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Interpolation inequalities and spectral
estimates for magnetic operators

Jean Dolbeault, Maria J. Esteban, Ari Laptev and Michael Loss

Abstract. We prove magnetic interpolation inequalities and Keller-Lieb-Thir-
ring estimates for the principal eigenvalue of magnetic Schrödinger operators.
We establish explicit upper and lower bounds for the best constants and show
by numerical methods that our theoretical estimates are accurate.
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1. Introduction and main results

In dimensions d = 2 and d = 3, let us consider the magnetic Laplacian defined
via a magnetic potential A by

−∆Aψ=−∆ψ− 2 i A ·∇ψ+|A|2ψ− i (divA)ψ .

The magnetic field is B = curlA. The quadratic form associated with −∆A is given
by

∫
Rd |∇Aψ|2 d x and well defined for all functions in the space

H1
A(Rd ) :=

{
ψ ∈ L2(Rd ) : ∇Aψ ∈ L2(Rd )

}
where

∇A :=∇+ i A .

We shall consider the following spectral gap inequality

‖∇Aψ‖2
2 ≥Λ[B]‖ψ‖2

2 ∀ψ ∈ H1
A(Rd ) . (1.1)
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Let us notice that Λ depends only on B = curlA. Throughout this paper, we shall
assume that there is equality in (1.1) for some function in H1

A(Rd ). If B is a con-
stant magnetic field, we recall that Λ[B] = |B|. If d = 2, the spectrum of −∆A is the
countable set {(2 j +1) |B| : j ∈N}, the eigenspaces are of infinity dimension and
called the Landau levels. The eigenspace corresponding to the lowest level ( j = 0)
is called the Lowest Landau Level and will be considered in Section 5.4.

Let us denote the critical Sobolev exponent by 2∗ =+∞ if d = 2 and 2∗= 6 if
d = 3, and define the optimal Gagliardo-Nirenberg constant by

Cp :=


minu∈H1(Rd )\{0}

‖∇u‖2
2+‖u‖2

2

‖u‖2
p

if p ∈ (2,2∗) ,

minu∈H1(Rd )\{0}
‖∇u‖2

2+‖u‖2
p

‖u‖2
2

if p ∈ (1,2) .
(1.2)

The first purpose of this paper is to establish interpolation inequalities in the
presence of a magnetic field. With A and B = curlA as above, such that (1.1) holds,
let us consider the magnetic interpolation inequalities

‖∇Aψ‖2
2 +α‖ψ‖2

2 ≥µB(α)‖ψ‖2
p ∀ψ ∈ H1

A(Rd ) (1.3)

for any α ∈ (−Λ[B],+∞) and any p ∈ (2,2∗),

‖∇Aψ‖2
2 +β‖ψ‖2

p ≥ νB(β)‖ψ‖2
2 ∀ψ ∈ H1

A(Rd ) (1.4)

for anyβ ∈ (0,+∞) and any p ∈ (1,2) and, in the limit case corresponding to p = 2,

‖∇Aψ‖2
2 ≥ γ

∫
Rd

|ψ|2 log

(
|ψ|2
‖ψ‖2

2

)
d x +ξB(γ)‖ψ‖2

2 ∀ψ ∈ H1
A(Rd ) (1.5)

for any γ ∈ (0,+∞). Throughout this paper µB(α), νB(β) and ξB(γ) denote the
optimal constants in, respectively, (1.3), (1.4) and (1.5), considered as functions
of the parameters α, β and γ. We observe that µ0(1) =Cp if p ∈ (2,2∗), ν0(1) =Cp

if p ∈ (1,2) and ξ0(γ) = γ log
(
πe2/γ

)
if p = 2 (which is the classical constant in

the Euclidean logarithmic Sobolev inequality: see (3.7)). We shall assume that the
magnetic potential A ∈ L2

loc(Rd ) satisfies the technical assumption

lim
σ→+∞σ

d−2
∫
Rd

|A(x)|2 e−σ |x| d x = 0 if p ∈ (2,2∗) ,

lim
σ→+∞

σ
d
2 −1

logσ

∫
Rd

|A(x)|2 e−σ |x|2 d x = 0 if p = 2,

lim
σ→+∞σ

d−2
∫
|x|<1/σ

|A(x)|2 d x if p ∈ (1,2) .

(1.6)

Theorem 1.1. Assume that d = 2 or 3, p ∈ (1,2)∪(2,2∗), and α> 2 if d = 2 or α= 3
if d = 3. Let A ∈ Lαloc(Rd ) be a magnetic potential satisfying (1.6) and B = curlA be

a magnetic field on Rd such that (1.1) holds for some Λ = Λ[B] > 0 and equality
is achieved in (1.1) for some function ψ ∈ H1

A(Rd ). Then, the following properties
hold:
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(i) For any p ∈ (2,2∗), the function µB : (−Λ,+∞) → (0,+∞) is monotone in-
creasing, concave and such that

lim
α→(−Λ)+

µB(α) = 0 and lim
α→+∞µB(α)α

d−2
2 − d

p =Cp .

(ii) For any p ∈ (1,2), the function νB : (0,+∞) → (Λ,+∞) is monotone increas-
ing, concave and such that

lim
β→0+

νB(β) =Λ and lim
β→+∞

νB(β)β− 2 p
2 p+d (2−p) =Cp .

(iii) The function ξB : [0,+∞) →R is continuous, concave, such that ξB(0) =Λ[B]
and

ξB(γ) = d
2 γ log

(
πe2

γ

)
(1+o(1)) as γ→+∞ .

Equality is achieved in (1.3), (1.4) and (1.5) for some ψ ∈ H1
A(Rd ) in the case

of constant magnetic fields. In the case of nonconstant magnetic fields, there are
cases where one can prove the existence of someψ ∈ H1

A(Rd ) for which equality is
achieved in (1.3), (1.4) and (1.5), but general sufficient conditions are difficult to
obtain. Some answers to this question can be found in [12, Section 4] and in [17].

The main result of this paper is to establish lower bounds for the optimal
constants µB, νB and ξB in the case of general magnetic fields (respectively in
Propositions 3.1, 3.4 and in Section 3.5) and in the case of two-dimensional con-
stant magnetic fields (respectively in Propositions 4.2, 4.3 and 4.5). Upper esti-
mates, theoretical and numerical, are also given in Section 5.

The magnetic interpolation inequalities have interesting applications to op-
timal spectral estimates for the magnetic Schrödinger operators

−∆A +φ .

Let us denote byλA,φ its principal eigenvalue, and byαB : (0,+∞) → (−Λ,+∞) the
inverse function of α 7→ µB(α). We denote by φ− := (φ− |φ|)/2 the negative part
ofφ. By duality as we shall see in Section 2, Theorem 1.1 has a counterpart, which
is a result on magnetic Keller-Lieb-Thirring estimates.

Corollary 1.2. With these notations, let us assume that A satisfies the same hy-
potheses as in Theorem 1.1. Then we have:

(i) For any q = p/(p−2) ∈ (d/2,+∞) and any potential V such that V− ∈ Lq (Rd ),

λA,V ≥−αB(‖V−‖q ) . (1.7)

The function αB satisfies

lim
µ→0+

αB(µ) =Λ and lim
µ→+∞αB(µ)µ

2(q+1)
d−2−2 q =−C

2(q+1)
d−2−2 q
p .

(ii) For any q = p/(2− p) ∈ (1,+∞) and any potential W ≥ 0 such that W −1 ∈
Lq (Rd ),

λA,W ≥ νB

(
‖W −1‖−1

q

)
. (1.8)

(iii) For any γ> 0 and any potential W ≥ 0 such that e−W /γ ∈ L1(Rd ),

λA,W ≥ ξB
(
γ
)−γ log

(∫
Rd e−W /γd x

)
. (1.9)
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Moreover equality is achieved in (1.7), (1.8) and (1.9) if and only if equality is
achieved in (1.3), (1.4) and (1.5).

For general potentials changing sign, a more general estimate is proved in
Proposition 2.1. A first result without magnetic field was obtained by Keller in the
one-dimensional case in [16], before being rediscovered and extended to the sum
of all negative eigenvalues in any dimension by Lieb and Thirring in [19]. In the
meantime, an estimate similar to (1.9) was established in [13] which, by duality,
provides a proof of the logarithmic Sobolev inequality given by Gross in [14]. In
the Euclidean framework without magnetic fields, scalings provide a scale invari-
ant form of the inequality, which is stronger (see [26, 11]) but was already known
as the Blachmann-Stam inequality and goes back at least to [23]: see [25, 24] for
an historical account. Many papers have been devoted to the issue of estimat-
ing the optimal constants for the so-called Lieb-Thirring inequalities: see for in-
stance [18, 9, 10] for estimates on the Euclidean space, [6, 7] in the case of com-
pact manifolds, and [8] for non-compact manifolds (infinite cylinders). As far as
we know, no systematic study as in Theorem 1.1 nor as in Corollary 1.2 has been
done so far in the presence of a magnetic field, although many partial results have
been previously obtained using, e.g., the diamagnetic inequality.

Section 2 is devoted to the duality between Theorem 1.1 and Corollary 1.2.
Most of our paper is devoted to estimates of the best constants in (1.3), (1.4)
and (1.5), which also provide estimates of the best constants in (1.7), (1.8) and (1.9).
In Section 3 we prove lower estimates in the case of a general magnetic field and
establish Theorem 1.1. Sharper estimates are obtained in Section 4 for a constant
magnetic field in dimension two. Section 5 is devoted to upper bounds and the
numerical computation of various upper and lower bounds (constant magnetic
field, dimension two). Our theoretical estimates are remarkably accurate for the
values of p and d that we have considered numerically, using radial functions.
This is why we conclude this paper by a numerical investigation of the stability of
a radial optimal function.

2. Magnetic interpolation inequalities and Keller-Lieb-Thirring
inequalities: duality and a generalization

Let us prove Corollary 1.2 as a consequence of Theorem 1.1. Details on duality
will be provided in the proof and in the subsequent comments.

Proof of Corollary 1.2. Consider first Case (i) with q > d/2. Using the definition of
the negative part of V and Hölder’s inequality with 1/q +2/p = 1, we know that∫

Rd
|∇Aψ|2 d x +

∫
Rd

V |ψ|2 d x ≥
∫
Rd

|∇Aψ|2 d x +
∫
Rd

V− |ψ|2 d x (2.1)

≥ ‖∇Aψ‖2
2 −‖V−‖q ‖ψ‖2

p ≥−αB(‖V−‖q )‖ψ‖2
2 ,

because, by Theorem 1.1, µB(α) = ‖V−‖q has a unique solution α = αB(‖V−‖q ).
This proves (1.7). The optimality in (1.7) is equivalent to the optimality in (1.3)
because V =−|ψ|p−2 realizes the equality in Hölder’s inequality.
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In Case (ii), by Hölder’s inequality with exponents 2/(2−p) and 2/p,

‖ψ‖2
p =

(∫
Rd

W − p
2

(
W |ψ|2) p

2 d x

)2/p

≤ ‖W −1‖q

∫
Rd

W |ψ|2 d x

with q = p/(2−p), we know using (1.4) that∫
Rd

|∇Aψ|2 d x +
∫
Rd

W |ψ|2 d x ≥
∫
Rd

|∇Aψ|2 d x +β‖ψ‖2
p ≥ νB(β)

∫
Rd

|ψ|2 d x .

with β= 1/‖W −1‖q , which proves (1.8).
In Case (iii), let us consider

F [ψ,W ] :=
∫
Rd

|∇Aψ|2 d x +
∫
Rd

W |ψ|2 d x +γ log

(∫
Rd

e−W /γd x

)
− ξB(γ)

for a given function ψ ∈ H1
A(Rd ) such that ‖ψ‖2 = 1 and mimimize this functional

with respect to the potential W , so that

|ψ|2 = e−W /γ∫
Rd e−W /γd x

which implies W =Wψ :=−γ log |ψ|2 − γ log
(∫
Rd e−W /γd x

)
. Hence

F [ψ,W ] ≥F [ψ,Wψ] =
∫
Rd

|∇Aψ|2 d x −γ
∫
Rd

|ψ|2 log
(|ψ|2)d x − ξB(γ) ≥ 0,

where the last inequality is given by (1.5). Minimizing F [ψ,W ] with respect to W
under the condition ‖ψ‖2 = 1 establishes (1.9). It is straightforward that the equal-
ity case is given by the equality case in (1.5) when there is a function ψ for which
this equality holds. ä

In Case (iii) of Theorem 1.1 and Corollary 1.2, the duality relation of (1.5)
and (1.9) is a straightforward consequence of the convexity inequality

x y + y log y − y +e−x ≥ 0 ∀ (x, y) ∈R× (0,+∞) .

A similar observation can be done in Cases (i) or (ii). If q = p/(p −2) ∈ (d/2,+∞),
i.e., in Case (i), for an arbitrary negative potential V and an arbitrary function
ψ ∈ H1

A(Rd ), we can rewrite (2.1) as∫
Rd

|∇Aψ|2 d x +
∫
Rd

V |ψ|2 d x + αB(‖V ‖q )‖ψ‖2
2 ≥ 0.

By minimizing with respect to either V or ψ, we reduce the inequality to (1.3)
or (1.7), and in both cases V =−|ψ|p−2 is optimal. The two estimates are hence-
forth dual of each other, which is reflected by the fact that p/2 and q are Hölder
conjugate exponents. Similarly in Case (ii), if q = p/(2−p) ∈ (1,+∞), we have∫

Rd
|∇Aψ|2 d x +

∫
Rd

W |ψ|2 d x −νB(β)
∫
Rd

|ψ|2 d x ≥ 0

for any positive potential W and any ψ ∈ H1
A(Rd ). Again a minimization with re-

spect to either W or ψ reduces the inequality to (1.4) or (1.8), which are also dual
of each other. With these observations, it is clear that Theorem 1.1 can be proved
as a consequence of Corollary 1.2: the two results are actually equivalent.
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The restriction to a negative potential V or to its negative part (resp. to a
positive potential W ) is artificial in the sense that we can put the threshold at
an arbitrary level λ. Let us consider a general potential φ on Rd . We can first
rewrite (2.1) in a more general setting as∫

Rd
|∇Aψ|2 d x +

∫
Rd
φ |ψ|2 d x

≥
∫
Rd

|∇Aψ|2 d x −
∫
Rd

(λ−φ)+ |ψ|2 d x +λ
∫
Rd

|ψ|2 d x

withλ ∈R,µ= ‖(λ−φ)‖q,+ and q = p/(p−2). Here ‖u‖q,+ is a new notation which
stands for

‖u‖q,+ :=
(∫

u>0
uq d x

)1/q

.

Using (1.7), we know that∫
Rd

|∇Aψ|2 d x +
∫
Rd
φ |ψ|2 d x ≥−(

αB(µ)−λ)∫
Rd

|ψ|2 d x .

This makes sense of course if µ is finite and well defined which, for instance, re-
quires that

λ≤ lim
R→+∞

infess
|x|>R

φ(x) .

A similar estimate holds in the range p ∈ (1,2). Let λ ≤ infessx∈Rd φ(x). Then we
have

‖ψ‖2
p =

(∫
Rd

(φ−λ)−
p
2

(
(φ−λ) |ψ|2) p

2 d x

)2/p

≤ 1
β

∫
Rd

(φ−λ) |ψ|2 d x ,

with 1/β= ‖(φ−λ)−1‖q and q = p/(2−p). Using (1.8), we know that∫
Rd

|∇Aψ|2 d x+
∫
Rd
φ |ψ|2 d x ≥

∫
Rd

|∇Aψ|2 d x+β‖ψ‖2
p+λ‖ψ‖2

2 ≥
(
νB(β)+λ) ‖ψ‖2

2 .

We can collect these estimates in the following result.

Proposition 2.1. Let d = 2 or 3. Let φ ∈ L1
loc(Rd ) be an arbitrary potential.

(i) If q > d/2, p = 2 q
q−1 and αB is defined as in (1.7), we have

λA,φ ≥−(
αB

(‖(λ−φ)‖q,+
)−λ)

.

(ii) If q ∈ (1,+∞), p = 2 q
q+1 and νB defined as in (1.8), we have

λA,φ ≥λ+νB

(
‖(φ−λ)−1‖−1

q

)
.

These estimates hold for any λ ∈R such that all above norms are well defined, with
the additional condition that φ≥λ a.e. in Case (ii).

Notice that weaker conditions thanφ≥λ a.e. can be given, like, for instance,
infψ∈H1

A(Rd )

∫
(φ−λ)<0

(|∇Aψ|2 + (φ−λ) |ψ|2) d x ≥ 0. Details are left to the reader. In

Corollary 1.2, Case (iii) does not involve a threshold at level λ = 0 and one can
notice that the estimate (1.9) is invariant under the transformation φ 7→ φ−λ,
λA,φ 7→λA,φ−λ =λA,φ−λ.
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3. Lower estimates: general magnetic field

In this section, we consider a general magnetic field in dimension d = 2 or 3.
We establish lower estimates of the best constants in (1.3), (1.4) and (1.5) before
proving Theorem 1.1.

3.1. Preliminaries: interpolation inequalities without magnetic field

Assume that p > 2 and let Cp denote the optimal constant defined in (1.2), that
is, the best constant in the Gagliardo-Nirenberg inequality

‖∇u‖2
2 +‖u‖2

2 ≥Cp ‖u‖2
p ∀u ∈ H1(Rd ) . (3.1)

By scaling, if we test (3.1) by u
( ·/λ

)
, we find that

‖∇u‖2
2 +λ2 ‖u‖2

2 ≥Cp λ
2−d (1− 2

p ) ‖u‖2
p ∀u ∈ H1(Rd ) ∀λ> 0. (3.2)

An optimization on λ > 0 shows that the best constant in the scale-invariant in-
equality

‖∇u‖d (1− 2
p )

2 ‖u‖2−d (1− 2
p )

2 ≥ Sp ‖u‖2
p ∀u ∈ H1(Rd ) (3.3)

is given by

Sp = 1
2 p

(
2 p −d (p −2)

)1−d p−2
2 p

(
d (p −2)

) d (p−2)
2 p Cp . (3.4)

Next, let us consider the case p ∈ (1,2) and the corresponding Gagliardo-
Nirenberg inequality

‖∇u‖2
2 +‖u‖2

p ≥Cp ‖u‖2
2 ∀u ∈ H1(Rd )∩Lp (Rd ) (3.5)

where, compared to the case p > 2, the positions of the norms ‖u‖2
2 and ‖u‖2

p have
been exchanged. A scaling similar to the one of (3.2) shows that, for any λ> 0,

‖∇u‖2
2 +λ2+d 2−p

p ‖u‖2
p ≥Cp λ

2 ‖u‖2
2 ∀u ∈ H1(Rd )∩Lp (Rd ) ∀λ> 0. (3.6)

By optimizing on λ> 0, we obtain the scale-invariant inequality

‖∇u‖
d (2−p)

d (2−p)+2 p

2 ‖u‖
2 p

d (2−p)+2 p
p ≥ S1/2

p ‖u‖2 ∀u ∈ H1(Rd )∩Lp (Rd )

with

Sp = 1
d (2−p)+2 p

(
2 p

) 2 p
d (2−p)+2 p

(
d (2−p)

) d (2−p)
d (2−p)+2 p Cp .

Optimal functions for (3.5) or (3.6) have compact support according to, e.g., [1, 4,
5, 21]. See Section 5.2 for more details.

The logarithmic Sobolev inequality corresponds to the limit case p = 2. Let
us consider (3.2) written with λ2 = 1

p−2 , i.e.,

‖∇ψ‖2
2 − 1

p−2

(
‖ψ‖2

p −‖ψ‖2
2

)
≥

[
Cp

(
1

p−2

)1−d p−2
2 p − 1

p−2

]
‖ψ‖2

p .

By passing to the limit as p → 2, we recover the Euclidean logarithmic Sobolev
inequality with optimal constant in case γ= 1/2. The general case corresponding
to any γ> 0, that is

‖∇ψ‖2
2 ≥ γ

∫
Rd
ψ2 log

(
ψ2

‖ψ‖2
2

)
d x + d

2 γ log
(
πe2

γ

)‖ψ‖2
2 ∀ψ ∈ H1(Rd ) , (3.7)
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follows by a simple scaling argument. It was proved in [3] that there is equality in
the above inequality if and only if, up to a translation and a multiplication by a

constant, ψ(x) = e−γ |x|
2/4.

As a consequence, we obtain that the limit of Cp as p → 2+ is 1 and

lim
p→2+

[
Cp

(
1

p−2

)1−d p−2
2 p − 1

p−2

]
= d

4 log
(
πe2) .

In other words, this means that

Cp = 1− d
2 p (p −2) log(p −2)+ d

4 log
(
πe2) (p −2)+o(p −2) as p → 2+ .

Let ε= p −2 → 0+. We have shown that

Cp = 1− d
4 ε logε+ d

4 ε log
(
πe2)+o(ε) . (3.8)

3.2. Case p ∈ (2,+∞)

Let

µinterp(α) :=
 Sp (α+Λ)Λ−d p−2

2 p if α ∈
[
−Λ, Λ (2 p−d (p−2))

d (p−2)

]
,

Cp α
1−d p−2

2 p if α≥ Λ (2 p−d (p−2))
d (p−2) ,

where Cp denotes the optimal constant in (3.1) and Sp is given by (3.4).

Proposition 3.1. Let d = 2 or 3. Consider a magnetic field B with magnetic poten-
tial A and assume that (1.1) holds for some Λ=Λ[B] > 0. For any p ∈ (2,+∞), any
α>−Λ, the function µB(α) defined in (1.3) satisfies

µB(α) ≥µinterp(α) .

Proof. Let t ∈ [0,1]. From the diamagnetic inequality

‖∇|ψ|‖2 ≤ ‖∇Aψ‖2 (3.9)

and from (1.1) and (3.2) applied with λ= α+Λ t
1−t , we deduce that

‖∇Aψ‖2
2 +α‖ψ‖2

2 ≥ t
(‖∇Aψ‖2

2 −Λ‖ψ‖2
2

)+ (1− t )

(
‖∇|ψ|‖2 + α+Λ t

1− t
‖ψ‖2

2

)
≥Cp (1− t )

d (p−2)
2 p (α+ tΛ)1−d p−2

2 p ‖ψ‖2
p

for any ψ ∈ H1
A. Finally we can optimize the quantity

t 7→ (1− t )
d (p−2)

2 p (α+ tΛ)1−d p−2
2 p

on the interval t ∈ [max{0,−α/Λ},1]. The optimum value in the interval (−α/Λ,1)

is achieved for t = 1−d p−2
2 p − dα (p−2)

2Λp , which proves the first inequality. For α ≥
Λ (2 p−d (p−2))

d (p−2) , the maximum is achieved at t = 0, which proves the second inequal-
ity. ä

By duality the estimates of Proposition 3.1 provide a lower estimate for the
best constant in the Keller-Lieb-Thirring estimate (1.7).
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Corollary 3.2. Under the assumptions of Proposition 3.1, for any q = p/(p −2) ∈
(d/2,+∞) and any potential V such that in V− ∈ Lq (Rd ), we have

λA,V ≥Λ−S−1
p Λ

d
2 q ‖V−‖q if ‖V−‖q ∈

[
0, 2 q

d Λ
1− d

2 q Sp

]
,

λA,V ≥−
(
C−1

p ‖V−‖q

) 2 q
2 q−d if ‖V−‖q ≥ 2 q

d Λ
1− d

2 q Sp .

Proof. With p = 2 q
q−1 , the estimates of Proposition 3.1 on α 7→ µB(α) provide esti-

mates on its inverse µ 7→αB(µ) which go as follows:

αB(µ) ≤ S−1
p Λ

d
2 q µ−Λ if µ ∈

[
0, 2 q

d Λ
1− d

2 q Sp

]
,

αB(µ) ≤
(
C−1

p µ
) 2 q

2 q−d if µ≥ 2 q
d Λ

1− d
2 q Sp .

The result is then a consequence of Corollary 1.2. ä
3.3. Further interpolation inequalities in case p ∈ (2,+∞)

Without magnetic field, Gagliardo-Nirenberg interpolation inequalities can be
put in scale-invariant form (3.3) by optimizing (3.2) on the scale parameter λ> 0.
In the presence of a magnetic field, one may wonder if an inequality similar to (3.3)
exists. The following result provides a positive answer.

Corollary 3.3. Under the assumptions of Proposition 3.1, with Λ = Λ[B], for any
θ ∈ [1−2/p,1) and any ψ ∈ H1

A(Rd ), we have(‖∇Aψ‖2
2 +α‖ψ‖2

2

)θ/2 ‖ψ‖1−θ
2

≥µinterp(α)
1
4 (p θ−p+2)

(
min

{
1,(1+ α

Λ )1− 2
p
}
Sp

) p
4 (1−θ) ‖ψ‖p .

Proof. With θ? = 1− 2
p , we can write

(‖∇Aψ‖2
2 +α‖ψ‖2

2

)θ/2 ‖ψ‖1−θ
2

= (‖∇Aψ‖2
2 +α‖ψ‖2

2

) 1
2
θ−θ?
1−θ?

((‖∇Aψ‖2
2 +α‖ψ‖2

2

) 1
2

(
1− 2

p

)
‖ψ‖

2
p

2

) 1−θ
1−θ?

≥
(
µinterp(α)‖ψ‖2

p

) 1
2
θ−θ?
1−θ?

((‖∇Aψ‖2
2 +α‖ψ‖2

2

) 1
2

(
1− 2

p

)
‖ψ‖

2
p

2

) 1−θ
1−θ?

.

If α ∈ (−Λ,0], it follows from (1.1) and (3.9) that

‖∇Aψ‖2
2 +α‖ψ‖2

2 ≥
(
1+ α

Λ

)‖∇Aψ‖2
2 ≥

(
1+ α

Λ

)‖∇|ψ|‖2
2 ,

while we can simply drop α‖ψ‖2
2 when α≥ 0. Hence it follows from (3.3) that(‖∇Aψ‖2

2 +α‖ψ‖2
2

)θ/2 ‖ψ‖1−θ
2

≥
(
µinterp(α)‖ψ‖2

p

) 1
2
θ−θ?
1−θ?

(
min

{
1,(1+ α

Λ )
1
2

(
1− 2

p

)}
S1/2

p ‖ψ‖p

) 1−θ
1−θ?

,

which concludes the proof. ä
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3.4. Case p ∈ (1,2)

Let νinterp be given by

νinterp(β) :=

 Cp β
2 p

2 p+d (2−p) if β≥β? :=
(

2 p+d (2−p)
d (2−p) ΛC−1

p

) 2 p+d (2−p)
2 p

,

Λ+βΛ
d (p−2)

2 p 2 p
d (2−p)

(
d (2−p)

2 p+d (2−p)

) 2 p+d (2−p)
2 p C

2 p+d (2−p)
2 p

p if β ∈ [0,β?] ,

where Cp denotes the optimal constant in (3.5).

Proposition 3.4. Let d = 2 or 3. Consider a magnetic field B with magnetic poten-
tial A and assume that (1.1) holds for some Λ = Λ[B] > 0. For any p ∈ (1,2), any
β> 0, the function νB defined in (1.4) satisfies

νB(β) ≥ νinterp(β) .

Proof. For all ψ ∈ H1
A, by (1.1) and (3.9), we obtain that

‖∇Aψ‖2
2 +β‖ψ‖2

p = t
(‖∇Aψ‖2

2 −Λ‖ψ‖2
2

)+ (1− t )‖∇Aψ‖2
2 +β‖ψ‖2

p +Λ t ‖ψ‖2
2

≥ (1− t )‖∇|ψ|‖2
2 +β‖ψ‖2

p +Λ t ‖ψ‖2
2 .

Next we apply (3.6) to u = |ψ| with λ2 =
(
β

1−t

) 2 p
2 p+d (2−p) . This yields

‖∇Aψ‖2
2 +β‖ψ‖2

p ≥
[

(1− t )
d (2−p)

2 p+d (2−p) β
2 p

2 p+d (2−p) Cp +Λ t

]
‖ψ‖2

2 .

If β≤β?, the right hand side is maximal for some explicit t ∈ [0,1], otherwise the
maximum on [0,1] is achieved by t = 0, which concludes the proof. ä

By duality the estimates of Proposition 3.4 provide a lower estimate for the
best constant in the Keller-Lieb-Thirring estimate (1.8).

Corollary 3.5. Under the assumptions of Proposition 3.4, for any q = p/(2−p) ∈
(1,+∞) and any nonnegative potential W such that W −1 ∈ Lq (Rd ), we have

λA,W ≥ νB

(
‖W −1‖−1

q

)
≥Λ+Λ

d (p−2)
2 p 2 p

d (2−p)

(
d (2−p)

2 p+d (2−p) Cp

) 2 p+d (2−p)
2 p ‖W −1‖−1

q

if ‖W −1‖−1
q ∈ [0,β?] ,

λA,W ≥ νB

(
‖W −1‖−1

q

)
≥Cp ‖W −1‖

−2 p
2 p+d (2−p)
q if ‖W −1‖−1

q ≥β? .

3.5. Proof of Theorem 1.1

Proof of Theorem 1.1. Let us consider Case (i): p ∈ (2,2∗). The positivity of the
function µB is a consequence of Proposition 3.1 while the concavity follows from
the definition of α 7→ µB(α) as the infimum on H1

A(Rd ) of an affine function of α.
The estimate as α→ (−Λ)+ is easily obtained by considering as test function the
function ψ ∈ H1

A(Rd ) for which there is equality in (1.1). We know from Proposi-
tion 3.1 that

lim
α→+∞µB(α)α

d−2
2 − d

p ≥Cp .
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To prove the equality, we take as test function forµB(α) the function vα := v(
p
α ·),

with α > 0, where the radial function v realizes the equality in (3.1). The func-
tion v is smooth, positive everywhere and decays like e−|x| as |x| → +∞. No-
tice that vα realizes the equality in (3.2) and there is a constant C > 0 such that
vα(x) ≤C exp

(−p
α |x|) for any x ∈ Rd . Since ‖∇Av‖2

2 ≤ ‖∇v‖2
2 +2‖∇v‖2 ‖A v‖2 +

‖A v‖2
2, we obtain that

‖∇Avα‖2
2 +α‖vα‖2

2

α
2−d

2 + d
p ‖vα‖2

p

≤Cp +2
√

Cp ε+ε2 with ε2 =C 2

∫
Rd |A(x)|2 e−2

p
α |x| d x

α
2−d

2 + d
p ‖vα‖2

p

.

The result follows from α
2−d

2 + d
p ‖vα‖2

p =α 2−d
2 ‖v‖2

p and (1.6) with σ= 2
p
α.

The proof of (ii) is very similar to that of (i). The positivity of the function νB

is a consequence of Proposition 3.4 while the concavity follows from the defini-
tion of β 7→ νB(β). From Proposition 3.4, we know that

lim
β→+∞

νB(β)β− 2 p
2 p+d (2−p) ≥Cp .

To prove the equality, for any β> 0, we take as test function for νB(β) the function

wβ(x) := w
(
β

p
2 p+d (2−p) x

)
∀x ∈Rd ,

where the radial function w realizes the equality in (3.5), so that wβ realizes the
equality in (3.6). The function w has compact support and can be estimated from
above and from below, up to a multiplicative constant, by the characteristic func-
tion of centered balls. The same computation as above shows that

‖∇Awβ‖2
2 +β‖wβ‖2

p

β
2 p

2 p+d (2−p) ‖wβ‖2
2

≤Cp +2
√

Cp ε+ε2

with ε2 =C 2

∫
Rd |A(x)|2

∣∣∣∣w(
β

p
2 p+d (2−p) x

)∣∣∣∣2

d x

β
2 p

2 p+d (2−p) ‖wβ‖2
2

. The result follows from

β
2 p

2 p+d (2−p) ‖wβ‖2
2 =β

(2−d) p
2 p+d (2−p) ‖w‖2

2

and (1.6) with σ=β
p

2 p+d (2−p) .
The case p = 2 is much simpler. As a straightforward consequence of the

Euclidean logarithmic Sobolev inequality (3.7) and of the diamagnetic inequal-
ity (3.9), we know that

‖∇Aψ‖2
2 ≥ γ

∫
Rd

|ψ|2 log

(
|ψ|2
‖ψ‖2

2

)
d x + d

2 γ log
(
πe2

γ

)‖ψ‖2
2 ∀ψ ∈ H1

A(Rd ) .

As a consequence, we deduce the existence of a concave function ξB in Inequal-
ity (1.9), such that

ξB
(
γ
)≥ d

2 γ log
(
πe2

γ

) ∀γ> 0.



12 J. Dolbeault, M.J. Esteban, A. Laptev and M. Loss

Note that the r.h.s. is negative for γ large. The function wγ(x) = (γ/π)d/4 e−
γ
2 |x|2

is optimal in (3.7) and can be used as a test function in (1.5) in the regime as
γ→+∞. Using the fact that ‖wγ‖2 = 1, ‖∇wγ‖2 =

√
d γ and

‖∇Awγ‖2
2 ≤ ‖∇wγ‖2

2 +2‖∇wγ‖2 ‖A wγ‖2 +‖A wγ‖2
2

= γ

∫
Rd

|wγ|2 log |wγ|2 d x + d
2 γ log

(
πe2

γ

)+2‖∇wγ‖2 ‖A wγ‖2 +‖A wγ‖2
2 ,

we get that, for some positive constant c,

0 ≤ ‖∇Awγ‖2
2 −γ

∫
Rd

|wγ|2 log |wγ|2 d x −ξB
(
γ
)

≤ d
2 γ log

(
πe2

γ

)−ξB
(
γ
)+2

√
d γ‖A wγ‖2 +‖A wγ‖2

2

≤ d
2 γ log

(
πe2

γ

)1− ξB
(
γ
)

d
2 γ log

(
πe2

γ

) − c ε√
log

( γ

πe2

) −ε2


where ε2 = γ

d
2 −1 ∫

Rd |A(x)|2 e−γ |x|2 d x

d
2 log

( γ

πe2

)
π

d
2

→ 0 as γ→ +∞ according to (1.6). This estab-

lishes that ξB
(
γ
)

is equal to d
2 γ log

(
πe2/γ

)
at leading order as γ→+∞. ä

4. Lower estimates: constant magnetic field in dimension two

In the particular case when the magnetic field is constant, of strength B > 0, and
d = 2, we can improve the lower estimates of the last section. In this section we
assume that B = (0,B) and choose the gauge so that

A1 = B
2 x2 , A2 =−B

2 x1 ∀x = (x1, x2) ∈R2 . (4.1)

4.1. A preliminary result

The next result follows from [20, proof of Theorem 3.1] by Loss and Thaller.

Proposition 4.1. Consider a constant magnetic field with field strength B in two
dimensions. For every c ∈ [0,1], we have∫

R2
|∇Aψ|2 d x ≥ (

1− c2)∫
R2

|∇ψ|2 d x + c B
∫
R2
ψ2 d x ,

and equality holds with ψ= u e i S and u > 0 if and only if(−∂2u2, ∂1u2)= 2u2

c
(A+∇S) . (4.2)

Proof. For every c ∈ [0,1],∫
R2

|∇Aψ|2 d x =
∫
R2

|∇u|2 d x +
∫
R2

|A+∇S|2 u2 d x

= (
1− c2)∫

R2
|∇u|2 d x +

∫
R2

(
c2 |∇u|2 +|A+∇S|2 u2)d x .
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An expansion of the square shows that∫
R2

(
c2 |∇u|2 +|A+∇S|2 u2)d x ≥

∫
R2

2c |∇u| |A+∇S|u d x ,

with equality only if c |∇u| = |A+∇S|u. Next we obtain that

2 |∇u| |A+∇S|u = |∇u2| |A+∇S| ≥ (∇u2)⊥ · (A+∇S) ,

where
(∇u2

)⊥
:= (−∂2u2, ∂1u2

)
, and there is equality if and only if(−∂2u2, ∂1u2)= γ (A+∇S)

for some γ. Since c |∇u| = |A+∇S|u, we have γ= 2u2/c. Integration by parts yields∫
R2

(
c2 |∇u|2 +|A+∇S|2 u2)d x ≥ B c

∫
R2

u2 d x .

ä
4.2. Case p ∈ (2,+∞)

Proposition 4.2. Consider a constant magnetic field with field strength B in two
dimensions. Given any p ∈ (2,+∞), and any α>−B, we have

µB(α) ≥Cp
(
1− c2)1− 2

p (α+ c B)
2
p =:µLT(α) , (4.3)

with

c = c(p,η) =
√
η2 +p −1−η

p −1
= 1

η+
√
η2 +p −1

∈ (0,1) (4.4)

and η=α (p −2)/(2B).

Proof. For any α > −B , ψ ∈ H1
A(R2) and c ∈ [0,1] such that α+ c B ≥ 0, we use

Proposition 4.1 to write

‖∇Aψ‖2
2 +α‖ψ‖2

2 ≥
(
1− c2)∫

R2
|∇u|2 d x + (α+ c B)

∫
R2

u2 d x

with u = |ψ|. By applying (3.2) with λ2 = (α+ c B)/
(
1− c2

)
, we get

‖∇Aψ‖2
2 +α‖ψ‖2

2 ≥Cp
(
1− c2)1− 2

p (α+ c B)
2
p ‖ψ‖2

p .

Next we optimize the function c 7→ (
1− c2

)1− 2
p (α+c B)

2
p in the interval [0,1]. This

function reaches its maximum at c such that

(p −2)c (α+ c B) = B (1− c2) .

Notice that α+ c B is nonnegative. With

η= α (p −2)

2B
,

the equation for c becomes

(p −1)c2 + 2ηc −1 = 0.

which is solved by (4.4). ä
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4.3. Case p ∈ (1,2)

Now let us turn our attention to the case p ∈ (1,2). The strategy of the proof of
Proposition 4.2 applies: for any c ∈ (0,1), for any β > 0, by applying (3.6) with
λ4/p =β/(1− c2), we obtain

‖∇Aψ‖2
2 +β‖ψ‖2

p ≥
(
c B +Cp β

p
2 (1− c2)1− p

2

)
‖ψ‖2

2 .

The function c 7→ c B +Cp β
p/2 (1−c2)1−p/2 is positive in [0,1] and its derivative is

positive at 0+, and negative in a neighborhood of 1−. The maximum is achieved
at the unique point c∗ ∈ (0,1) given by

c∗
(1− c2∗)p/2

= B

(2−p)Cp βp/2
. (4.5)

This establishes the following result.

Proposition 4.3. Consider a constant magnetic field with field strength B in two
dimensions. Given any p ∈ (1,2), and any β> 0, we have

νB(β) ≥ c∗ B +Cp β
p
2 (1− c2

∗)1− p
2 =: νLT(β)

with c∗ given by (4.5).

4.4. Logarithmic Sobolev inequality

By passing to the limit as p → 2+ in (4.3), we obtain a two-dimensional magnetic
logarithmic Sobolev inequality.

Lemma 4.4. Consider a constant magnetic field with field strength B > 0 in two
dimensions. Then for any γ> 0, the best constant in (1.5) satisfies

ξB(γ) ≥ B c
(
2, γB

)+γ log
(
πe2 c(2,γ/B)

B

)
, (4.6)

where c(2,η) :=
√
η2 +1−η.

Proof. By using (3.8) with d = 2 and (4.4), we see that for any η> 0,

Cp (1− c2)1− 2
p

( 2ηB
p−2 + c B

) 2
p − 2ηB

p−2

= 2ηB
ε

[(
1− ε

2 logε+ ε
2 log

(
πe2))(

1+ ε
2 log

(
1− c2))

·
(
1+ ε

2
c
η

)(
1− ε

2 log
(

2ηB
ε

))
−1

]
+o(ε)

→ B
[

c(2,η)+η log
(
πe2 c(2,η)

B

)]
as ε= p −2 → 0+, because 1− c(2,η)2 = 2ηc(2,η). By rewriting (4.3) with α= 2ηB

p−2
as

‖∇Aψ‖2
2 ≥ 2ηB

p−2

(
‖ψ‖2

p −‖ψ‖2
2

)
+

[
Cp (1− c2)1− 2

p
( 2ηB

p−2 + c B
) 2

p − 2ηB
p−2

]
‖ψ‖2

p

we can pass to the limit as p → 2+ and establish (4.6) by setting γ= ηB . ä
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It turns out that the above magnetic logarithmic Sobolev inequality is opti-
mal. To identify the minimizers, we observe that the magnetic Schrödinger oper-
ator is not invariant under the standard translations. For any b = (b1,b2) ∈R2,

∇Aψ= (∇Aφ)(x −b) if φ(x −b) = e−i B (b1 x2−b2 x1)/2ψ(x) ∀x ∈R2

and −∆A commutes with the magnetic translations ψ 7→ e i B (b1 x2−b2 x1)/2ψ(x −b)
if A is given by (4.1).

Proposition 4.5. Consider a constant magnetic field with field strength B > 0 in
two dimensions. Then the logarithmic Sobolev inequality (1.5) holds with

ξB(γ) = B c
(
2, γB

)+γ log
(
πe2 c(2,γ/B)

B

)
where c(2,η) :=

√
η2 +1−η, and the optimizer is given, up to a multiplication by a

complex constant and a magnetic translation, by ψ(x) = e−γ |x|
2/4.

In other words, optimizers in inequality (1.5) are of the form

ψ(x) =C e−
γ
4
|x−b|2

4 + i B
2 (b1 x2−b2 x1) ∀x ∈R2 , C ∈C , b = (b1,b2) ∈R2 .

Notice that in the semi-classical regime corresponding to a limit of the magnetic
field B such that 1/(2η) = Λ = Λ[B] → 0, we recover the classical logarithmic
Sobolev inequality (3.7) without magnetic field.

Proof. Using Proposition 4.1 and Inequality (3.7), for all c ∈ [0,1] we obtain∫
R2

|∇Aψ|2 d x ≥σ (1− c2)
∫
R2

|ψ|2 log

(
|ψ|2
‖ψ‖2

2

)
d x +

(
B c +σ (1− c2) log

(
πe2

σ

))‖ψ‖2
2 .

We recover (4.6) with σ (1− c2) = γ and c = c
(
2, γB

)
.

According to Proposition 4.1, equality holds if ψ = u e i S satisfies (4.2) and,
simultaneously, ψ realizes the equality case in (3.7), i.e.,

ψ(x) =C e−
γ
4 |x−b|2 ∀x ∈R2

with C ∈C and b ∈R2. By (4.2), this means that S has to satisfy

∂1S =−B

2
b2 , ∂2S = B

2
b1 ,

which implies S = B
2 (b1 x2 −b2 x1)+D , for some constant D . ä

5. An upper estimate and some numerical results

In this section, we assume that d = 2, consider a constant magnetic field, estab-
lish a theoretical upper bound, and numerically compute the difference with the
lower bounds of Sections 3 and 4.
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5.1. An upper estimate: constant magnetic field in dimension two

Let r =
√

x2
1 +x2

2 = |x| be the radial coordinate associated to any x = (x1, x2) ∈ R2

and assume that the magnetic potential is given by (4.1). For every integer k ∈N
we introduce the special symmetry class

ψ(x) =
(

x2+ i x1
|x|

)k
v(|x|) ∀x ∈R2 . (Ck )

With this notation, if ψ ∈Ck , then

1

2π

∫
R2

|∇Aψ|2 d x =
∫ +∞

0
|v ′|2 r dr +

∫ +∞

0

(
k
r − B r

2

)2 |v |2 r dr .

Let us define

Q
(p)
α [ψ] := ‖∇Aψ‖2

2+α‖ψ‖2
2

‖ψ‖2
p

if p > 2, Q
(p)
β

[ψ] := ‖∇Aψ‖2
2+β‖ψ‖2

p

‖ψ‖2
2

if p ∈ (1,2) .

The existence of minimizers of Q
(p)
α in Ck was proved in [12, Theorem 3.5] for any

k ∈N. In the class C0, with a slight abuse of notations, we have ψ= v and simple

upper estimates can be obtained using vσ(r ) = e−r 2/(2σ) as test function:

‖∇Avσ‖2
2 = π

4

(
4+σ2) , ‖vσ‖2

2 =πσ and ‖vσ‖2
p =

(
2
p πσ

) 2
p

.

Case (i). Assume first that p ∈ (2,+∞) and let θ := 2/p. We observe that

Q
(p)
α [vσ] = 1

8 (2π)1−θ pθ fα,θ(σ) where fα,θ(σ) :=σ2−θ+ 4ασ1−θ+ 4σ−θ .

The function fα,θ has a unique minimum on (0,+∞), which is determined by the
second order equation

(2−θ)σ2 + 4α (1−θ)σ− 4θ = 0,

namely σ=σ+(α,θ) with

σ+(α,θ) := 2

√
4α2 (1−θ)2 +θ (2−θ)− α (1−θ)

2−θ .

With θ = 2/p, this gives the estimate

Q
(p)
α [vσ+(α,θ)] = 1

8 (2π)1−θ pθ fα,θ
(
σ+(α,θ)

)=:µGauss(α) .

Case (ii). When p ∈ (1,2), with θ := 2
p ∈ (1,2] and κ(β,θ) := 8θθπ1−θβ, we get that

Q
(p)
β

[vσ] = 1
8 gβ,θ(σ) where gβ,θ(σ) :=σ+ 2

σ
+ κ(β,θ)σθ−1 .

Elementary considerations show that gβ,θ(σ) has a unique minimumσ=σ−(β,θ)
determined by the equation

1− 2

σ2 + κ(β,θ) (θ−1)σθ−2 = 0,

which is in general not explicit. However, a simple elimination shows that

Q
(p)
β

[vσ−(β,θ)] =
1

8
gβ,θ

(
σ−(β,θ)

)= 1

8

(
2θ
θ−1

1
σ−(β,θ) + θ−2

θ−1 σ−(β,θ)
)
=: νGauss(β) .

Proposition 5.1. With the above notations, we have

µB(α) ≤µGauss(α) if p > 2 and νB(β) ≤ νGauss(β) if p ∈ (1,2) .
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5.2. Numerical estimates based on Euler-Lagrange equations

Instead of a Gaussian test function, one can numerically compute the minimum

of Q
(p)
α in the class C0 by solving the corresponding Euler-Lagrange equation.

Case (i). Assume that p ∈ (2,+∞). The equation is

− v ′′− v ′

r
+

(
B 2

4 r 2 +α
)

v =µEL(α)

(∫ +∞

0
|v |p r dr

) 2
p −1

|v |p−2 v . (5.1)

Without loss of generality we can restrict the problem to positive solutions such
that

µEL(α) =
(∫ +∞

0
|v |p r dr

)1− 2
p

and then we have to solve the reduced problem

−v ′′− v ′

r
+

(
B 2

4 r 2 +α
)

v = |v |p−2 v

among positive functions in H1((0,+∞), r dr ) such that
∫ +∞

0 |v |2 r dr <+∞. From
the existence result [12, Theorem 3.5], we know that µEL(α) is given by the infi-

mum of
(∫ +∞

0 |v |p r dr
)1−2/p on the set of solutions. Uniqueness and nondegen-

eracy of positive solutions to the above equation has been proved in [15] and [22].
Numerically, we solve the ODE on a finite interval, which induces a numerical er-
ror: the interval has to be chosen large enough, so that the computed value is a
good upper approximation of µEL(α).

Case (ii). Assume that p ∈ (1,2). A radial minimizer of Q
(p)
α solves

−v ′′− v ′

r
+ B 2

4 r 2 v = νEL(β) v −β
(∫ +∞

0
|v |p r dr

) 2
p −1

|v |p−2 v .

Without loss of generality we can restrict the problem to positive solutions such
that

β=
(∫ +∞

0
|v |p r dr

)1− 2
p

and have therefore to solve the reduced problem

− v ′′− v ′

r
+ B 2

4 r 2 v = νv −|v |p−2 v (5.2)

among nonnegative functions in H1((0,+∞), r dr ) such that
∫ +∞

0 |v |p r dr <+∞.
Notice that the compact support principle applies according to, e.g., [1, 4, 5, 21],
since p − 1 < 1 so that the nonlinearity in the right hand side of (5.2) is non-
Lipschitz. Numerically, we can therefore solve (5.2) using a shooting method, with
a shooting parameter a = v(0) > 0 that has to be adjusted to provide a nonneg-
ative solution with compact support, which minimizes

∫ +∞
0 |v |p r dr . The set of

solutions is then parametrized by the parameter ν> 0, while β is recovered by the
above integral condition. In other words, we approximate ν 7→ βB(ν) and recover
β 7→ νB(β) as the inverse of βB. Since we compute the size of the support of the
approximated solution, there is no numerical error due to finite size truncation.
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5.3. Numerical results

We illustrate the Case (i), p ∈ (2,+∞), by computing for p = 3 and B = 1, in dimen-
sion d = 2, an approximation ofα 7→µB(α). Upper estimates µGauss(α) ≥µEL(α) ≥
µB(α) and lower estimates µinterp(α) ≤ µLT(α) ≤ µB(α) are surprisingly close: see
Figs. 1 and 2.

2 4 6 8 10

2

4

6

8

FIGURE 1. Case d = 2, p = 3, B = 1: plot of α 7→ (2π)
2
p −1

µB(α).
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FIGURE 2. Case d = 2, p = 3, B = 1: comparison of the upper es-
timates α 7→ µGauss(α) and α 7→ µEL(α) of Sections 5.1 and 5.2, with
the lower estimates α 7→µinterp(α) and α 7→µLT(α) of Propositions 3.1
and 4.2. Plots represent the curves log10(µGauss/µEL), log10(µLT/µEL)
and log10(µinterp/µEL) so that α 7→ µEL(α) corresponds to a straight
line at level 0. The exact value associated with µB lies in the grey area.
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In Case (ii), p ∈ (1,2), the range of the curve β 7→ νB(β) differs from the case
p > 2 but again upper estimates νGauss(β) ≥ νEL(β) ≥ νB(β) and lower estimates
νinterp(β) ≤ νLT(β) ≤ νB(β) are surprisingly close: see Figs. 3 and 4.

0 1 2 3 4 5 6
0

2

4

6

8

FIGURE 3. Case d = 2, p = 1.4, B = 1: plot of β 7→ νB(β). The horizon-

tal axis is measured in units of (2π)
1− 2

p β.
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-0.0005

0.0005
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42

FIGURE 4. Case d = 2, p = 1.4, B = 1, with same horizontal scale
as in Fig. 3: comparison of the upper estimates β 7→ νGauss(β) and
β 7→ νEL(β) of Sections 5.1 and 5.2, with the lower estimates νinterp(β)
and β 7→ νLT(β) of Propositions 3.4 and 4.3. Plots represent the curves
log10(νGauss/νEL), log10(νLT/νEL) and log10(νinterp/νEL) so that α 7→
νEL(β) corresponds to a straight line at level 0. The exact value associ-
ated with νB lies in the grey area.
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5.4. Asymptotic regimes

We investigate some asymptotic regimes in the case of a constant magnetic field
of intensity B .

Convergence towards the Lowest Landau Level. Assume that d = 2, p > 2 and
let us consider the regime as α→ (−B)+. We denote by LLL the eigenspace corre-
sponding to the Lowest Landau Level.

Proposition 5.2. Let d = 2 and consider a constant magnetic field with field stren-
gth B. If ψα is a minimizer for µB(α) such that ‖ψα‖p = 1, then there exists a non
trivial ϕα ∈ LLL such that

lim
α→(−B)+

∥∥ψα−ϕα
∥∥

H1
A(R2) = 0.

Proof. Let ψα ∈ H1
A(R2) be an optimal function for (1.3) such that ‖ψα‖p = 1 and

let us decompose it as ψα =ϕα+χα, where ϕα ∈ LLL and χα is in the orthogonal
of LLL. Then, by the orthogonality of ϕα and χα, we get

µB(α) ≥ (α+B)‖ϕα‖2
2 + (α+3B)‖χα‖2

2 ≥ (α+3B)‖χα‖2
2 ∼ 2B ‖χα‖2

2

as α→ (−B)+ because ‖∇χα‖2
2 ≥ 3B ‖χα‖2

2. Since limα→(−B)+ µB(α) = 0 by Theo-
rem 1.1, this implies that limα→(−B)+ ‖χα‖2 = 0. On the other hand, we know that

µB(α) = (α+B)‖ϕα‖2
2 + ‖∇Aχα‖2

2 +α‖χα‖2
2 ≥ 2

3 ‖∇Aχα‖2
2 ,

which concludes the proof. ä
Semi-classical regime. Let us consider the small magnetic field regime. We as-
sume that the magnetic potential is given by (4.1) if d = 2. In dimension d = 3,
we choose A = B

2 (−x2, x1,0) and observe that the constant magnetic field is B =
(0,0,B), while the spectral gap in (1.1) is Λ[B] = B .

Proposition 5.3. Let d = 2 or 3 and consider a constant magnetic field B of inten-
sity B with magnetic potential A and assume that (1.1) holds for someΛ=Λ[B] > 0.

(i) For p ∈ (2,2∗) and for any fixed α and µ> 0, we have

lim
ε→0+

µεB(α) =Cp α
d
p − d−2

2 and lim
ε→0+

αεB(µ) =
(
C−1

p µ
) 2 p

2 p−d (p−2) .

(ii) For p ∈ (1,2) and any fixed β> 0, we have

lim
ε→0+

νεB(β) =Cp β
2 p

2 p+d (2−p) .

Proof. Consider any functionψ ∈ H1
A(Rd ) and for any ε> 0 defineψ(x) =χ(

p
εx).

With our standard choice for A, we have that
p
εA

(
x/

p
ε
)= A(x). From

‖∇εAψ‖2
2 +α‖ψ‖2

2

‖ψ‖2
p

= ε d
p − d−2

2
‖∇Aχ‖2

2 +αε−1 ‖χ‖2
2

‖χ‖2
p

,

we deduce that

µεB(α) = ε d
p − d−2

2 µB
(
αε−1) .
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By a similar argument we can easily see that

αεB(µ) = εαB

(
µε

− 2 q−d
2 q

)
and νεB(β) = ενB

(
βε

d−2
2 − d

p

)
.

The conclusion follows by considering the asymptotic regime as ε→ 0+ in Theo-
rem 1.1 and in Corollary 1.2. ä
5.5. A numerical result on the linear stability of radial optimal functions

Bonheure et al. show in [2] that for a fixed α > 0 and for B small enough, the
optimal functions for (1.3) are radially symmetric functions, i.e., belong to C0.
As shown in Proposition 5.3, this regime is equivalent to the regime as α→+∞
for a given B, at least if the magnetic field is constant. On the other hand, the nu-
merical results of Section 5 show thatα 7→µB(α) is remarkably well approximated
from above by functions in C0. The approximation from below of Proposition 4.3,
although not exact, is found to be numerically very close.

This raises the open question of whether, in the case of constant magnetic
fields, equality in (1.3) is realized by radial functions for a given constant mag-
netic field B and an arbitrary α. As mentioned in Section 5.2, from [15, 22], we
know that the branch of solutions in C0 is isolated in the class of radial functions.
Perturbing these radial solutions in a larger class of functions is natural. Let us
analyze the stability of the solutions to (5.1) under perturbations by functions in

C1. Assume that d = 2 and p > 2. Let us denote by ψ0 a minimizer of Q
(p)
α on

the class (C0) of radial functions, normalized so that, with a standard abuse of
notation, ψ0(x) =ψ0(|x|) solves

−ψ′′
0 −

ψ′
0

r
+

(
B 2

4 r 2 +α
)
ψ0 = |ψ0|p−2ψ0 ,

and consider the test function

ψε =ψ0 +εe i θ v

where v is a radial function, depending only on r = |x|, and e i θ = (x1 + i x2)/r . In
the asymptotic regime as ε→ 0+, we have∫

R2
|∇Aψε|2 d x +α

∫
R2

|ψε|2 d x −
(∫
R2

|∇Aψ0|2 d x +α
∫
R2

|ψ0|2 d x

)
=

(∫
R2

|∇Av |2 d x +α
∫
R2

|v |2 d x

)
ε2 +o(ε2)

= 2π
∫ +∞

0

[
|v ′|2 +

(( 1
r − B r

2

)2 +α
)
|v |2

]
r dr ε2 +o(ε2)

and

‖ψε‖2
p −‖ψ0‖2

p = 2π p
2 ‖ψ0‖2−p

p

(∫ +∞

0
|ψ0|p−2 v2 r dr

)
ε2 +o(ε2) .

Altogether, we obtain(
Q

(p)
α [ψε]−µ0(α)

)
‖ψ0‖2

p

= 2π
[∫
R2 |v ′|2 d x +∫

R2

(( 1
r − B r

2

)2+α
)
|v |2 d x − p

2

∫ +∞
0 |ψ0|p−2 v2 r dr

]
ε2 +o(ε2)
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where µ0(α) = ‖ψ0‖p−2
p =Q

(p)
α [ψ0]. The linear stability of ψ0 with respect to per-

turbations in (C1) can be recast as the eigenvalue problem

− v ′′− v ′

r
+

(( 1
r − B r

2

)2 +α
)

v − p
2 |ψ0|p−2 v =µv . (5.3)

The numerical results for d = 2, B = 1 and p = 3 of Fig. 5 suggest that Q
(p)
α is lin-

early stable for α>−B , not too large. This indicates that µEL is a good candidate
for computing the exact value of µB for arbitrary values of B ’s.

2 4 6 8

1

2

3

4

FIGURE 5. Case p = 3 and B = 1: plot of µ solving (5.3) as a function
of α. A careful investigation shows that µ is always positive, including
in the limiting case as α→ (−B)+, thus proving the numerical stability
of the optimal function in C0 with respect to perturbations in C1.
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