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Abstract—The analysis of human gait is more and more inves-
tigated due to its large panel of potential applications in various
domains, like rehabilitation, deficiency diagnosis, surveillance
and movement optimization. In addition, the release of depth
sensors offers new opportunities to achieve gait analysis in a
non-intrusive context. In this paper, we propose a gait analysis
method from depth sequences by analyzing separately each step
so as to be robust to gait duration and incomplete cycles. We
analyze the shape of the motion trajectory as signature of the
gait and consider shape variations within a Riemannian manifold
to learn step models. During classification, the derivation of each
performed step is evaluated in an online manner to qualitatively
analyze the gait. Experiments are carried out in the context of
abnormal gait detection and person re-identification trough gait
recognition. Results demonstrated the potential of the method in
both scenarios.

I. INTRODUCTION

The analysis of human motion through vision-based tech-
niques has been widely investigated in recent years mainly
due to its large spectrum of potential applications in vari-
ous domains, like entertainment, medicine, surveillance and
sport [3]. More recently, the release of new depth sensors, like
Microsoft Kinect offered new opportunities to analyze human
motion, by providing in real-time 3D skeleton data representing
the human pose. These data have been successfully used to
support fall detection [16], action recognition [8], [24], motion
segmentation [7], [25] and person authentication [1], [11].

In particular, a growing attention has targeted the analysis
of human gait by health professionals and researchers. It has
been shown that human gait is an important indicator of health
and well being [12]. Hence, a qualitative evaluation of gait is
appreciated and several measures of quality have been investi-
gated [6], [22]. However, the measurement of gait parameters
are often based on expensive or intrusive systems, like force
plates, markers or wearable sensors. Therefore, such systems
can be employed only in laboratories and require deliberate
user cooperation. In order to face these constraints, the use
of non-intrusive, portable and low-cost depth sensors has been
evaluated. Particularly, the accuracy of the estimated skeleton
data is evaluated through various measurements, like stride
duration and arm angular velocities [10], [23]. Experiments

Fig. 1. Overview of our approach. The skeleton gait sequence is first segmented
to identify right and left steps. Each step is then represented as a motion
trajectory. The shape of trajectories are analyzed in the shape space and shape
variations are considered to learn a step model for both steps.

demonstrated that such data are sufficiently robust and accurate
for gait analysis in various contexts.

These considerations motivated researchers to analyze the
gate of people using data provided depth sensors for the pur-
pose of abnormal gait detection and/or person re-identification.
In this paper, we propose an approach for gait analysis based
on 3D data provided by a Kinect sensor. The approach relies
on decomposing the observed motion sequence into the left and
right steps. The shape of the motion trajectory corresponding to
each step is analyzed to define a statistical model capturing the
shape of both steps. Finally, these models are used to evaluate,
in an online manner, the gait of test subjects for abnormal
gait detection and person re-identification. Fig. 1 illustrates the
proposed approach.

II. RELATED WORK

While the detection of abnormal human behaviors trough
visual information has been widely investigated in the last
decades [19], only few recent works addressed the problem of
gait analysis for abnormal gait detection using depth sensors.
Considering that the number of possible abnormality variations



is often large, learning a robust abnormal gait representation
is not convenient. Hence, a common way is to only learn a
normal pattern and consider the deviations from this pattern to
detect abnormality. The work proposed in [18] uses skeleton
data and employs a nonlinear manifold learning technique to
reduce the dimensionality and the noise. Then, two statistical
models, corresponding to human pose and motion dynamic are
learned from the normal gait samples. The evaluation of a test
gait sequence is finally achieved by matching the observations
to the models in a frame-by-frame manner, thus allowing online
processing. The method is applied to detect simulated gait
anomalies on subjects climbing a stair. A more recent work [2]
applies the joint motion history feature (JMH) to normalized
skeleton data to simultaneously capture both the human posture
and motion within a short temporal window. Such features are
used in a bag-of-word paradigm to describe gait sequences with
a set of exemplar features. Comparison between sequences is
achieved using Dynamic Time Warping, while classification
is obtained by thresholding the similarity measures. However,
such sequence-based classification requires the observation of
the full sequence before classifying the sequence as normal or
abnormal. In addition, the method is not suitable to localize the
abnormality within the sequence. Finally, in order to analyze
the entire sequence, the work proposed in [17] employs a
sliding window technique to explore the evolution of inter-
joints distances as spatio temporal intrinsic feature.

Person identification through gait analysis, as an interest-
ing and non-intrusive biometric means, has been extensively
studied in recent years. Several methods have been proposed
for gait recognition by using depth or skeleton data captured
by RGB-D sensors. Sivapalan et al. [21] propose the Gait
Energy Volume feature averaging the voxel volumes, derived
from depth images, over an entire gait cycle. An extended
feature is proposed in [4] by combining depth and RGB data
to reduce noise and considering only a set of key poses during
the gait cycle. Conversely, other methods propose to investigate
skeleton data to compute features. Preis et al. [20] employ
skeleton data to define thirteen biometric features including
subject height, length of several limbs, length of steps and
speed. Finally, Chattopadhyay et al. [5] combine front and
back views of the gait to compute their features. Due to the
poor accuracy of skeleton data of the back view, depth-based
features are computed in addition to skeleton features from the
front view.

III. SHAPE ANALYSIS OF CURVES IN Rn

In this Section, we briefly describe the mathematical tool,
first proposed in [13], that we employ to analyze the shape
of both legs poses and body motion. As described below,
legs poses and body motion are characterized by curves in
R3 and R60, respectively. Let a curve in Rn be represented
as β : I → Rn, with I = [0, 1]. The shape of β is
mathematically represented through the square-root-velocity
function (SRVF) [13], denoted by:

q(t) =
β̇(t)

‖β̇(t)‖
, (1)

with t ∈ [0, 1]. The initial curve β can be retrieved (up to a
translation) from its SRVF using:

β(t) =

∫ t

0

‖q(s)‖q(s) ds. (2)

This is particularly useful to visualize effects of shape trans-
formation on curve in Rn. The effectiveness of such specific
representation for shape analysis has been proven in different
applications, like 2D silhouettes [13] and 3D facial curves [9].
Let us define the space of SRVFs as C = {q : I → Rn, ‖q‖ =
1} ⊂ L2(I,Rn), with ‖.‖ indicating the L2 norm. With the
L2 metric on its tangent space, C becomes a Riemannian
manifold. Since elements of C have a unit L2 norm, C is
a hyper-sphere in the Hilbert space L2(I,Rn). Consequently
the distance between two elements q1 and q2 is defined as
dC(q1, q2) = cos−1(〈q1, q2〉. Such distance represents the
similarity between the shape of two curves in Rn. Basically,
it quantifies the amount of deformation between two shapes.
Another advantage of such framework is that it offers some
statistical tools. For example, the mean shape µ among a set
of n sample shapes is computed as the Riemannian center of
mass [14]:

µ = arg min

n∑
i=1

dC(µ, qi)
2 . (3)

IV. GAIT SEGMENTATION

Gait can be naturally defined as the succession of a right
and left step representing a gait cycle. However, the number
of gait cycles may differ from one sequence to another. In
addition, a gait cycle can start by either the right and left step.
When analyzing gait sequences, taking into consideration these
two aspects is relevant. Hence, we propose to segment gait
sequences in order to study separately the left and right steps.
Our goal is to find cutting points corresponding to transition
between one step to the other. For that, we propose to analyze
the evolution of the limbs motion along the sequence. We
consider that within a time interval corresponding to transition
between two steps, the motion of limbs is low. Conversely,
within a time interval corresponding to step performance, the
motion of limbs is higher. To characterize the limb motion,
we propose to analyze the shape variation of the two legs.
From skeleton data provided by depth sensors, we use joints
corresponding to legs in addition to the hip center to build a
3D curve by connecting these joints, as shown in Fig. 2.

To capture and analyze the shape evolution of such 3D
curve, we employ the Riemannian shape analysis described in
Sect. III within a sliding window technique. Let qi, i = 1 . . . N
be the set of curve shapes corresponding to legs poses within
a window of size N . To quantify the legs motion during
the corresponding interval, we compute the standard deviation
σ = 1

N

∑N
i=1 dC(µ, qi), where µ corresponds to the mean

shape computed according to Eq. (3). We identify transitions



Fig. 2. Shape analysis of leg curve. From the skeleton frame, we consider the
leg joints to build a 3D curve. The shape of such 3D curve is analyzed in the
shape space.

between two steps by detecting the local minima of the standard
deviation. As a result, a gait sequence is now represented as
a set of temporal segments corresponding to either right or
left steps. Fig. 3 shows the evolution of the standard deviation
along a gait sequence. We can observe that temporal segments
between two subsequent minima correspond to one step.

Fig. 3. Standard deviation evolution. By detecting local minima (red), we are
able to identify temporal segments corresponding to steps of the gait sequence.

V. GAIT ANALYSIS

Once a gait sequence is segmented into a set of left and
right steps, we propose to analyze each step separately. First,
we consider the trajectory made by the human body during a
step. While most of the works only analyzes the legs motion,
here we consider the full body as we believe that arms motion
also provide useful information characterizing each step. Let
pi(t) = (xi(t), yi(t), zi(t)) be the 3D position of the joint i at
frame t. For each frame t, we concatenate the 3D position of
each joint to build a vector v(t) = [p1(t), . . . , pJ(t)], where J
is the number of joints of a skeleton. The trajectory β made
by the skeleton along the steps is obtained by concatenating all
the feature vectors of the corresponding time interval [ta, tb]:
β = [v(ta), . . . , v(tb)]. Finally, in order to compare such step
trajectories lying in a 3J-dimensional space, we propose to
analyze their shape by using the SRVF described in Sect. III.
As a result, each trajectory shape q is viewed as an elements
of the shape space, as shown in Fig. 4.

In order to analyze each step separately, we learn a step
model for both left and right steps. From all the segmented
training sequences, we first cluster segments to group together
left steps and right steps. So as to handle possible noisy

Fig. 4. Spatio-temporal representation of steps. The skeleton sequence is
regarded as a motion trajectory in a 3J-dimensional space whose shape is
interpreted in the shape space.

segments, we employ the hierarchical clustering algorithm with
the distance dS to compare two shapes. From the resulted
dendrogram, we select a threshold as stopping criterion re-
sulting in a set of clusters. We then select the two larger
clusters corresponding to left and right steps. The remaining
samples are considered as outliers and discarded in the learning
process. Then, for each cluster, we learn a statistical model by
analyzing shape variations among all samples belonging to the
same cluster. We assume that the distribution of shapes within
a cluster follows a multivariate normal model. To handle the
non-linearity of the shape space, a common way is to consider
the tangent space at a reference point as a linear approximation
of the neighborhood of the reference point. As sample shapes
belong to a same cluster, we can assume that they lie in a small
neighborhood. First, we compute the mean shape µ using the
Riemannian center of mass of Eq. (3). Then, each sample shape
qi is projected in the tangent space at the mean shape TµS using
the inverse exponential map operator [15] defined as:

vi = exp−1
µ (qi) =

θ

sinθ
(qi − cos(θ)µ) , (4)

where θ = dS(µ, qi). Such tangent vector vi ∈ R3J , called
velocity vector, captures the shape difference between the mean
µ and qi. The original shape qi can be retrieved from the
velocity vector vi by using the exponential map operator [15]
defined as:

qi = expµ(vi) = cos(‖vi‖)µ+ sin(‖vi‖)
vi
‖vi‖

. (5)

By locally analyzing a velocity vector vi(t) for each param-
eterized t, we obtain the local deformation between the point
µ(t) of the mean shape µ to the corresponding point qi(t) of
the shape qi. We assume that the variations of velocity vectors
around the mean are mostly restricted to a m-dimensional
subspace called principal subspace. Using the velocity vectors
{vi}, we can apply Principal Component Analysis (PCA)
to identify such principal subspace. Finally, tangent vectors
vi are projected into the principal subspace, resulting in ṽi,
and the multivariate normal distribution is learned using the
covariance matrix Σ ∈ Rm×m computed from the set of ṽi. Its
corresponding probability density function is defined as:

f(ṽ) =
1

(2π)n/2 |Σ|1/2
e−

1
2 ṽ

T Σ−1ṽ . (6)

We learn such multivariate normal distribution for both
clusters in order to identify a step model for both right and



left steps. Fig. 5 illustrates the multivariate normal distribution
on the tangent space at the mean shape µ.

Fig. 5. Learning multivariate normal distribution on shape space. From the
set of shapes {qi} (black), the mean shape µ (red) is computed using Eq. (3).
Then, each shape is projected in the tangent space at µ, resulting on the set {vi}
(blue), which is finally used to learn the principal subspace and the multivariate
normal distribution represented as an ellipsoid.

In the test step, we evaluate the gait sequences using the two
learned step models. First, the test sequence is segmented using
the method described in Sect. IV. Then, each resulting segment
s is evaluated using the learned models. To this end, the
corresponding shape qs is projected into the principal subspace
resulting in ṽs. The log-probability L(s) that a segment s has
been generated by the multivariate distribution is thus defined
as:

L(s) = −1

2
ln(|Σ|) − 1

2
ṽTs Σ−1ṽs −

n

2
ln(2π) . (7)

Such log-probability is computed for both step models and
the highest is kept. As a result, a test sequence is represented as
a set of log probabilities {L(1), . . . L(s), . . . , L(S)}, being S
the number of segments in the test sequence. Such sequence is
then evaluated differently according to the context as described
in Sect. VI.

VI. EXPERIMENTAL RESULTS

We first propose to validate our gait step learning model
by observing gait sequences generated by our model. Then,
we evaluate the effectiveness of our gait analysis method in
the context of abnormal gait detection of people walking or
climbing stairs. Finally, we explore the use of such method for
the task of person re-identification through gait analysis.

A. Gait sequences generation

One advantage of learning statistical models is that they can
be employed to generate random observations. We propose to
successively use the two learned distributions corresponding to
a right step and a left step to generate random gait sequences.
For a given model, we first compute a random sample by
associating random coefficients to the learned principal sub-
space. Let {σk, Uk} be the K eigen values and eigen directions
resulted from a PCA in the tangent space, as explained in
section V. Then, a random tangent vector can be generated as:
v̂ =

∑K
k=1 zkσkUk, where zk are random values taken between

-1 and 1. The resulted tangent vector v̂ is then mapped in the

shape space using the exponential map operator (eq. 5), result-
ing in a random shape q̂. Finally the corresponding skeleton
sequence of a walking step is retrieved from q̂ using eq. 2. By
successively combining a random left step and a random right
step, we can generate a random gait sequence. Fig. 6 shows
an example of two random sequences including one gait cycle
starting by the right step and left step, respectively.

Fig. 6. Example of random gait sequences generated by the two statistical
models corresponding to right and left steps.

B. Abnormal gait detection

For abnormal gait detection, the proposed approach is eval-
uated on the DAI gait [2] and SPHERE [18] datasets of people
walking and climbing stairs, respectively.

1) DAI gait dataset: This dataset [2] has been recorded
using Kinect 2. It includes sequences of seven subjects walking
toward the camera. Each subject performed four times a normal
walking. In addition, two gait anomalies are established, a knee
injury that implies that the knee cannot be bent, and a second
injury where one foot is dragged towards the other, which usu-
ally happens when a mobility aid such as a crutch is employed.
These anomalies are performed for the right and left legs
leading to four types of abnormal gait. Each subject performs
once each type of anomaly. As a result, the dataset contains
56 gait sequences. In order to fairly compare our method with
the work proposed in [2], we consider the same two scenarios:
Scenario 1: The training set contains three out of four normal
gait sequences of each subject and the testing set includes
the remaining normal and abnormal sequences; Scenario 2:
The training set contains normal sequences from four subjects
and the testing set includes normal and abnormal sequences
of the three remaining actors. This second scenario is more
realistic as each subject is used only once in either training or
test set. In each scenario, only normal sequences are used for
training and the classification is performed by thresholding the
similarity score between training sequences and test sequences.
The similarity measure D is defined as the mean log-probability
over all S segments of the test sequence: D = 1

S

∑S
s=1 L(s).

Each sequence is classified as normal or abnormal according
to this similarity measure and a threshold selected empirically,
similarly to [2]. Finally, the precision and recall measures are
computed according to correct classifications and the overall
abnormal detection accuracy of the approach is evaluated using
the F1-score denoted as: F1 = 2× precision×recall

precision+recall .



Method Scenario 1 Scenario 2

Chaaraoui et al. [2] 0.98 0.85
Our 0.98 0.96

TABLE I
ABNORMAL DETECTION RESULTS ON DAI GAIT DATASET IN COMPARISON

WITH THE METHOD PROPOSED IN [2].

Results are reported in Table I. Compared to [2], we obtain
same accuracy for the first scenario, and a significant improve-
ment for the second scenario. This shows the effectiveness
of our method for abnormal gait detection even if the test
subject is unknown. In addition, our method allows analyzing
the deformation of a test step with respect to a template. For
instance, let vs be the velocity vector of a test shape trajectory
qs projected in the tangent space of the corresponding learned
step model. As we know the correspondence between each of
the 3J dimensions and the joints coordinates, we can compute
the magnitude of each 3-tuple to quantify the deformation of
each joint along the time. Fig. 7 illustrates such deformation
of normal and abnormal steps with respect to a mean step.
This analysis allows localizing which part of the body is more
responsible of the gait deficiency. This could provide a feedback
to the actor on where the movement should be improved.

(a)

(b) (c)

Fig. 7. Left step shape variation around the mean step (a) of a normal step
(b) and abnormal step (c). Variation of abnormal step is higher than normal
step and mainly localized in the left leg.

2) SPHERE dataset: We evaluate our approach in a dif-
ferent abnormal gait detection context. We use the SPHERE
dataset [18], which includes sequences of 12 people climbing
stairs with three types of abnormal gait: Left-leg Lead (LL)—
subjects walk up the stairs always using their left leg to move
to the next upper step; Right-leg Lead (RL)—subjects walk up
the stairs always using their right leg to move to the next upper
step; Freeze of Gait (FoG)—subjects stop their movement once
or twice while climbing stairs. Following the same protocol
employed in [18], the first six subjects are used for training
and the six remaining subjects for test. For this experiment
the evaluation is done for each step separately. To evaluate
each step s of a sequence, we use the log-probability L(s)
computed using Eq. (7). Similarly to [18], we use a threshold
determined empirically to classify a step as normal or abnormal.

So as to evaluate the method, abnormal gait detection results
are compared with a ground truth.

Type of event LL RL FOG
Number of occurrences 21 25 12

False Positives Paiement et al. [18] 0 0 2
Our 0 0 0

True Positives Paiement et al. [18] 19 23 12
Our 21 24 5

False Negatives Paiement et al. [18] 2 2 0
Our 0 1 7

TABLE II
ABNORMAL GAIT DETECTION RESULTS ON SPHERE DATASET IN

COMPARISON WITH PAIEMENT ET AL. [18].

Results are reported in Table II in comparison with [18].
We do not report results obtained by [2] as they employed
a sequence-based classification. We can see that our method
obtains better detection results for the LL and RL cases. Fig. 8
shows the log-probability obtained for each step of a normal
sequence and a RL sequence. We can see that the log-likelihood
of abnormal steps falls below the threshold. However, our
method does not accurately detect the FOG abnormal gaits.
This can be explained by the fact that stopping the motion
does not significantly change the shape of the motion trajectory.
Thus, our shape analysis method is not able to detect this type
of abnormal gait.

Fig. 8. Log-probabilities of left (orange) and right (green) steps obtained for
normal sequence (top) and RL sequence (bottom). We can see that the log-
probability of deficient left step falls below the threshold (black).

C. Person re-identification

Finally, we propose to evaluate our method for the task of
person re-identification. To this end, we employ the frontal gait
dataset [5]. However, only a short version of this dataset (5
subjects) is publicly available and we were not able to obtain
the full dataset of 29 subjects. As a result, we can not fairly
compare our method with the work proposed in [5]. To evaluate
the person re-identification capability of our method, we learn
both step models for each subject separately. During classifi-
cation, log-probabilities are computed for each subject and the



mean log-probability is used as similarity measure. As a result,
a test sequence has five similarity measures corresponding to
the five subjects. The sequence is finally classified as the subject
whose similarity measure is the highest. We employ a three-fold
cross validation protocol to evaluate the approach. For each of
the five subjects, three gait sequences are available. For each
fold, we used two sequences for training and the remaining one
for test. We obtain an average accuracy of 93.3% of accuracy
among the three folds. It corresponds to only one misclassified
sequence. Even if these experiments are carried out on a very
small database, this result shows the potential of our method
for person re-identification through gait analysis. In addition,
we note that our method only analyzes the gait signature of
subjects without any soft biometrics information, like subject
height or stride length, as it is common in the state-of-the-art.

VII. CONCLUSIONS

In this paper, we focus on gait analysis using skeleton data
provided by depth sensors. We first identify each individual
step of the gait sequence by analyzing the evolution of the
legs motion. Then, we consider the shape variation of motion
trajectories in a Riemannian shape space to learn statistical
models for the left and right step. These models are used
to both generate random gait sequences and evaluate the
quality of test gait sequences. Experimental results demonstrate
the effectiveness of the proposed approach in the context of
abnormal gait detection. However, experiments also show that
our method is not able to accurately detect ’static’ abnormalities
like the ’freeze of gait’. Such a limitation will be part of our
future work. Moreover, promising results obtained for the task
of gait recognition motivate us to consider this challenge on
larger datasets as future work. In addition, we would like to
investigate the use of such statistical models to estimate the
motion of missing or noisy body part that may appear in
a real-world context. Finally, we plan to extend the motion
analysis to different type of movements in several contexts like
rehabilitation or sport gestures optimization.
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