Simulation of radar backscattering from snowpack at X-band and Ku-band
Michel Gay, Xuan-Vu Phan, Laurent Ferro-Famil

To cite this version:
Michel Gay, Xuan-Vu Phan, Laurent Ferro-Famil. Simulation of radar backscattering from snowpack at X-band and Ku-band. European Geosciences Union General Assembly 2016 (EGU 2016), Apr 2016, Vienna, Austria. pp.2016 - 17906. hal-01535481

HAL Id: hal-01535481
https://hal.archives-ouvertes.fr/hal-01535481
Submitted on 9 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Simulation of radar backscattering from snowpack at X-band and Ku-band

Michel Gay, Xuan-Vu Phan, and Laurent Ferro-Famil
CNRS GIPSA-lab, France (michel.gay@gipsa-lab.grenoble-inp.fr)

This paper presents a multilayer snowpack electromagnetic backscattering model, based on Dense Media Radiative Transfer (DMRT). This model is capable of simulating the interaction of electromagnetic wave (EMW) at X-band and Ku-band frequencies with multilayer snowpack. The air-snow interface and snow-ground backscattering components are calculated using the Integral Equation Model (IEM) by [1], whereas the volume backscattering component is calculated based on the solution of Vector Radiative Transfer (VRT) equation at order 1. Case study has been carried out using measurement data from NoSREx project [2], which include SnowScat data in X-band and Ku-band, TerraSAR-X acquisitions and snowpack stratigraphic in-situ measurements. The results of model simulations show good agreement with the radar observations, and therefore allow the DMRT model to be used in various applications, such as data assimilation [3].