. Editorial, Memory with a spin, Nat. Nanotechnol, vol.10, pp.185-185, 2015.

A. Hoffmann and S. D. Bader, Opportunities at the Frontiers of Spintronics, Physical Review Applied, vol.68, issue.4, p.47001, 2015.
DOI : 10.1109/MSPEC.2015.7065415

W. P. Mccray, How spintronics went from the lab to the iPod, Nature Nanotechnology, vol.61, issue.1, pp.2-4, 2009.
DOI : 10.1038/nnano.2008.380

M. Melzer, Imperceptible magnetoelectronics, Nature Communications, vol.5, p.6080, 2015.
DOI : 10.1038/ncomms7080

URL : http://doi.org/10.1038/ncomms7080

D. Makarov, M. Melzer, D. Karnaushenko, O. G. Schmidt, and . Shapeable-magnetoelectronics, Shapeable magnetoelectronics, Applied Physics Reviews, vol.3, issue.1, p.11101, 2016.
DOI : 10.1002/adma.201503127

URL : http://doi.org/10.1063/1.4938497

I. Koh and L. Josephson, Magnetic Nanoparticle Sensors, Sensors, vol.80, issue.10, pp.8130-8145, 2009.
DOI : 10.1073/pnas.0902365106

URL : http://doi.org/10.3390/s91008130

R. Chen, G. Romero, M. G. Christiansen, A. Mohr, and P. Anikeeva, Wireless magnetothermal deep brain stimulation, Science, vol.103, issue.32, pp.1477-1480, 2015.
DOI : 10.1073/pnas.0604376103

URL : http://dspace.mit.edu/bitstream/1721.1/96011/1/Anikeeva_Wireless%20magnetothermal.pdf

B. Faure, 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals, Nanoscale, vol.422, issue.3, pp.953-960, 2013.
DOI : 10.1039/C2NR33013J

H. Sun, Single-Molecule Magnets, The Journal of Physical Chemistry B, vol.113, issue.44, pp.14674-14680, 2009.
DOI : 10.1021/jp906520j

R. L. Stamps, The 2014 Magnetism Roadmap, Journal of Physics D: Applied Physics, vol.47, issue.33, p.333001, 2014.
DOI : 10.1088/0022-3727/47/33/333001

URL : https://hal.archives-ouvertes.fr/hal-01367598

M. M. Waldrop, The chips are down for Moore?s law, Nature, vol.530, issue.7589, pp.144-147, 2016.
DOI : 10.1038/530144a

S. Parkin and S. Yang, Memory on the racetrack, Nature Nanotechnology, vol.10, issue.3, pp.195-198, 2015.
DOI : 10.1103/PhysRevLett.67.3598

R. Mattheis, S. Glathe, M. Diegel, and U. Hübner, turn counter, Journal of Applied Physics, vol.111, issue.11, p.113920, 2012.
DOI : 10.1063/1.3112577

G. Hrkac, J. Dean, and D. A. Allwood, Nanowire spintronics for storage class memories and logic, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.96, issue.5845, pp.3214-3228, 2011.
DOI : 10.1126/science.1145516

S. Jamet, N. Rougemaille, J. C. Toussaint, and O. Fruchart, in Magnetic nano-and microwires: design, synthesis, properties and applications, pp.783-811, 2015.

R. D. Mcmichael, J. Eicke, M. J. Donahue, and D. G. Porter, Domain wall traps for low-field switching of submicron elements, Journal of Applied Physics, vol.87, issue.9, pp.7058-7060, 2000.
DOI : 10.1063/1.369929

A. Arrott, B. Heinrich, and A. Aharoni, Point singularities and magnetization reversal in ideally soft ferromagnetic cylinders, IEEE Transactions on Magnetics, vol.15, issue.5, pp.1228-1235, 1979.
DOI : 10.1109/TMAG.1979.1060342

E. Feldtkeller, Mikromagnetisch stetige und unstetige Magnetisierungskonfigurationen, Z. Angew. Phys, vol.19, pp.530-536, 1965.

H. Forster, Domain wall motion in nanowires using moving grids (invited), Journal of Applied Physics, vol.34, issue.197, pp.6914-6919, 2002.
DOI : 10.1063/1.1452189

R. Hertel, Computational micromagnetism of magnetization processes in nickel nanowires, Journal of Magnetism and Magnetic Materials, vol.249, issue.1-2, pp.251-256, 2002.
DOI : 10.1016/S0304-8853(02)00539-5

N. Biziere, Imaging the Fine Structure of a Magnetic Domain Wall in a Ni Nanocylinder, This paper demonstrates imaging of the internal structure of domain walls in cylindrical nanowires, pp.2053-2057, 2013.
DOI : 10.1021/nl400317j

URL : https://hal.archives-ouvertes.fr/hal-01143150

D. Col and S. , Observation of Bloch-point domain walls in cylindrical magnetic nanowires, Physical Review B, vol.53, issue.18, p.180405, 2014.
DOI : 10.1126/science.1145799

URL : https://hal.archives-ouvertes.fr/hal-00911025

P. Landeros, Reversal modes in magnetic nanotubes, Applied Physics Letters, vol.90, issue.10, p.102501, 2007.
DOI : 10.1103/PhysRevB.74.174412

URL : http://arxiv.org/abs/cond-mat/0611234

R. Hertel, Curvature-induced magnetochirality This work presents a theoretical discussion of magnetochiral effects induced by surface curvature in ferromagnetic systems, p.1340009, 2013.

Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Curvature Effects in Thin Magnetic Shells, Physical Review Letters, vol.5, issue.25, p.257203, 2014.
DOI : 10.1088/1367-2630/11/6/063006

D. D. Sheka, Curvature effects in statics and dynamics of low dimensional magnets, Journal of Physics A: Mathematical and Theoretical, vol.48, issue.12, p.125202, 2015.
DOI : 10.1088/1751-8113/48/12/125202

P. Landeros and A. S. Nünnün´ez, Domain wall motion on magnetic nanotubes, Journal of Applied Physics, vol.108, issue.3, p.33917, 2010.
DOI : 10.1016/B978-0-08-050347-9.50012-5

A. L. González, P. Landeros, and A. ´. Núñez, Spin wave spectrum of magnetic nanotubes, Journal of Magnetism and Magnetic Materials, vol.322, issue.5, pp.530-535, 2010.
DOI : 10.1016/j.jmmm.2009.10.010

R. Streubel, Magnetism in curved geometries, Journal of Physics D: Applied Physics, vol.49, issue.36, p.363001, 2016.
DOI : 10.1088/0022-3727/49/36/363001

URL : http://doi.org/10.1088/0022-3727/49/36/363001

K. Ryu, L. Thomas, S. Yang, and S. Parkin, Chiral spin torque at magnetic domain walls, Nature Nanotechnology, vol.98, issue.7, pp.527-533, 2013.
DOI : 10.1038/nnano.2013.102

S. Emori, U. Bauer, S. Ahn, E. Martinez, and G. S. Beach, Current-driven dynamics of chiral ferromagnetic domain walls, This article demonstrates chiral spin torque in Neel-type domain walls in nanostrips, pp.611-616, 2013.
DOI : 10.1038/nmat3675

URL : http://arxiv.org/abs/1302.2257

I. M. Miron, Fast current-induced domain-wall motion controlled by the Rashba effect, Nature Materials, vol.59, issue.6, pp.419-423, 2011.
DOI : 10.1038/nmat3020

URL : https://hal.archives-ouvertes.fr/hal-00613090

N. L. Schryer and L. Walker, The motion of 180? domain walls in uniform dc magnetic fields, Journal of Applied Physics, vol.2, issue.12, pp.5406-5421, 1974.
DOI : 10.1007/BF01397970

M. Yan, C. Andreas, A. Kákay, F. Garc?¨agarc?¨a-sänchez, and R. Hertel, Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission, This numerical study predicts the Spin-Cherenkov effect in nanotubes, p.122505, 2011.
DOI : 10.1109/TMAG.2010.2044758

M. Yan, C. Andreas, A. Käkay, F. Garc?¨agarc?¨a-sänchez, and R. Hertel, Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes, Applied Physics Letters, vol.100, issue.25, p.252401, 2012.
DOI : 10.1063/1.3687154

R. Hertel, Ultrafast domain wall dynamics in magnetic nanotubes and nanowires, Journal of Physics: Condensed Matter, vol.28, issue.48, p.483002, 2016.
DOI : 10.1088/0953-8984/28/48/483002

C. Andreas, A. Kákay, and R. Hertel, Multiscale and multimodel simulation of Bloch-point dynamics, Physical Review B, vol.5, issue.13, p.134403, 2014.
DOI : 10.1103/PhysRevB.88.220412

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Magnetic Vortex Core Observation in Circular Dots of Permalloy, Science, vol.289, issue.5481, pp.930-932, 2000.
DOI : 10.1126/science.289.5481.930

A. Wachowiak, Direct Observation of Internal Spin Structure of Magnetic Vortex Cores, Science, vol.298, issue.5593, pp.577-580, 2002.
DOI : 10.1126/science.1075302

J. A. Burgess, Quantitative Magneto-Mechanical Detection and Control of the Barkhausen Effect, Science, vol.306, issue.5371, pp.1051-1054, 2013.
DOI : 10.1126/science.280.5371.1919

R. Streubel, P. Fischer, M. Kopte, O. G. Schmidt, and D. Makarov, Magnetization dynamics of imprinted non-collinear spin textures, Applied Physics Letters, vol.5, issue.11, p.112406, 2015.
DOI : 10.1103/PhysRevB.89.064413

J. Zhu, Y. Zheng, and G. A. Prinz, Ultrahigh density vertical magnetoresistive random access memory (invited), Journal of Applied Physics, vol.87, issue.9, p.6668, 2000.
DOI : 10.1063/1.125053

O. V. Pylypovskyi, Coupling of Chiralities in Spin and Physical Spaces: The M??bius Ring as a Case Study, Physical Review Letters, vol.53, issue.19, p.197204, 2015.
DOI : 10.1103/PhysRevLett.101.247701

S. Zhang, P. Levy, and A. Fert, Mechanisms of Spin-Polarized Current-Driven Magnetization Switching, Physical Review Letters, vol.200, issue.23, p.236601, 2002.
DOI : 10.1103/PhysRevLett.88.236601

URL : http://arxiv.org/abs/cond-mat/0202363

M. Bode, Chiral magnetic order at surfaces driven by inversion asymmetry, Nature, vol.77, issue.60, pp.190-193, 2007.
DOI : 10.1038/nature05802

B. Dupé, Tailoring magnetic skyrmions in ultra-thin transition metal films, Nature Communications, vol.5, pp.101-103, 2014.
DOI : 10.1103/PhysRevB.75.205432

H. T. Nembach, J. M. Shaw, M. Weiler, E. Jué, and T. J. Silva, Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii?Moriya interaction in metal films, Nature Physics, vol.4, issue.10, pp.825-829, 2015.
DOI : 10.1103/PhysRevB.44.12417

G. Chen, Tailoring the chirality of magnetic domain walls by interface engineering, Nature Communications, vol.75, p.2671, 2013.
DOI : 10.1038/ncomms3671

R. Wiesendanger, Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics, Nature Reviews Materials, vol.5, issue.7, 160442016.
DOI : 10.1038/ncomms10620

URL : https://hal.archives-ouvertes.fr/hal-01455828

N. Romming, Writing and Deleting Single Magnetic Skyrmions, Science, vol.97, issue.6065, pp.636-639, 2013.
DOI : 10.1126/science.1214131

S. Woo, Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nature Materials, vol.15, issue.5, pp.501-506, 2016.
DOI : 10.1016/0304-8853(92)91086-9

W. Jiang, Blowing magnetic skyrmion bubbles, Science, vol.320, issue.5873, pp.283-286, 2015.
DOI : 10.1126/science.1145799

URL : http://arxiv.org/abs/1502.08028

C. Hanneken, Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance, Nature Nanotechnology, vol.5, issue.12, pp.1039-1042, 2015.
DOI : 10.1126/science.1145799

S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of Skyrmions in a Multiferroic Material, Science, vol.82, issue.5759, pp.198-201, 2012.
DOI : 10.1126/science.1120639

P. Hsu, Electric-field-driven switching of individual magnetic skyrmions, Nature Nanotechnology, vol.12, issue.2, pp.123-126, 2017.
DOI : 10.1103/PhysRevB.88.214409

URL : http://arxiv.org/abs/1601.02935

C. Reichhardt and C. J. Reichhardt, Noise fluctuations and drive dependence of the skyrmion Hall effect in disordered systems, New Journal of Physics, vol.18, issue.9, p.95005, 2016.
DOI : 10.1088/1367-2630/18/9/095005

J. Barker and O. A. Tretiakov, Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature, Physical Review Letters, vol.19, issue.14, p.147203, 2016.
DOI : 10.1088/1742-6596/430/1/012127

R. P. Cowburn, Room Temperature Magnetic Quantum Cellular Automata, Science, vol.287, issue.5457, pp.1466-1468, 2000.
DOI : 10.1126/science.287.5457.1466

M. T. Niemier, Nanomagnet logic: progress toward system-level integration, Journal of Physics: Condensed Matter, vol.23, issue.49, p.493202, 2011.
DOI : 10.1088/0953-8984/23/49/493202

E. Y. Vedmedenko and D. Altwein, Topologically Protected Magnetic Helix for All-Spin-Based Applications, Physical Review Letters, vol.IX, issue.1, p.17206, 2014.
DOI : 10.1002/cphc.200700830

URL : http://arxiv.org/abs/1312.4342

S. Te-velthuis, J. Jiang, S. Bader, and G. Felcher, Spin Flop Transition in a Finite Antiferromagnetic Superlattice: Evolution of the Magnetic Structure, Physical Review Letters, vol.13, issue.12, p.127203, 2002.
DOI : 10.1103/PhysRevB.65.064440

A. Fernández-pacheco, Controllable nucleation and propagation of topological magnetic solitons in CoFeB/Ru ferrimagnetic superlattices, Physical Review B, vol.86, issue.10, p.104422, 2012.
DOI : 10.1103/PhysRevLett.67.3598

A. Fernández-pacheco, Magnetic State of Multilayered Synthetic Antiferromagnets during Soliton Nucleation and Propagation for Vertical Data Transfer, Advanced Materials Interfaces, vol.674, issue.15, p.1600097, 2016.
DOI : 10.1002/admi.201600097

R. Lavrijsen, Magnetic ratchet for three-dimensional spintronic memory and logic, Nature, vol.96, issue.7434, pp.647-650, 2013.
DOI : 10.1038/nature11733

R. Lavrijsen, Multi-bit operations in vertical spintronic shift registers, Nanotechnology, vol.25, issue.10, p.105201, 2014.
DOI : 10.1088/0957-4484/25/10/105201

URL : https://pure.tue.nl/ws/files/3986136/620644359313730.pdf

R. Mansell, A robust soliton ratchet using combined antiferromagnetic and ferromagnetic interlayer couplings, Applied Physics Letters, vol.106, issue.9, p.92404, 2015.
DOI : 10.1142/S2010324713400134

URL : https://www.repository.cam.ac.uk/bitstream/1810/248078/1/Mansell%20et%20al%202015%20Applied%20Physics%20Letters.pdf

J. H. Lee, Soliton propagation in micron-sized magnetic ratchet elements, Applied Physics Letters, vol.104, issue.23, p.232404, 2014.
DOI : 10.1063/1.3032938

URL : https://pure.tue.nl/ws/files/3911836/706505334006137.pdf

J. Lee, DOMAIN IMAGING DURING SOLITON PROPAGATION IN A 3D MAGNETIC RATCHET, SPIN, vol.1286, issue.04, p.1340013, 2013.
DOI : 10.1063/1.4819380

K. Kudo, Resonant magnetization switching induced by spin-torque-driven oscillations and its use in three-dimensional magnetic storage applications, Applied Physics Express, vol.8, issue.10, p.103001, 2015.
DOI : 10.7567/APEX.8.103001

H. Suto, Three-dimensional magnetic recording using ferromagnetic resonance, Japanese Journal of Applied Physics, vol.55, issue.7S3, pp.7-8, 2016.
DOI : 10.7567/JJAP.55.07MA01

C. Lambert, All-optical control of ferromagnetic thin films and nanostructures, Science, vol.285, issue.5429, pp.1337-1340, 2014.
DOI : 10.1126/science.285.5429.864

URL : https://hal.archives-ouvertes.fr/hal-01282624

D. Karnaushenko, Self-Assembled On-Chip-Integrated Giant Magneto-Impedance Sensorics, Advanced Materials, vol.94, issue.276, pp.6582-6589, 2015.
DOI : 10.1002/adma.201503127

M. Melzer, Stretchable Magnetoelectronics, Nano Letters, vol.11, issue.6, pp.2522-2526, 2011.
DOI : 10.1021/nl201108b

D. Makarov, C. Ortix, and L. Baraba, Functional magnetic nanomembranes, p.1302001, 2013.

D. Ernst, Packaging technologies for (Ultra-)thin sensor applications in active magnetic bearings, Proceedings of the 2014 37th International Spring Seminar on Electronics Technology, pp.125-129, 2014.
DOI : 10.1109/ISSE.2014.6887577

D. Karnaushenko, D. Makarov, C. Yan, R. Streubel, and O. G. Schmidt, Printable Giant Magnetoresistive Devices, Advanced Materials, vol.57, issue.33, pp.4518-4522
DOI : 10.1002/adma.201201190

L. M. Belova, O. Hellwig, E. Dobisz, and E. Dan-dahlberg, Rapid preparation of electron beam induced deposition Co magnetic force microscopy tips with 10 nm spatial resolution, Review of Scientific Instruments, vol.83, issue.9, p.93711, 2012.
DOI : 10.1109/TMAG.2004.829173

M. Gavagnin, Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic, ACS Applied Materials & Interfaces, vol.6, issue.22, pp.20254-20260, 2014.
DOI : 10.1021/am505785t

URL : http://doi.org/10.1021/am505785t

F. Guo, L. M. Belova, and R. D. Mcmichael, Spectroscopy and Imaging of Edge Modes in Permalloy Nanodisks, Physical Review Letters, vol.110, issue.1, p.17601, 2013.
DOI : 10.1088/0957-4484/22/14/145305

T. Mühl, Magnetic force microscopy sensors providing in-plane and perpendicular sensitivity, Applied Physics Letters, vol.101, issue.11, p.112401, 2012.
DOI : 10.1116/1.1417545

A. Schuhl, G. Gaudin, P. Sabon, P. Zermatten, and F. Montaigne, Integrated magnetometer and its manufacturing process. World Patent Organization patent WO, p.92406, 2011.

R. H. Blick, H. Qin, H. Kim, and R. Marsland, A nanomechanical computer?exploring new avenues of computing, New Journal of Physics, vol.9, issue.7, pp.241-241, 2007.
DOI : 10.1088/1367-2630/9/7/241

J. Chaste, A nanomechanical mass sensor with yoctogram resolution, Nature Nanotechnology, vol.69, issue.5, pp.301-304, 2012.
DOI : 10.1038/nnano.2012.42

M. S. Hanay, Inertial imaging with nanomechanical systems, Nature Nanotechnology, vol.95, issue.4, pp.339-344, 2015.
DOI : 10.1038/nnano.2015.32

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283574

M. S. Hanay, Single-protein nanomechanical mass spectrometry in real time, Nature Nanotechnology, vol.161, issue.9, pp.602-608, 2012.
DOI : 10.1016/j.jasms.2005.02.017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435450

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Reviews of Modern Physics, vol.20, issue.4, pp.1391-1452, 2014.
DOI : 10.1063/1.881293

P. Vavassori, M. Pancaldi, M. J. Perez-roldan, A. Chuvilin, and A. Berger, Remote Magnetomechanical Nanoactuation, Small, vol.9, issue.8, pp.1013-1023, 2016.
DOI : 10.1002/smll.201503351

D. Walker, M. Kübler, K. I. Morozov, P. Fischer, and A. M. Leshansky, Optimal Length of Low Reynolds Number Nanopropellers, Nano Letters, vol.15, issue.7, pp.4412-4416, 2015.
DOI : 10.1021/acs.nanolett.5b01925

L. Baraban, Fuel-Free Locomotion of Janus Motors: Magnetically Induced Thermophoresis, ACS Nano, vol.7, issue.2, pp.1360-1367, 2013.
DOI : 10.1021/nn305726m

M. A. Wheeler, Genetically targeted magnetic control of the nervous system, Nature Neuroscience, vol.60, issue.5, pp.756-761, 2016.
DOI : 10.1038/nn.4265

D. Kilinc, C. L. Dennis, and G. Lee, Bio-Nano-Magnetic Materials for Localized Mechanochemical Stimulation of Cell Growth and Death, Advanced Materials, vol.14, issue.(Pt 5), pp.5672-5680, 2016.
DOI : 10.1016/j.bbrc.2015.08.022

N. Wang and D. E. Ingber, Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry, Biochemistry and Cell Biology, vol.73, issue.7-8, pp.327-335, 1995.
DOI : 10.1139/o95-041

S. H. Cartmell, J. Dobson, S. B. Verschueren, and A. J. Haj, Development of magnetic particle techniques for long-term culture of bone cells with intermittent mechanical activation, IEEE Transactions on Nanobioscience, vol.1, issue.2, pp.92-97
DOI : 10.1109/TNB.2002.806945

M. E. Muroski, Controlled Payload Release by Magnetic Field Triggered Neural Stem Cell Destruction for Malignant Glioma Treatment, PLOS ONE, vol.7, issue.6, pp.4-15, 2016.
DOI : 10.1371/journal.pone.0145129.s006

URL : http://doi.org/10.1371/journal.pone.0145129

D. Kim, Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, Nature Materials, vol.26, issue.2, pp.165-171, 2010.
DOI : 10.1038/nmat2591

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810356/pdf

M. A. Hein, Fabrication of BioInspired Inorganic Nanocilia Sensors, IEEE Transactions on Magnetics, vol.49, issue.1, pp.191-196, 2013.
DOI : 10.1109/TMAG.2012.2224852

A. Brataas, A. D. Kent, and H. Ohno, Current-induced torques in magnetic materials, Nature Materials, vol.87, issue.5, pp.372-381, 2012.
DOI : 10.1038/nmat3311

N. Locatelli, V. Cros, and J. Grollier, Spin-torque building blocks, Nature Materials, vol.324, issue.1, pp.11-20, 2014.
DOI : 10.1038/nmat3823

URL : http://arxiv.org/abs/1401.0874

S. S. Parkin, M. Hayashi, and L. Thomas, Magnetic Domain-Wall Racetrack Memory, Science, vol.3, issue.12, pp.190-194, 2008.
DOI : 10.1038/nmat1256

T. Ishigaki, A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions, 2010 Symposium on VLSI Technology, pp.47-48, 2010.
DOI : 10.1109/VLSIT.2010.5556126

T. H. Ono, K. Miyajima, K. Shigeto, N. Mibu, and T. S. Hosoito, Propagation of a Magnetic Domain Wall in a Submicrometer Magnetic Wire, This work shows domain wall conduit behaviour in nanowires, pp.468-470, 1999.
DOI : 10.1126/science.284.5413.468

A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Magnon spintronics, Nature Physics, vol.11, issue.6, pp.453-461, 2015.
DOI : 10.1103/PhysRevB.90.094423

D. A. Allwood, Magnetic Domain-Wall Logic, Science, vol.309, issue.5741, pp.1688-1692, 2005.
DOI : 10.1126/science.1108813

S. Lequeux, A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy, Scientific Reports, vol.320, issue.1, p.31510, 2016.
DOI : 10.1016/j.jmmm.2007.12.008

URL : http://doi.org/10.1038/srep31510

V. Neumann, J. Churchland, P. M. Churchland, and P. S. , The Computer And The Brain, 2000.

G. E. Bauer, E. Saitoh, and B. Van-wees, Spin caloritronics, Nature Materials, vol.2, issue.5, pp.391-399, 2012.
DOI : 10.1038/nmat3301

S. Fusil, V. Garcia, A. Barthélémy, and M. Bibes, Magnetoelectric Devices for Spintronics, Annual Review of Materials Research, vol.44, issue.1, pp.91-116, 2014.
DOI : 10.1146/annurev-matsci-070813-113315

S. Xu, Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling, Science, vol.47, issue.6044, pp.154-159, 2015.
DOI : 10.1126/science.1206157

J. S. Fisher, P. A. Kottke, S. Kim, and A. G. Fedorov, Rapid Electron Beam Writing of Topologically Complex 3D Nanostructures Using Liquid Phase Precursor, Nano Letters, vol.15, issue.12, pp.8385-8391, 2015.
DOI : 10.1021/acs.nanolett.5b04225

T. Fix, Electric-Field Control of Ferromagnetism in a Nanocomposite via a ZnO Phase, Nano Letters, vol.13, issue.12, pp.5886-5890, 2013.
DOI : 10.1021/nl402775h

J. Rusz, J. Idrobo, and S. Bhowmick, Achieving Atomic Resolution Magnetic Dichroism by Controlling the Phase Symmetry of an Electron Probe, Physical Review Letters, vol.113, issue.14, p.145501, 2014.
DOI : 10.1103/PhysRevB.76.060408

G. Guzzinati, Prospects for versatile phase manipulation in the TEM: Beyond aberration correction, Ultramicroscopy, vol.151, pp.85-93
DOI : 10.1016/j.ultramic.2014.10.007

A. A. Lutman, Polarization control in an X-ray free-electron laser, Nature Photonics, vol.6, issue.7, pp.468-472, 2016.
DOI : 10.1038/nphoton.2016.79

H. S. Park, J. S. Baskin, and A. Zewail, 4D Lorentz Electron Microscopy Imaging: Magnetic Domain Wall Nucleation, Reversal, and Wave Velocity, Nano Letters, vol.10, issue.9, pp.3796-3803, 2010.
DOI : 10.1021/nl102861e

URL : http://authors.library.caltech.edu/20041/2/nl102861e_si_001.pdf

F. Gao and Z. Gu, Nano-soldering of magnetically aligned three-dimensional nanowire networks, Nanotechnology, vol.21, issue.11, p.115604, 2010.
DOI : 10.1088/0957-4484/21/11/115604

S. Yang, K. Ryu, and S. Parkin, Domain-wall velocities of up to 750?m?s?1 driven by exchange-coupling torque in synthetic antiferromagnets, Nature Nanotechnology, vol.45, issue.3, pp.221-226, 2015.
DOI : 10.1038/nnano.2014.324

H. Braun, Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons, Advances in Physics, vol.48, issue.5, pp.1-116, 2012.
DOI : 10.1093/acprof:oso/9780198509233.001.0001

I. L. Markov, Limits on fundamental limits to computation, Nature, vol.339, issue.7513, pp.147-154, 2014.
DOI : 10.1038/nature13570

URL : http://arxiv.org/abs/1408.3821

R. F. Wang, Artificial ?spin ice? in a geometrically frustrated lattice of nanoscale ferromagnetic islands, Nature, vol.22, issue.7074, pp.303-306, 2006.
DOI : 10.1038/nature04447

C. Donnelly, Element-Specific X-Ray Phase Tomography of 3D Structures at the Nanoscale, Physical Review Letters, vol.114, issue.11, p.115501, 2015.
DOI : 10.1016/j.jsb.2005.05.009

S. Tottori, Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport, Advanced Materials, vol.22, issue.6, pp.811-816, 2012.
DOI : 10.1002/adma.201103818

M. Albrecht, Magnetic multilayers on nanospheres, Nature Materials, vol.39, issue.3, pp.203-206, 2005.
DOI : 10.1063/1.1565503

R. Streubel, Equilibrium magnetic states in individual hemispherical permalloy caps, Applied Physics Letters, vol.152, issue.13, p.132419, 2012.
DOI : 10.1016/j.jmmm.2006.07.035

S. Eslami, Chiral Nanomagnets, ACS Photonics, vol.1, issue.11, pp.1231-1236, 2014.
DOI : 10.1021/ph500305z

J. G. Gibbs, Nanohelices by shadow growth, Nanoscale, vol.109, issue.1, pp.9457-9466, 2014.
DOI : 10.1039/C3NR04760A

V. Yannopapas and A. G. Vanakaras, Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices, ACS Photonics, vol.2, issue.8, pp.1030-1038, 2015.
DOI : 10.1021/acsphotonics.5b00237

O. G. Schmidt and K. Eberl, Nanotechnology: Thin solid films roll up into nanotubes, Nature, vol.289, issue.6825, pp.168-168, 2001.
DOI : 10.1038/35065525

E. Anagnostopoulou, Dense arrays of cobalt nanorods as rare-earth free permanent magnets, Nanoscale, vol.47, issue.7, pp.4020-4029, 2016.
DOI : 10.1039/C5NR07143G

L. G. Vivas, J. Escrig, D. G. Trabada, G. A. Badini-confalonieri, and M. Väzquez, Magnetic anisotropy in ordered textured Co nanowires, Applied Physics Letters, vol.100, issue.25, p.252405, 2012.
DOI : 10.1103/PhysRevB.85.035439

URL : https://repositorio.uam.es/bitstream/10486/662214/1/magnetic_vivas_apl_2012.pdf

R. Zierold, Magnetic, Multilayered Nanotubes of Low Aspect Ratios for Liquid Suspensions, Advanced Functional Materials, vol.183, issue.2, pp.226-232, 2011.
DOI : 10.1002/adfm.201001395

T. Ozel, G. R. Bourret, and C. A. Mirkin, Coaxial lithography, Nature Nanotechnology, vol.3, issue.4, pp.319-324, 2015.
DOI : 10.1038/nnano.2015.33

J. H. Lee, Iron?Gold Barcode Nanowires, Angewandte Chemie International Edition, vol.10, issue.20, pp.3663-3667, 2007.
DOI : 10.1002/anie.200605136

L. Piraux, Template-Grown NiFe/Cu/NiFe Nanowires for Spin Transfer Devices, Nano Letters, vol.7, issue.9, pp.2563-2567, 2007.
DOI : 10.1021/nl070263s

X. Huang, L. Tan, H. Cho, and B. J. Stadler, Magnetoresistance and spin transfer torque in electrodeposited Co/Cu multilayered nanowire arrays with small diameters, Journal of Applied Physics, vol.105, issue.7, pp.7-128, 2009.
DOI : 10.1063/1.2829901

C. T. Sousa, Nanoporous alumina as templates for multifunctional applications, Applied Physics Reviews, vol.1, issue.3, p.31102, 2014.
DOI : 10.1103/PhysRevB.86.104431

W. Lee, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nature Nanotechnology, vol.5, issue.4, pp.234-239, 2008.
DOI : 10.1038/nnano.2008.54

C. A. Ross, K. K. Berggren, J. Y. Cheng, Y. S. Jung, and J. Chang, Three-Dimensional Nanofabrication by Block Copolymer Self-Assembly, Advanced Materials, vol.15, issue.25, pp.4386-4396, 2014.
DOI : 10.1002/adma.201400386

A. A. Mistonov, Three-dimensional artificial spin ice in nanostructured Co on an inverse opal-like lattice, Physical Review B, vol.87, issue.22, p.220408, 2013.
DOI : 10.1103/PhysRevLett.95.097202

H. Hsueh, Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating, Advanced Materials, vol.16, issue.27, pp.3041-3046, 2011.
DOI : 10.1002/adma.201100883

I. Utke, P. Hoffmann, and J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.4, pp.1197-1276, 2008.
DOI : 10.1116/1.2955728

A. Fernández-pacheco, J. M. De-teresa, R. Córdoba, and M. R. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, This paper reports the 3D nano-printing of ferromagnetic nanostructures with purities above 90%, p.55005, 2009.
DOI : 10.1088/0022-3727/42/5/055005

D. Teresa and J. M. , Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID), Journal of Physics D: Applied Physics, vol.49, issue.24, p.243003, 2016.
DOI : 10.1088/0022-3727/49/24/243003

L. Bernau, M. Gabureac, R. Erni, and I. Utke, Tunable Nanosynthesis of Composite Materials by Electron-Impact Reaction, Angewandte Chemie, vol.25, issue.79, pp.9064-9068, 2010.
DOI : 10.1002/ange.201004220

F. Porrati, Direct writing of CoFe alloy nanostructures by focused electron beam induced deposition from a heteronuclear precursor, Nanotechnology, vol.26, issue.47, p.475701, 2015.
DOI : 10.1088/0957-4484/26/47/475701

B. N. Costanzi, A. V. Riazanova, D. Dahlberg, E. Belova, and L. M. , manufacture of magnetic tunnel junctions by a direct-write process, Applied Physics Letters, vol.104, issue.22, p.222401, 2014.
DOI : 10.1016/S0040-6090(00)01899-X

I. Utke, P. Hoffmann, R. Berger, and L. Scandella, High-resolution magnetic Co supertips grown by a focused electron beam, Applied Physics Letters, vol.80, issue.25, pp.4792-4794, 2002.
DOI : 10.1117/12.238195

A. Fernández-pacheco, Three dimensional magnetic nanowires grown by focused electron-beam induced deposition, Scientific Reports, vol.79, issue.1, p.1492, 2013.
DOI : 10.1103/PhysRevB.79.060407

M. Takeguchi, M. Shimojo, R. Che, and K. Furuya, Fabrication of a nano-magnet on a piezo-driven tip in a TEM sample holder, Journal of Materials Science, vol.53, issue.9, pp.2627-2630, 2006.
DOI : 10.1007/s10853-006-7825-8

Y. M. Lau, P. C. Chee, J. T. Thong, and V. Ng, Properties and applications of cobalt-based material produced by electron-beam-induced deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.20, issue.4
DOI : 10.1116/1.1481040

M. Esposito, Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies, ACS Photonics, vol.2, issue.1, pp.105-114, 2015.
DOI : 10.1021/ph500318p

A. Botman, J. J. Mulders, and C. W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective, Nanotechnology, vol.20, issue.37, p.372001, 2009.
DOI : 10.1088/0957-4484/20/37/372001

URL : http://repository.tudelft.nl/islandora/object/uuid%3A3ff04146-83d7-46a1-984b-f92d5e1ad787/datastream/OBJ/view

H. Plank, Electron-Beam-Assisted Oxygen Purification at Low Temperatures for Electron-Beam-Induced Pt Deposits: Towards Pure and High-Fidelity Nanostructures, ACS Applied Materials & Interfaces, vol.6, issue.2, pp.1018-1024
DOI : 10.1021/am4045458

N. A. Roberts, J. D. Fowlkes, G. A. Magel, and P. D. Rack, Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum, Nanoscale, vol.25, issue.114, pp.408-415, 2013.
DOI : 10.1039/C2NR33014H

J. D. Fowlkes, Focused Electron Beam Induced Deposition, ACS Nano, vol.10, issue.6, pp.6163-6172, 2016.
DOI : 10.1021/acsnano.6b02108

W. Wernsdorfer, Nucleation of Magnetization Reversal in Individual Nanosized Nickel Wires, Physical Review Letters, vol.63, issue.9, pp.1873-1876, 1996.
DOI : 10.1103/PhysRevLett.77.1873

D. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, Magneto-optical Kerr effect analysis of magnetic nanostructures, Journal of Physics D: Applied Physics, vol.36, issue.18, pp.2175-2182, 2003.
DOI : 10.1088/0022-3727/36/18/001

M. Jaafar, Hysteresis loops of individual Co nanostripes measured by magnetic force microscopy, Nanoscale Research Letters, vol.6, issue.1, p.407, 2011.
DOI : 10.1063/1.2836681

URL : http://doi.org/10.1186/1556-276x-6-407

D. P. Weber, Cantilever Magnetometry of Individual Ni Nanotubes, Nano Letters, vol.12, issue.12, pp.6139-6144, 2012.
DOI : 10.1021/nl302950u

A. Buchter, Reversal Mechanism of an Individual Ni Nanotube Simultaneously Studied by Torque and SQUID Magnetometry, Physical Review Letters, vol.111, issue.6, p.67202, 2013.
DOI : 10.1063/1.3562190

P. Banerjee, Magnetization reversal in an individual 25 nm iron-filled carbon nanotube, Applied Physics Letters, vol.96, issue.25, p.252505, 2010.
DOI : 10.1103/PhysRevLett.100.197601

M. R. Fitzsimmons and I. K. Schuller, Neutron scattering???The key characterization tool for nanostructured magnetic materials, Journal of Magnetism and Magnetic Materials, vol.350, pp.199-208, 2014.
DOI : 10.1016/j.jmmm.2013.09.028

Y. Tokunaga, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nature Communications, vol.68, p.7638, 2015.
DOI : 10.1107/S0021889811038970

I. Manke, Three-dimensional imaging of magnetic domains, Nature Communications, vol.50, issue.236, p.125, 2010.
DOI : 10.1038/ncomms1125

T. Maurer, Ordered arrays of magnetic nanowires investigated by polarized small-angle neutron scattering, Physical Review B, vol.89, issue.18, p.184423, 2014.
DOI : 10.1103/PhysRevLett.104.207203

URL : https://hal.archives-ouvertes.fr/hal-01002369

P. Fischer, X-Ray Imaging of Magnetic Structures, IEEE Transactions on Magnetics, vol.51, issue.2, pp.1-31, 2015.
DOI : 10.1109/TMAG.2014.2363054

D. Reyes, N. Biziere, B. Warot-fonrose, T. Wade, and C. Gatel, Magnetic Configurations in Co/Cu Multilayered Nanowires: Evidence of Structural and Magnetic Interplay, Nano Letters, vol.16, issue.2, pp.1230-1236, 2016.
DOI : 10.1021/acs.nanolett.5b04553

URL : https://hal.archives-ouvertes.fr/cea-01400872

X. Z. Yu, Real-space observation of a two-dimensional skyrmion crystal, Nature, vol.412, issue.214, pp.901-904, 2010.
DOI : 10.1038/nature09124

X. Zhao, Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks, Proc. Natl Acad. Sci. USA, pp.4918-4923, 2016.
DOI : 10.1557/mrs2007.63

Y. P. Ivanov, A. Chuvilin, S. Lopatin, and J. Kosel, Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories, ACS Nano, vol.10, issue.5, pp.5326-5332, 2016.
DOI : 10.1021/acsnano.6b01337

P. A. Midgley and R. E. Dunin-borkowski, Electron tomography and holography in materials science, Nature Materials, vol.253, issue.4, pp.271-280, 2009.
DOI : 10.1038/nmat2406

C. Phatak, M. Tanase, A. K. Petford-long, and M. De-graef, Determination of magnetic vortex polarity from a single Lorentz Fresnel image, Ultramicroscopy, vol.109, issue.3, pp.264-267, 2009.
DOI : 10.1016/j.ultramic.2008.11.003

D. Wolf, 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography, Chemistry of Materials, vol.27, issue.19, pp.6771-6778, 2015.
DOI : 10.1021/acs.chemmater.5b02723

URL : http://doi.org/10.1021/acs.chemmater.5b02723

P. Simon, FeGa Heusler Nanowires at 5 nm Resolution, Nano Letters, vol.16, issue.1, pp.114-120, 2016.
DOI : 10.1021/acs.nanolett.5b03102

C. Phatak, Visualization of the Magnetic Structure of Sculpted Three-Dimensional Cobalt Nanospirals, Nano Letters, vol.14, issue.2, pp.759-764, 2014.
DOI : 10.1021/nl404071u

C. Phatak, Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection, Ultramicroscopy, vol.164, pp.24-30, 2016.
DOI : 10.1016/j.ultramic.2016.03.005

URL : https://hal.archives-ouvertes.fr/hal-01430579

C. Phatak, A. K. Petford-long, and M. De-graef, Three-Dimensional Study of the Vector Potential of Magnetic Structures, Physical Review Letters, vol.104, issue.25, p.253901, 2010.
DOI : 10.1038/nmat2406

T. Tanigaki, Three-Dimensional Observation of Magnetic Vortex Cores in Stacked Ferromagnetic Discs, Nano Letters, vol.15, issue.2, pp.1309-1314, 2015.
DOI : 10.1021/nl504473a

J. Kimling, Photoemission electron microscopy of three-dimensional magnetization configurations in core-shell nanostructures, Physical Review B, vol.84, issue.17, p.174406, 2011.
DOI : 10.1103/PhysRevLett.104.127201

R. Streubel, Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies This work demonstrates three-dimensonal magnetic vectorial tomography using X-ray microscopy, Nat. Commun, vol.6, issue.7612, 2015.

R. Streubel, Imaging of Buried 3D Magnetic Rolled-up Nanomembranes, Nano Letters, vol.14, issue.7, pp.3981-3986, 2014.
DOI : 10.1021/nl501333h

URL : http://doi.org/10.1021/nl501333h

C. Blanco-roldán, Nanoscale imaging of buried topological defects with quantitative X-ray magnetic microscopy, Nature Communications, vol.4, p.8196, 2015.
DOI : 10.1038/ncomms9196

R. Hertel, Three-dimensional magnetic-flux-closure patterns in mesoscopic Fe islands, Physical Review B, vol.8, issue.21, p.214409, 2005.
DOI : 10.1002/pssa.2210150206

URL : https://hal.archives-ouvertes.fr/hal-00005863

A. Kakay, E. Westphal, and R. Hertel, Speedup of FEM Micromagnetic Simulations With Graphical Processing Units, IEEE Transactions on Magnetics, vol.46, issue.6, pp.2303-2306, 2010.
DOI : 10.1109/TMAG.2010.2048016

L. Shaojing, B. Livshitz, and V. Lomakin, Graphics Processing Unit Accelerated <formula formulatype="inline"><tex Notation="TeX">$O(N)$</tex></formula> Micromagnetic Solver, IEEE Transactions on Magnetics, vol.46, issue.6, pp.2373-2375, 2010.
DOI : 10.1109/TMAG.2010.2043504

T. Sato and Y. Nakatani, Fast Micromagnetic Simulation of Vortex Core Motion by GPU, Journal of the Magnetics Society of Japan, vol.35, issue.3, pp.163-170, 2011.
DOI : 10.3379/msjmag.1104R001

C. Kittel, Physical Theory of Ferromagnetic Domains, Reviews of Modern Physics, vol.75, issue.4, pp.541-583, 1949.
DOI : 10.1103/RevModPhys.21.541

C. Andreas, S. Gliga, and R. Hertel, Numerical micromagnetism of strong inhomogeneities, Journal of Magnetism and Magnetic Materials, vol.362, pp.7-13, 2014.
DOI : 10.1016/j.jmmm.2014.02.097

R. F. Evans, Atomistic spin model simulations of magnetic nanomaterials, Journal of Physics: Condensed Matter, vol.26, issue.10, p.103202, 2014.
DOI : 10.1088/0953-8984/26/10/103202

URL : http://arxiv.org/abs/1310.6143

L. Bergqvist, A. Taroni, A. Bergman, C. Etz, and O. Eriksson, Atomistic spin dynamics of low-dimensional magnets, Physical Review B, vol.5, issue.14, p.144401, 2013.
DOI : 10.1103/PhysRevLett.108.197205

URL : http://arxiv.org/pdf/1211.2964