to satisfy the customer’s

requirement for simulation is the main objective. This

section gives the limitation of the recent work and

makes the perspective for the future work.

The DEVS model in the study case is not executed. As

the time is not considered, the transition from one state

to another state is not controllable. It is necessary to

design a method to extract time from event log and

integrate with atomic models. If every atomic model has

the time duration, the execution of each transition will

depend on the semantics of DEVS formalism. The time

perspective is concerned with the timing and frequency

of events. The presence of timestamps enables the

discovery of bottlenecks, the monitoring of resource

utilization, and the prediction of remaining processing

times of running cases.

Until now, DEVS model in the process mining cannot

be used directly for simulation. The graphical view of

process model needs to be enriched with temporal

information at least very basic one that are time life

function values and event planning. After having

enriched the model, there are two methods to run it. The

first one is to implement the interoperability with other

DEVS simulation engine platform like ADEVS, CD++

and so on. We need to export the DEVS model from the

ProM and transform into other pattern which another

platform can accept. So the discovered DEVS can be

simulated in an existing platform. The second one is to

implement a DEVS simulation engine inside ProM.

Thanks to conformance checking, it defines that the

behavior of a process model and the behavior recorded

in an event log are compared to find commonalities and

discrepancies. So DEVS not only can be used for

business simulation, but also it can reduce the

deviations from the reality. Deviations from reality

include model deviating from reality and case deviating

from model. Conformance checking supports deviation

by providing algorithms for example token replay.

Moreover, in the DEVS model, the atomic model is not

explicitly presented. Different atomic models with

different functions need to be visualized. A dynamic

and abundant DEVS model base semantic will be

constructed with the purpose of reducing the

representational bias. The DEVS model base is used as

a component library in order to construct complicated

DEVS models. The enrichment of DEVS model will

also use ontology to extend various perspectives.

Discovered models may focus on different perspectives

(control-flow, data flow, time, resources, costs, etc.) and

show these at different levels of granularity and

precision.

7. CONCLUSION

In this paper, we presented the current process

discovery technique which extracts event logs to

discover models. The novelty is coming from DEVS

and it is specified as the resulting model for business

process simulation. In comparison with Petri Nets,

DEVS uses explicit time and separates model from

simulation. We integrated DEVS model with process

discovery to build an advanced business process model.

To achieve this goal, we selected the transition systems

as input after extracting event logs. A region-based

DEVS transformation approach with a suitable mapping

has been designed. Meanwhile, we highlight the

advantage of time concurrency in DEVS model. An

example is presented to show this approach by using

ProM simulation platform. According to the

perspective, DEVS models generated need to be

improved with the time information. Then a simulation

engine has to be selected and finally, we assume that the

use of ontology areas will help to improve the model

description. So users will be able to build almost

automatically the business process model, make

simulations, identify various components and supervise

the operating process.

REFERENCES

Bazoun H., Bouanan Y., Zacharewicz G., Ducq Y.,

Boye H., 2014. Business Process Simulation:

Transformation of BPMN 2.0 to DEVS Models.

Proceedings of the Symposium on Thery of

Modeling & Simulation, Spring Simulation Multi-

conference, No. 20.

Bouanan Y., El Alaoui, M.B., Zacharewicz, G., and

Vallespir B., 2014. Using DEVS and Cell-DEVS

for modelling of information impact on individuals

in social network. In Advances in Production

Management Systems. Innovative and Knowledge-

Based Production Management in a Global-Local

World, 409-416. Springer.

Jacques C.J.D., Wainer G.A., 2002. Using the CD++

DEVS Tookit to Develop Petri Nets. Summer

computer simulation.

Peterson J.L., 1977. Petri Nets. ACM computing

surveys, 9(3), 223-252.

Robert M.K., 1976. Formal verification of parallel

programs. Communications of the ACM, 19(7),

371-384.

Song H.S., Kim T.G., 1994. The DEVS framework for

discrete event systems control. Proceedings of the

Fifth Annual Conference on Distributed

Interactive Simulation Environment, 228-234.

IEEE.

Van der Aalst W.M.P., 2011. Process mining:

discovery, conformance and enhancement of

business processes. Springer Science & Business

Media.

Wainer G.A., 2009. Discrete-event modeling and

simulation: a practitioner’s approach. New York:

CRC Press.

Zacharewicz G., Frydman C., Giambiasi N., 2008. G-

DEVS/HLA Environment for Distributed

Simulations of Workflows. Society for computer

simulation international, San Diego, CA, USA, 84

(5), 197-213.

Zeigler B.P., Praehofer H., and Kim T.G., 2000. N-

dimensional Cell-DEVS models. Discrete Event

Dynamic Systems, 12(2), 135-157.

Zeigler B.P., Praehofer H., and Kim T.G., 2000. Theory

of Modeling and Simulation. Academic Press:

New York, USA.

Zeigler B.P., Sarjoughian H.S., 2005. Introduction to

DEVS Modeling and Simulation with JAVA:

Developing Component-Based Simulation

Models. Technical Document, University of

Arizona, 129-147.

