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The presence of two eyes, ears and nostrils endows mammals with many benefits.  These go beyond 

just having a spare sensory organ.  The spatial separation between two similar sensory organs enables 

enhanced sensory perception.  For instance, in the case of the eyes, it is well known that the presence of 

two spatially separated eyes enables stereopsis or three-dimensional depth perception [1].  This is 

important for tasks requiring spatial discrimination such as threading a needle, judging a space between 

one's car and other cars on a road, and also for many sports.  Other less well-known benefits of laterally 

separated eyes include the following: 

- Neurologically based binocular summation in the brain increases the signal-to-noise ratio (SNR), 

increasing detectability of objects, especially under poor illumination and contrast.  Night driving 

would be extremely difficult with one eye [2], [3], [4]. 

- Spatial localization of objects is done visually with respect to the body. With a single eye, spatial 

localization would be of an oculocentric nature and would constantly change with eye movements 

instead of being body-based and stable [3]. 

- Dual eyes help us see through clutter. This is important for humans who live in cluttered 

environments and for mammals in general that live in leafy cluttered jungles [5]. 

Similarly, having two nostrils improves signal-to-noise ratio and also gives the body the ability to 

simultaneously clean up the air filter in one nostril while the other nostril is used for breathing [6].  
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Having two ears provides both bilateral and binaural benefits [8].  The bilateral benefit is the ability 

to listen with the ear that has a better SNR.  The binaural ability is the ability to combine sounds from the 

two ears to hear better than with one ear alone. Speech intelligibility is significantly improved due to dual 

ears when there are multiple interfering voices at different locations from the person, such as at a cocktail 

party [7].  This also enables sound localization (ability to identify the directional location of a sound 

source) [8].  

 

Article Objectives 

Inspired by the function of spatially separated sensory organs found in nature, this article explores the 

use of dual spatially separated sensors for enhanced estimation in modern engineering applications.  The 

following three real-world applications are used to demonstrate the benefits of spatially separated 

redundant sensors in enabling enhanced estimation. 

a) Adaptive parameter and state estimation in magnetic sensors: This application is used to 

demonstrate how spatially separated magnetic sensors can be used to estimate the position of a 

ferromagnetic object, even when the parameters of the magnetic field function are unknown and 

have to be adaptively estimated. 

b) Estimation of an unknown disturbance input in an automotive suspension: This application 

demonstrates the real-time estimation of states and an unknown road roughness disturbance by 

using two spatially separated identical sensors in an automotive suspension. 

c) Separation of inputs based on their direction of action in a digital stethoscope: This application is 

used to demonstrate how spatially separated redundant sensors can be exploited to separate two 

unknown disturbance inputs based on their direction of action.   

This article presents both analytical components of observer design and experimental evaluation of 

the developed observer for each of the above applications.  The common theme in all three applications is 

the use of dual sensors that measure the same type of variable, but are separated in spatial location. 
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State and Parameter Estimation in Systems with Nonlinear Measurement 

Equations, with Applications to Magnetic Position Estimation 

Piston position measurement is required for many applications in a number of industrial domains. For 

example, in modern internal combustion engines with variable compression ratio, measuring the position 

of a piston inside the engine cylinder is important for real-time combustion control technologies [10, 11]. 

Another application is the measurement of a piston position in the hydraulic cylinders of an excavator for 

automatic excavation [12-14]. Piston position estimation is also required for many applications involving 

pneumatic actuators. One such application is web (continuous flexible materials such as cloth, foil and 

wire) handling where pneumatic actuators are used to control the position of guide rollers required for 

active control of tension in a web [15, 16]. 

Position transducers such as LVDTs (linear variable differential transformers) require a mechanical 

connection between the moving object and the sensor. Therefore, it is not possible to use these sensors in 

applications where the moving object is isolated in a harsh environment, for instance in a piston moving 

inside an engine cylinder or a piston in a hydraulic cylinder surrounded by high-pressure fluid. Laser and 

ultrasonic sensors do not require a mechanical connection to the moving object; however, they require a 

clear line of sight to the moving object. Therefore, their usage becomes difficult in situations where the 

moving object is isolated, for example to measure the internal piston position from outside the cylinder. 

Magnetic sensors have also been used for the measurement of rotary and linear motions [12, 17, 18]. 

Previous position measurement systems based on embedded magnets have been developed only for 

applications with extremely small distances between the magnet and the sensor. For example, Hall-effect 

sensors typically work only at distances below 2 cm [19]. In order to measure the position of an object 

over a greater range, a continuous line of several magnets have to be embedded into the moving object 

[12, 18]. This significantly increases installation burden and cost. Compared to the previous research in 

which the measurement range is very limited, this section shows how the nonlinear magnetic field model 
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of an embedded magnet can be exploited to create a robust position sensor that works over much larger 

distances. In addition to improving the range, robustness is achieved by automatically determining the 

parameters of the magnetic field function using auto-calibration algorithms. 

 
The Analytical Observer Design Problem 

 
The process model of a piston-cylinder system is typically based on kinematics with linear process 

dynamics and a nonlinear measurement equation.  The system dynamics are given by 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵, (1) 

where 𝑥𝑥 ∈ ℝ𝑛𝑛×1,𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, 𝐵𝐵 ∈ ℝ𝑛𝑛×ℓ, 𝑢𝑢 ∈ ℝℓ×1. 

The nonlinear measurement model is given by the output equation 

𝑦𝑦 = 𝐶𝐶𝐶𝐶 + ℎ(𝑥𝑥), (2) 

where 𝑦𝑦 ∈ ℝ𝑚𝑚×1,𝐶𝐶 ∈ ℝ𝑚𝑚×𝑛𝑛.  See sidebar on “Observers for Nonlinear Systems with Output Nonlinear 

Functions,” regarding the presence of the nonlinear function ℎ(𝑥𝑥) in the measurement equation. It is 

assumed that the nonlinearity ℎ(𝑥𝑥):ℝ𝑛𝑛 → ℝ𝑚𝑚 is a vector of differentiable Lipschitz continuous functions 

whose Jacobian is bounded element-wise as follows 

𝐾𝐾1(𝑖𝑖, 𝑗𝑗) ≤ 𝜕𝜕ℎ𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

≤ 𝐾𝐾2(𝑖𝑖, 𝑗𝑗),       𝑖𝑖 = 1,⋯ ,𝑚𝑚;     𝑗𝑗 = 1,⋯ ,𝑛𝑛, (3). 

where 𝐾𝐾1 and 𝐾𝐾2 are constant matrices of appropriate dimensions. Without loss of generality, it is 

assumed that 

𝐾𝐾1 = 0𝑚𝑚×𝑛𝑛. (4) 

It can be seen that if the lower Jacobian bound 𝐾𝐾1 is non-zero, then the following new output nonlinearity 

function, 

ℎ�(𝑥𝑥) = −𝐾𝐾1𝑥𝑥 + ℎ(𝑥𝑥), (5) 

has the following Jacobian bounds 

0 ≤
𝜕𝜕ℎ�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

≤ 𝐾𝐾2(𝑖𝑖, 𝑗𝑗)−𝐾𝐾1(𝑖𝑖, 𝑗𝑗). 
(6) 
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Thus the modified nonlinear function has a lower Jacobian bound of zero.  The new output corresponding 

to this modified nonlinear function is 

𝑦𝑦 = (𝐶𝐶 + 𝐾𝐾1)𝑥𝑥 + ℎ�(𝑥𝑥). (7) 

The nonlinear observer for this system will be designed based on the stability conditions for a Lur’e 

system shown in Figure 1. 

The Lur’e system of Figure 1 is described by the equations 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵, (8) 

𝑧𝑧 = 𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷, (9) 

𝑤𝑤 = ∆(𝑧𝑧), (10) 

where the nonlinear uncertain block Δ(∙) is an ℒ2 operator.  Assume that the relationship between 𝑧𝑧 and 𝑤𝑤 

is constrained by a homogenous quadratic polynomial inequality given by 

� 𝑧𝑧𝑤𝑤�
𝑇𝑇
� 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑅𝑅

� �𝑧𝑧𝑤𝑤� ≤ 0, 
(11) 

where 𝑄𝑄,𝑅𝑅 and 𝑆𝑆 are real matrices with compatible dimensions.  The following Lemma from a previous 

result in literature provides a sufficient condition for stability of a Lur’e system. 

Lemma 1 (Acikmese and Corless, [20]): 

The system given by equations (8) - (11) is globally asymptotically stable if there exists a symmetric 

matrix 𝑃𝑃𝑃𝑃ℝ𝑛𝑛×𝑛𝑛 such that 

𝑃𝑃 ≻ 0  (12) 

and 

�𝐴𝐴
𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃
𝐵𝐵𝑇𝑇𝑃𝑃 0

� − [∗]𝑇𝑇 � 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑅𝑅

� �𝐶𝐶 𝐷𝐷
0 𝐼𝐼 � ≺ 0, (13) 

where the symbols ≻ 0 and ≺ 0 have been used to refer to a positive definite and negative definite matrix 

respectively.  The observer for the nonlinear system of equations (1) and (2) is assumed to be 

𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝐵𝐵 + 𝐿𝐿1(𝑦𝑦 − 𝐶𝐶𝑥𝑥� − ℎ(𝑥𝑥� + 𝐿𝐿2(𝑦𝑦 − 𝐶𝐶𝑥𝑥� − ℎ(𝑥𝑥𝑥)))), (14) 

where the observer gains 𝐿𝐿1 and 𝐿𝐿2 are to be determined. 
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It can then be shown that the observer error dynamics for the estimation error 𝑒𝑒 = 𝑥𝑥 − 𝑥𝑥� is given by: 

𝑒̇𝑒 = (𝐴𝐴 − 𝐿𝐿1𝐶𝐶)𝑒𝑒 − 𝐿𝐿1�ℎ(𝑥𝑥) − ℎ(𝑥𝑥� + 𝐿𝐿2�𝑦𝑦 − 𝐶𝐶𝑥𝑥� − ℎ(𝑥𝑥�)�) �. (15) 

The second observer gain 𝐿𝐿2 provides an additional degree of design freedom and has been used 

previously in other nonlinear observer design papers [21]. The error dynamics in (15) can then be 

represented as a Lur’e system, as shown in Figure 2 [21], [62]. 

 

The difference of nonlinear functions 𝜙𝜙(𝑡𝑡, 𝑒𝑒) in Figure 2 is 

𝜙𝜙(𝑡𝑡, 𝑒𝑒) = ℎ(𝑥𝑥) − ℎ(𝑥𝑥� + 𝐿𝐿2�𝑦𝑦 − 𝐶𝐶𝑥𝑥� − ℎ(𝑥𝑥�)�). (16) 

It can then be shown [60] that with the lower Jacobian bound being zero, the error 𝑒𝑒 and the difference of 

nonlinear functions 𝜙𝜙(𝑡𝑡, 𝑒𝑒) satisfy 

[𝜙𝜙(𝑡𝑡, 𝑒𝑒)]𝑇𝑇[𝜙𝜙(𝑡𝑡, 𝑒𝑒) − 𝐾𝐾2(𝐼𝐼 − 𝐿𝐿2𝐾𝐾)𝑒𝑒] ≤ 0, (17) 

where 𝐾𝐾𝐾𝐾ℝ𝑚𝑚×𝑛𝑛 is time-varying, but also satisfies the element-wise constraints 

𝐶𝐶(𝑖𝑖, 𝑗𝑗) ≤ 𝐾𝐾(𝑖𝑖, 𝑗𝑗) ≤ 𝐶𝐶(𝑖𝑖, 𝑗𝑗) + 𝐾𝐾2(𝑖𝑖, 𝑗𝑗)   , (18) 

∀𝑖𝑖 = 1, … ,𝑚𝑚,  𝑗𝑗 = 1, … ,𝑛𝑛 

The quadratic form of (17) is 

�
𝑒𝑒
𝜙𝜙�

𝑇𝑇
�𝐼𝐼 − 𝐿𝐿2𝐾𝐾 0

0 𝐼𝐼�
𝑇𝑇
𝑀𝑀 �𝐼𝐼 − 𝐿𝐿2𝐾𝐾 0

0 𝐼𝐼� �
𝑒𝑒
𝜙𝜙� ≤ 0, 

(19) 

where the multiplier matrix 𝑀𝑀 is defined as 

𝑀𝑀 = �
0 −

𝐾𝐾2𝑇𝑇

2

−
𝐾𝐾2
2

𝐼𝐼
�. 

(20) 

By applying Lemma 1 to the Lur’e system of Figure 2, linear matrix inequality (LMI) based observer 

design conditions can then be obtained for ensuring global asymptotic stability of the estimation error 

dynamics given by equation (15).  These observer design conditions are presented as Theorem 1 below 

[53]. 
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Theorem 1: The estimation error dynamics of equation (15) are asymptotically stable if there exist a 

symmetric matrix 𝑃𝑃𝑃𝑃ℝ𝑛𝑛×𝑛𝑛 and observer gains 𝐿𝐿1𝜖𝜖ℝ𝑛𝑛×𝑚𝑚 and 𝐿𝐿2𝜖𝜖ℝ𝑛𝑛×𝑚𝑚 such that the following 

semidefinite constraints are satisfied 

𝑃𝑃 ≻ 0, and (21) 

�
(𝐴𝐴 − 𝐿𝐿1𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿1𝐶𝐶) −𝑃𝑃𝐿𝐿1

−𝐿𝐿1𝑇𝑇𝑃𝑃 0
� − [∗]𝑇𝑇𝑀𝑀 �𝐼𝐼 − 𝐿𝐿2𝐾𝐾 0

0 𝐼𝐼� ≺ 0. 
(22) 

This is an infinite-dimensional semidefinite constraint due to the time-varying (but bounded) matrix 

parameter 𝐾𝐾. However, the affine dependence on 𝐾𝐾 makes it only necessary to guarantee feasibility on all 

the 2𝑚𝑚×𝑛𝑛 vertices of the polytope 𝛯𝛯. 

It is also possible to modify Theorem 1 as follows so that the estimation system satisfies a 

convergence rate of at least 𝜀𝜀. 

Corollary to Theorem 1: The existence of a matrix 𝑃𝑃 and two observer gains 𝐿𝐿1 and 𝐿𝐿2 such that the 

following semi-definite conditions are satisfied, implies exponential convergence with decay rate 𝜀𝜀 > 0 

𝑃𝑃 ≻ 0, and (23) 

�
(𝐴𝐴 − 𝐿𝐿1𝐶𝐶)𝑇𝑇𝑃𝑃 + 𝑃𝑃(𝐴𝐴 − 𝐿𝐿1𝐶𝐶) + 2𝜀𝜀𝜀𝜀 −𝑃𝑃𝐿𝐿1

−𝐿𝐿1𝑇𝑇𝑃𝑃 0
� − [∗]𝑇𝑇𝑀𝑀 �𝐼𝐼 − 𝐿𝐿2𝐾𝐾 0

0 𝐼𝐼� ≺ 0 ,     for all  𝐾𝐾 ∈ 𝛯𝛯. 
(24) 

 

Application to Piston Position Estimation 

The above nonlinear measurement equation based nonlinear observer is applied to piston position 

estimation in a pneumatic actuator.  Figure 3 shows a pneumatic actuator with a small (5 mm in diameter, 

1 mm in thickness) magnet located on its piston.  Magnetic sensors are located externally, co-axial with 

the cylinder.  The position of the piston inside the pneumatic actuator can be estimated entirely from 

outside the cylinder non-intrusively.  

It can be shown analytically [9] that the magnetic field measured by the two sensors in Figure 3 are 

given by 
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𝑦𝑦1 = 𝐵𝐵1𝑥𝑥 =
𝑝𝑝

(𝑥𝑥 + 𝜎𝜎)3 + 𝑞𝑞, (25) 

𝑦𝑦2 = 𝐵𝐵2𝑥𝑥 =
𝑝𝑝

(𝑥𝑥 + 𝜎𝜎 + 𝑑𝑑)3 + 𝑞𝑞, (26) 

where the geometric parameters 𝜎𝜎 and 𝑑𝑑 are shown in Figure 3.  The redundancy created by using two 

magnetic sensors makes it possible to estimate both position and the unknown magnetic field parameters 

𝑝𝑝 and 𝑞𝑞. 

The state to be estimated is given by 

𝑋𝑋 = [𝑥𝑥 𝑣𝑣 𝑎𝑎 𝑝𝑝 𝑞𝑞]𝑇𝑇, (27) 

and consists of position, velocity, acceleration, and the magnetic field parameters.  The process dynamics 

are given by the kinematic model (28) while the parameters 𝑝𝑝 and 𝑞𝑞 are assumed to be constant and hence 

have the dynamics of equation (29), 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥
𝑣𝑣
𝑎𝑎
� = �

0 1 0
0 0 1
0 0 0

� �
𝑥𝑥
𝑣𝑣
𝑎𝑎
� + �

0
0
1
� 𝐽𝐽, 

(28) 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑝𝑝
𝑞𝑞� = �0 0

0 0� �
𝑝𝑝
𝑞𝑞�, 

(29) 

where 𝐽𝐽 is jerk, and is assumed to be zero in this article.  The measurement equations are given by 

equations (25) and (26). It is noted that with two spatially separated sensors, the linearized system 

corresponding to (25)-(29) is observable, whereas with just one sensor it would not be observable. 

The observer in equation (14) is designed for the above system using the LMIs (23) and (24).    

Experimental Results 

The observer design from the previous section is experimentally implemented for position estimation 

of the piston in a pneumatic actuator.  Figure 4 shows a photograph of the pneumatic actuator and 

experimental test configuration at the University of Minnesota. As shown, a set of two magnetic sensors 

on a circuit bread board are placed co-axial to the pneumatic actuator.  A PIC-microcontroller based 

system is used for data acquisition. Since dual magnetic sensors with spatial separation are used (instead 

of a single magnetic sensor), the position of the piston can be estimated without requiring pre-calibration 
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of the magnetic field function.  Thus, the parameters of the magnetic field model are adaptively estimated 

in real-time using the spatially separated sensors. Sensor noise is not an issue in this application. Instead, 

the challenges in this application arise from unknown bias parameters in the sensor measurement. 

Figure 5(a) shows the estimated piston position of the pneumatic actuator in which the piston moves 

over the full stroke of 50 mm and back to its original position.  An LVDT is used as a reference sensor for 

comparison. The estimated position starts at an arbitrary initial value of 23 mm while the actual position 

measured by the LVDT is zero.  The estimated position correctly converges to the actual position within a 

fraction of a second and tracks the actual position subsequently.  The error in position is 23 mm in the 

beginning due to initial conditions but converges close to zero in less than 0.2 seconds, as seen in Figure 

6(a).  The estimated magnetic field parameters 𝑝𝑝 and 𝑞𝑞 converge even more quickly, as seen in Figures 

5(b) and 5(c).  The steady-state error in estimated position is seen to be less than 0.2 mm, as shown in 

Figure 6(b). 

As the results of this section demonstrate, the use of a redundant spatially separated sensor enables 

accurate position estimation for a nonlinear output equation system in spite of unknown magnetic field 

parameters.  

 

 

State and Disturbance Input Estimation in an Automotive Suspension 

Another application of the spatial redundant sensor configuration is the state and disturbance input 

estimation in an automotive suspension system. Figure 7 shows a schematic of a quarter car automotive 

suspension system.  Such a model can be used to analyze vibrations of the automotive system due to road 

roughness 𝑧𝑧𝑟𝑟 at any one of the four wheels of the car [54].  The mass 𝑚𝑚𝑠𝑠 represents the vehicle body (or 

chassis) and is called the “sprung mass” while the mass 𝑚𝑚𝑢𝑢 represents the mass due to tire and axle [54] 

and is called the “unsprung mass.”  The sprung mass displacement is 𝑧𝑧𝑠𝑠, while the unsprung mass 
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displacement is 𝑧𝑧𝑢𝑢.  The automotive suspension itself consists of the suspension spring 𝑘𝑘𝑠𝑠 and the damper 

𝑏𝑏𝑠𝑠.  The tire stiffness is given by 𝑘𝑘𝑡𝑡. 

If the suspension includes an active or semi-active vibration control element, the force provided by 

such an element is shown as 𝐹𝐹𝑎𝑎.  This active suspension force 𝐹𝐹𝑎𝑎 can be a nonlinear function of the states 

and input (hydraulic actuator) or a bilinear function of the states and input (semi-active actuator) [54].  

However, for the purposes of this article, vehicles with active or semi-active actuators, such as Formula 

race cars, are not considered.  The estimation problem instead focuses on standard vehicles where no 

active control actuator is present (𝐹𝐹𝑎𝑎 = 0).   

The governing differential equations of this system are given by [54] 

𝑚𝑚𝑠𝑠𝑧̈𝑧𝑠𝑠 = −𝑘𝑘𝑠𝑠(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢) − 𝑏𝑏𝑠𝑠(𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢) + 𝐹𝐹𝑎𝑎, and (30) 

𝑚𝑚𝑢𝑢𝑧̈𝑧𝑢𝑢 = 𝑘𝑘𝑠𝑠(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢) + 𝑏𝑏𝑠𝑠(𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢) − 𝐹𝐹𝑎𝑎 − 𝑘𝑘𝑡𝑡(𝑧𝑧𝑢𝑢 − 𝑧𝑧𝑟𝑟). (31) 

The objective of the estimation problem is to estimate the following variables: 

a) Tire deflection 𝑧𝑧𝑢𝑢 − 𝑧𝑧𝑟𝑟  

b) Suspension deflection 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢 

Ideally, this estimation should be done using only inexpensive inertial sensors.  Here we propose the 

use of two accelerometers – one each to measure the sprung mass acceleration 𝑧̈𝑧𝑠𝑠 and unsprung mass 

acceleration 𝑧̈𝑧𝑢𝑢.  Although this system is observable using only a single sprung mass acceleration 

measurement output, the presence of the unknown disturbance 𝑧𝑧𝑟𝑟 requires additional consideration.  By 

having two identical accelerometers spatially separated (one each on the sprung and unsprung mass), it is 

possible to estimate the desired state variables with complete decoupling from the unknown disturbance 

𝑧𝑧𝑟𝑟.  It is noted that the two accelerometers in this case are placed on existing separate masses, since it is 

not practically possible to introduce an additional redundant mass for the sake of a dual separated sensor 

on a real automotive suspension.  

The incentive to estimate real-time tire deflection arises from a motivation to monitor road holding 

performance of the vehicle and to detect possible tire lift-off situations in real-time [24], [25]. Even 
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without active suspensions, if potential tire-lift off can be predicted, the use of braking and deceleration of 

the vehicle (for instance, while cornering or doing a fast lane change) can prevent a vehicle from rollover. 

The reason to estimate suspension deflection arises from a motivation to prevent bottoming out of 

suspension travel, since this can result in extremely bad ride quality and high jerk at the time of bottoming 

out.  Bottoming out can also cause physical damage to the suspension system or vehicle body.  Again, if 

this can be predicted by the estimation system, as simple a measure as braking to slow down the vehicle 

can prevent bottoming out.   

The proposed accelerometers are inexpensive inertial sensors, with sprung mass acceleration already 

being measured on many cars.  The desired state estimates can be decoupled from the unknown road input 

by using equation (31) which describes the unsprung mass dynamics.  Since the unsprung mass 

acceleration 𝑧̈𝑧𝑢𝑢 is being measured, rewrite equation (31) so that the tire deflection is a function of the 

suspension deflection and velocity and the measured input 𝑧̈𝑧𝑢𝑢 , 

𝑧𝑧𝑢𝑢 − 𝑧𝑧𝑟𝑟 =
1
𝑘𝑘𝑡𝑡

[𝑏𝑏𝑠𝑠(𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢) + 𝑘𝑘𝑠𝑠(𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢)]  −
1
𝑘𝑘𝑡𝑡
𝑚𝑚𝑢𝑢𝑧̈𝑧𝑢𝑢. (32) 

This equation remains valid even for half car and full car suspension models. Next, using suspension 

deflection and relative suspension velocity as the reduced set of states to be estimated, the dynamic model 

for these two states can be represented using 𝑧̈𝑧𝑢𝑢 as a known input as follows 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢
𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢� = �

0 1

−
𝑘𝑘𝑠𝑠
𝑚𝑚𝑠𝑠

−
𝑏𝑏𝑠𝑠
𝑚𝑚𝑠𝑠

� �
𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢
𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢� + � 0

−1� 𝑧̈𝑧𝑢𝑢 + �
0

1
𝑚𝑚𝑠𝑠

+
1
𝑚𝑚𝑢𝑢

� 𝑢𝑢. 
(33) 

The output is the sprung mass acceleration measurement, and hence the output equation is 𝑦𝑦 = 𝐶𝐶𝐶𝐶, with 

𝐶𝐶 = �−
𝑘𝑘𝑠𝑠
𝑚𝑚𝑠𝑠

−
𝑏𝑏𝑠𝑠
𝑚𝑚𝑠𝑠

�, 
(34) 

𝑥𝑥 = �
𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢
𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢�. 

(35) 

The system in equation (33) - (35) is observable and a Luenberger observer leads to asymptotically 

stable estimates for suspension deflection 𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑢𝑢 and velocity 𝑧̇𝑧𝑠𝑠 − 𝑧̇𝑧𝑢𝑢.  Subsequently, the tire deflection 
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can be estimated using equation (32).  Note that these deflections are obtained using only accelerometer 

measurements in a disturbance-affected system. 

Simulation results on the above approach for estimating suspension deflection and tire deflection in a 

disturbance-affected quarter car suspension are shown in Figures 8 and 9.  Figure 8 shows estimates and 

actual values of suspension and tire deflections when the road input disturbance is a 1Hz sinusoid.  After 

the initial error due to wrong initial conditions, the estimates converge rapidly (in about 1 sec) to the 

actual variables.  Figure 9 shows the same type of data for a band-limited multi-frequency road input 

consisting of frequencies up to 10 Hz.  It can be seen that the estimates again converge rapidly and then 

track the actual values.  Since tire deflection in particular is extremely difficult to measure on a real car, 

the observer developed herein using spatially separated sensors is of significant importance. 

 

 

Decoupling of Unknown Inputs, with Applications to  

Auscultation in Medical Stethoscopes 

The third application presented in this article involves decoupling of two different unknown inputs in 

medical stethoscopes. Since the advent of the stethoscope in 1816, it has quickly risen to obtain status as 

the ubiquitous sign of a doctor.  This is due largely to both the portability and the clinical relevance and 

versatility of the stethoscope as a physician’s preliminary tool for assessment of a patient’s circulatory 

and respiratory systems.  The stethoscope amplifies chest sounds to a level of 60 – 70 dB at which point 

they can be heard by the physician.  However, in emergency departments and ambulances, the existing 

environmental noise levels are high enough to make auscultation very difficult [46-49].  In the case of 

modern electronic stethoscopes, an additional potential noise source is found to be caused by a 

physician’s handling of the stethoscope. This noise can be caused by finger/hand movement along the 

stethoscope chestpiece surface, accidental contact with the chestpiece, or muscle hand tremors. Since 

electronic stethoscopes have significantly larger chestpieces and metallic surface areas, they experience 
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higher handling noise [26].  Mechanical isolation of the stethoscope’s transducer from these noise sources 

is possible, but this isolation is often achieved at the cost of a loss in sensitivity to patient chest sounds 

[26] – [31]. 

Figure 10(a) shows a photograph of a modern electronic stethoscope and its internal components.  

Figure 10(b) shows a schematic model of the stethoscope.  The model includes vibrational components as 

well as a piezoelectric element that converts chest vibrations to electrical signals [26]. 

As seen in Figure 10(b), there are two inputs that act on the system: the force due to handling of the 

stethoscope by the physician 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and the force that the chest vibrations create on the diaphragm of the 

stethoscope 𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

The objective of this estimation problem is to estimate both the unknown inputs – the chest vibrations 

and the physician handling disturbance forces.  It is impossible to eliminate the physician disturbance 

using only the single piezoelectric transducer.  However, by using dual transducer measurements, the two 

unknown inputs can be estimated and the influence of the physician handling disturbances on the chest 

sound measurements can be removed. 

 

Review of Unknown Input Estimation Approaches 

The problem of unknown input estimation has long been investigated and typically arises in systems 

subject to disturbances, unmeasurable inputs, un-modeled dynamics, or in applications that require fault 

detection and isolation.  For the linear time invariant system, 

 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵, (36) 

 𝑦𝑦 = 𝐶𝐶𝐶𝐶, (37) 

where 𝑥𝑥 ∈ ℝ𝑛𝑛, 𝑑𝑑 ∈ ℝ𝑝𝑝, and 𝑦𝑦 ∈ ℝ𝑝𝑝 and the system matrices 𝐴𝐴 , 𝐵𝐵, and 𝐶𝐶 are known, constant, and of 

appropriate dimension, the objective is to estimate the unknown input, 𝑑𝑑, given the measured signal 𝑦𝑦.  

Model inversion is one possible technique that has been established to generate a system 

mapping 𝑅𝑅−1: 𝑦𝑦 → 𝑢𝑢 given an initial system map 𝑅𝑅:𝑢𝑢 → 𝑦𝑦.  Looking at the topic of functional 
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reproducibility, Brockett and Mesarović [32] gave the first necessary and sufficient conditions for 

invertibility. An alternate test for invertibility has been presented by Sain [33], but these two criteria have 

since been found to be equivalent [34-36].  Brockett [38] provided an inversion algorithm for the linear 

time-invariant (LTI) single-input single-output (SISO) case. Dorato [40] derived a simplified criterion for 

invertibility and proposed a procedure for obtaining the inverse of a multiple-input multiple-output 

(MIMO) system. Additional research has been conducted to study the stability of such inverse systems. 

The conditions for the existence of a stable system inverse and its construction are given by Moylan [44]. 

These preliminary findings were primarily focused on the existence of such systems and their inherent 

system properties. However, they do not account for unknown initial conditions and do not estimate the 

states.  Functional observers that provide disturbance-decoupled estimates of states or of portions of the 

state vector have been developed by other researchers [55]-[57].   

Another approach for determining unknown inputs acting on a system is through the use of a so-

called unknown input observer (UIO). Preliminary observer design in this area was in the interest of 

estimating the unknown state independent of the unmeasurable disturbances [37]. However, the unknown 

disturbance itself was not estimated. The first standard rank condition—the so called “Observer Matching 

Condition” was developed by Kudva [39] to determine when a reduced order UIO was possible. This 

requirement demonstrated that the necessary and sufficient condition for this class of observers to exist 

for a given system is the following simple condition  

 rank(𝐶𝐶𝐶𝐶) = rank(𝐷𝐷) = 𝑝𝑝, (38) 

where 𝐷𝐷 is an added disturbance feedthrough term in equation (42), with 𝑦𝑦 = 𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷.  Unfortunately, 

this necessary rank condition widely limits the applicability of rigorous UIOs to many real world systems, 

since the matrix 𝐷𝐷 can often be zero. 

A large advance in UIO theory has been the development of observers for system which do not satisfy 

the observer matching condition. In general, these systems require the use of one or more output 

derivatives to successfully estimate the state and/or input. The work of Liu provides an approach for 
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systems that violate the matching condition and have a relative degree equal to one [41]. However, this 

assumption on the relative degree is not valid for the stethoscope system which is explored here (and will 

generally not be valid for many applications).  

More recently, Floquet and Zhu have presented methods for systems with a higher relative degree 

[42, 43]. The approaches of both authors rely on the use of high order sliding mode observers to estimate 

output derivatives. The methods which have been presented have complex design conditions and lack 

methods to add additional robustness considerations. What is presented here is a simpler method by 

which a linear observer can be designed which requires only the solution of a LMI and has a straight-

forward discrete time implementation. 

 

Analytical Preliminaries 

Without loss of generality, it can be assumed that the matrices 𝐵𝐵 and 𝐶𝐶 are full column and row rank 

respectively. In order to obtain an expression for the unknown input, 𝑑𝑑, we first differentiate the output 

from equation (42). After taking the output derivative and substituting for the state dynamics, equation 

(41), we obtain the following 

 𝑦̇𝑦 = 𝐶𝐶𝑥̇𝑥 = 𝐶𝐶(𝐴𝐴𝐴𝐴 + Bd). (39) 

Define the relative degree 𝑟𝑟𝑗𝑗 for the 𝑗𝑗𝑡𝑡ℎ output as the number of times that this output needs to be 

differentiated for an input to appear, that is 𝐶𝐶𝑗𝑗𝐴𝐴𝑖𝑖−1𝐵𝐵 = 0 for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟𝑗𝑗 − 1 and 𝐶𝐶𝑗𝑗𝐴𝐴𝑟𝑟𝑗𝑗−1𝐵𝐵 ≠ 0.  

Thus, after differentiating the 𝑗𝑗𝑡𝑡ℎ output 𝑟𝑟𝑗𝑗 times, we obtain 

 𝑦𝑦𝑗𝑗
�𝑟𝑟𝑗𝑗� = 𝐶𝐶𝑗𝑗𝐴𝐴𝑟𝑟𝑗𝑗𝑥𝑥 + 𝐶𝐶𝑗𝑗𝐴𝐴𝑟𝑟𝑗𝑗−1𝐵𝐵𝐵𝐵, (40) 

where the superscript �𝑟𝑟𝑗𝑗� denotes the 𝑟𝑟𝑗𝑗𝑡𝑡ℎ  derivative of a variable. Without loss of generality, assume 

that 𝑟𝑟1 ≤ 𝑟𝑟2 ≤ ⋯ ≤ 𝑟𝑟𝑝𝑝. Then, the output derivatives can be combined in increasing order of relative 

degree in matrix form as follows, 
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⎣
⎢
⎢
⎢
⎡𝑦𝑦1

(𝑟𝑟1)

𝑦𝑦2
(𝑟𝑟2)

⋮
𝑦𝑦𝑝𝑝
�𝑟𝑟𝑝𝑝�

⎦
⎥
⎥
⎥
⎤

= �

𝐶𝐶1𝐴𝐴𝑟𝑟1
𝐶𝐶2𝐴𝐴𝑟𝑟2
⋮

𝐶𝐶𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝
� 𝑥𝑥 +

⎣
⎢
⎢
⎡𝐶𝐶1𝐴𝐴

𝑟𝑟1−1𝐵𝐵
𝐶𝐶2𝐴𝐴𝑟𝑟2−1𝐵𝐵

⋮
𝐶𝐶𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝−1𝐵𝐵⎦

⎥
⎥
⎤
𝑑𝑑. (41) 

This can be written in the following compact notation, 

 𝑦𝑦� = 𝐶𝐶̅𝑥𝑥 + 𝐷𝐷�𝑑𝑑, (42) 

by defining 𝑦𝑦� ∈ ℝ𝑝𝑝, 𝐶𝐶̅ ∈ ℝ𝑝𝑝×𝑛𝑛, and 𝐷𝐷� ∈ ℝ𝑝𝑝×𝑝𝑝 as 

 𝑦𝑦� =

⎣
⎢
⎢
⎢
⎡𝑦𝑦1

(𝑟𝑟1)

𝑦𝑦2
(𝑟𝑟2)

⋮
𝑦𝑦𝑝𝑝
�𝑟𝑟𝑝𝑝�

⎦
⎥
⎥
⎥
⎤

, 𝐶𝐶̅ = �

𝐶𝐶1𝐴𝐴𝑟𝑟1
𝐶𝐶2𝐴𝐴𝑟𝑟2
⋮

𝐶𝐶𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝
�, 𝐷𝐷� =

⎣
⎢
⎢
⎡𝐶𝐶1𝐴𝐴

𝑟𝑟1−1𝐵𝐵
𝐶𝐶2𝐴𝐴𝑟𝑟2−1𝐵𝐵

⋮
𝐶𝐶𝑝𝑝𝐴𝐴𝑟𝑟𝑝𝑝−1𝐵𝐵⎦

⎥
⎥
⎤
. (43) 

If the matrix 𝐷𝐷� is invertible, then equation (42) can be solved to find the input, 𝑑𝑑, in terms of the output 

derivatives and states 

 𝑑𝑑 = −𝐷𝐷�−1𝐶𝐶̅𝑥𝑥 + 𝐷𝐷�−1𝑦𝑦�. (44) 

Applying equation (44) to the original system equation, a new state equation without the unknown input 

can be obtained, 

 𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵(−𝐷𝐷�−1𝐶𝐶̅𝑥𝑥 + 𝐷𝐷�−1𝑦𝑦�)  

  = (𝐴𝐴 − 𝐵𝐵𝐷𝐷�−1𝐶𝐶̅)𝑥𝑥 + 𝐵𝐵𝐷𝐷�−1𝑦𝑦�. (45) 

If we define the matrices, 

 𝐴𝐴𝑏𝑏 = 𝐴𝐴 − 𝐵𝐵𝐷𝐷�−1𝐶𝐶̅,  𝐵𝐵𝑏𝑏 = 𝐵𝐵𝐷𝐷�−1, 

 𝐶𝐶𝑏𝑏 = −𝐷𝐷�−1𝐶𝐶̅,   𝐷𝐷𝑏𝑏 = 𝐷𝐷�−1, (46) 

the new dynamic equations relating the original system output to an estimate of the input is given by, 

 𝑥̇𝑥 = 𝐴𝐴𝑏𝑏𝑥𝑥 + 𝐵𝐵𝑏𝑏𝑦𝑦�, (47) 

 𝑑𝑑 = 𝐶𝐶𝑏𝑏𝑥𝑥 + 𝐷𝐷𝑏𝑏𝑦𝑦�. (48) 

The resulting system requires 𝑟𝑟𝑗𝑗 derivatives of the measured output signal 𝑦𝑦𝑗𝑗 to estimate the original 

system input(s).  
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Unknown Input Observer 

As an alternate method to estimate the unknown input of a system, it is possible to design an 

unknown input and state observer that does not rely on the construction of an explicit inverse dynamic 

model. The following result presents an observer and LMIs that constitute design constraints on the 

observer gains for asymptotic state and input estimation. 

First, for a system where each output has a relative degree 𝑟𝑟𝑗𝑗 as previously defined, define the 

structures of the matrices, 𝒢𝒢 ∈ ℝ𝑝𝑝×(𝑟̃𝑟+𝑞𝑞), ℋ ∈ ℝ𝑝𝑝×𝑞𝑞, 𝒞̃𝒞 ∈ ℝ(𝑟̃𝑟+𝑞𝑞)×𝑛𝑛, and 𝒟𝒟� ∈ ℝ𝑞𝑞×𝑝𝑝 as follows, 

 𝒢𝒢 =  [𝐺𝐺1 𝐺𝐺2 ⋯ 𝐺𝐺𝑞𝑞], ℋ =  [𝐻𝐻1 𝐻𝐻2 ⋯ 𝐻𝐻𝑞𝑞], 

  𝒞̃𝒞 =

⎣
⎢
⎢
⎡𝐶̃𝐶1
𝐶̃𝐶2
⋮
𝐶̃𝐶𝑞𝑞⎦
⎥
⎥
⎤
, 𝒟𝒟� =

⎣
⎢
⎢
⎡𝐷𝐷
�1
𝐷𝐷�2
⋮
𝐷𝐷�𝑞𝑞⎦
⎥
⎥
⎤
, (49) 

where 

 𝑟̃𝑟 = ∑ 𝑟𝑟𝑖𝑖
𝑞𝑞
𝑖𝑖=1 , (50) 

and the sub-matrices 𝐺𝐺𝑖𝑖 ∈ ℝ𝑝𝑝×(𝑟𝑟𝑖𝑖+1), 𝐻𝐻𝑖𝑖 ∈ ℝ𝑝𝑝×1, 𝐶̃𝐶𝑖𝑖 ∈ ℝ(𝑟𝑟𝑖𝑖+1)×𝑛𝑛, and 𝐷𝐷�𝑖𝑖 ∈ ℝ1×𝑝𝑝 ∀𝑖𝑖 ∈ {1,2, … , 𝑞𝑞} are 

defined as  

 𝐺𝐺𝑖𝑖 =  [𝐺𝐺𝑖𝑖,0 𝐺𝐺𝑖𝑖,1 ⋯ 𝐺𝐺𝑖𝑖,𝑟𝑟𝑖𝑖],  𝐻𝐻𝑖𝑖 =  𝐺𝐺𝑖𝑖,𝑟𝑟𝑖𝑖, 

 𝐶̃𝐶𝑖𝑖 = �

𝐶𝐶𝑖𝑖
𝐶𝐶𝑖𝑖𝐴𝐴
⋮

𝐶𝐶𝑖𝑖𝐴𝐴𝑟𝑟𝑖𝑖
�, 𝐷𝐷�𝑖𝑖 = 𝐶𝐶𝑖𝑖𝐴𝐴𝑟𝑟𝑖𝑖−1𝐵𝐵. (51) 

Then, define the observer update laws as follows 

 𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑥𝑥� + 𝐵𝐵𝑑̂𝑑 + 𝐿𝐿𝐿𝐿, (52) 

 𝑑̇̂𝑑 = −𝒢𝒢𝒞̃𝒞𝑥𝑥� −ℋ𝒟𝒟�𝑑̂𝑑 + 𝒢𝒢𝓎𝓎� , (53) 

where 𝐿𝐿 ∈ ℝ𝑛𝑛×𝑞𝑞 is the observer gain to be determined and the output derivative vector, 𝓎𝓎� ∈ ℝ𝑟̃𝑟+𝑞𝑞,  is 

defined as  
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 𝓎𝓎� = �

𝑦𝑦�1
𝑦𝑦�2
⋮
𝑦𝑦�𝑞𝑞

�, (54) 

with 𝑦𝑦�𝑖𝑖 ∈ ℝ𝑟𝑟𝑖𝑖+1, 

 𝑦𝑦�𝑖𝑖 = �

𝑦𝑦𝑖𝑖
𝑦̇𝑦𝑖𝑖
⋮

𝑦𝑦𝑖𝑖
(𝑟𝑟𝑖𝑖)

�. (55) 

Note that equation (53) for the disturbance estimates utilizes all available feedback, namely the state 

estimate 𝑥𝑥𝑥, the disturbance estimate 𝑑̂𝑑  and the derivatives of the measurement 𝓎𝓎� . Defining the state and 

input estimate errors as 

 𝑒𝑒𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥�, 𝑒𝑒𝑑𝑑 = 𝑑𝑑 − 𝑑̂𝑑, (56) 

the observer state estimate can be rewritten as  

 𝑥𝑥�̇ = 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝑑̂𝑑 + 𝐿𝐿𝐿𝐿𝑒𝑒𝑥𝑥. (57) 

Similarly, after some manipulation, the unknown input estimate can be written as  

 𝑑̇̂𝑑 = 𝒢𝒢𝒞̃𝒞𝑒𝑒𝑥𝑥 + ℋ𝒟𝒟�𝑒𝑒𝑑𝑑. (58) 

 

Theorem 2. If there exist observer gain matrices 𝐿𝐿 and 𝒢𝒢 and two symmetric positive-definite (SPD) 

matrices 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑑𝑑, such that  

 𝑄𝑄 = �−𝑃𝑃𝑥𝑥
(𝐴𝐴 − 𝐿𝐿𝐿𝐿) − (𝐴𝐴 − 𝐿𝐿𝐿𝐿)T𝑃𝑃𝑥𝑥 −𝑃𝑃𝑥𝑥𝐵𝐵 + 𝒞̃𝒞T𝒢𝒢T𝑃𝑃𝑑𝑑
−𝐵𝐵T𝑃𝑃𝑥𝑥 + 𝑃𝑃𝑑𝑑𝒢𝒢𝒞̃𝒞 𝑃𝑃𝑑𝑑ℋ𝒟𝒟� + 𝒟𝒟�TℋT𝑃𝑃𝑑𝑑

� < 0, (59) 

then the observer given by  

 𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐿𝐿)𝑥𝑥� + 𝐵𝐵𝑑̂𝑑 + 𝐿𝐿𝐿𝐿, (60) 

 𝑑̇̂𝑑 = −𝒢𝒢𝒞̃𝒞𝑥𝑥� −ℋ𝒟𝒟�𝑑̂𝑑 + 𝒢𝒢𝓎𝓎� , (61) 

can be used to asymptotically estimate both the state and the unknown input.    

Proof: The theorem is proved using the Lyapunov function candidate 

 𝑉𝑉 = 𝑒𝑒𝑥𝑥T𝑃𝑃𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑑𝑑T𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑. (62) 
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It can be shown that if there exists symmetric positive-definite matrices 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑑𝑑, and 𝑄𝑄 that satisfy equation 

(59), then 𝑉𝑉 is positive definite and 𝑉̇𝑉 is negative definite on the entire space ℝ𝑛𝑛+𝑝𝑝 [26]. Additionally, 

since 𝑉𝑉 is radially unbounded, it is possible to conclude that 𝑒𝑒𝑥𝑥 = 0  and 𝑒𝑒𝑑𝑑 = 0 is a globally 

asymptotically stable equilibrium point ([62], Theorem 4.2). Thus, the given observer can guarantee that 

both the state and unknown input can be asymptotically tracked.  It should be noted that although the 

disturbance was assumed to be an unknown constant, in practice a time varying disturbance can also be 

estimated in real-time if the sampling frequency is adequately fast and the observer dynamics are 

significantly faster than the bandwidth of the disturbance. 

 

Stethoscope Input Estimation 

Figure 11 shows a schematic of a modified stethoscope at the University of Minnesota with dual 

piezoelectric transducers separated spatially by a spring in between the two transducers. This stethoscope 

can be constructed by modification of a standard 3M Littman 3200 electronic stethoscope [45]. By using 

dual transducer measurements, the two unknown inputs can be estimated and the influence of the 

physician handling disturbances on the chest sound measurements can be removed.  Figure 12 shows the 

modified schematic for the dynamic model of the dual piezo transducer configuration in the stethoscope. 

In state-space form, the physical system’s dynamic model is given as follows, 

 𝑥̇𝑥d = 𝐴𝐴𝑑𝑑𝑥𝑥𝑑𝑑 + 𝐵𝐵𝑑𝑑𝑑𝑑, (63) 

 𝑦𝑦𝑑𝑑 = 𝐶𝐶𝑑𝑑𝑥𝑥𝑑𝑑 , (64) 

where 𝑥𝑥𝑑𝑑 ∈ ℝ8 is the state and 𝑑𝑑 ∈ ℝ2 is the unknown input, 

 𝑑𝑑 = [𝐹𝐹𝑝𝑝 𝐹𝐹𝑚𝑚]T. (65) 

The specific numerical system matrices 𝐴𝐴𝑑𝑑 ∈ ℝ8×8, 𝐵𝐵𝑑𝑑 ∈ ℝ8×2, and  𝐶𝐶𝑑𝑑 ∈ ℝ2×8 can be found in the 

doctoral thesis [26].  This model can be used to relate the vibrational inputs to pressure on the piezo 
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sensing elements [50]. However, a conversion is required to relate these forces to output voltages. The 

state-space representation of the differential equations relating pressure and voltage for piezo 𝑖𝑖 can be 

written as follows 

 𝑥̇𝑥𝑝𝑝𝑖𝑖 = 𝐴𝐴𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖 + 𝐵𝐵𝑝𝑝𝑖𝑖𝑢𝑢𝑝𝑝𝑖𝑖, (66) 

 𝑦𝑦𝑝𝑝𝑖𝑖 = 𝐶𝐶𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖, (67) 

where x𝑝𝑝𝑖𝑖 ∈ ℝ
3 and the system matrices 𝐴𝐴𝑝𝑝𝑖𝑖 ∈ ℝ

3×3, B𝑝𝑝𝑖𝑖 ∈ ℝ
3×1, and  𝐶𝐶𝑝𝑝 ∈ ℝ1×3 are given in [26]. 

The output of each piezo sensor is quite small. In order to amplify and improve the signal quality, a small 

preamplifier circuit is used for each piezo. The state-space model for amplifier 𝑖𝑖 is given by the following 

 𝑥̇𝑥𝑎𝑎𝑖𝑖 = 𝐴𝐴𝑎𝑎𝑖𝑖𝑥𝑥𝑎𝑎𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑖𝑖𝑢𝑢𝑎𝑎𝑖𝑖, (68) 

 𝑦𝑦𝑎𝑎𝑖𝑖 = 𝐶𝐶𝑎𝑎𝑖𝑖𝑥𝑥𝑎𝑎𝑖𝑖, (69) 

where x𝑎𝑎𝑖𝑖 ∈ ℝ
5 and the system matrices are given in [26]. For ease of development, the two preamplifier 

models will be stacked to create a decoupled two input and two output system, 𝐺𝐺𝑎𝑎, given by (𝐴𝐴𝑎𝑎,𝐵𝐵𝑎𝑎,𝐶𝐶𝑎𝑎).  

 𝐴𝐴𝑎𝑎 = �
𝐴𝐴𝑎𝑎1 0

0 𝐴𝐴𝑎𝑎1
�, 𝐵𝐵𝑎𝑎 = �

𝐵𝐵𝑎𝑎1 0
0 𝐵𝐵𝑎𝑎1

� ,𝐶𝐶𝑎𝑎 = �
𝐶𝐶𝑎𝑎1 0
0 𝐶𝐶𝑎𝑎1

�. (70) 

Similarly, the two piezo models have been stacked and the resulting system, 𝐺𝐺𝑝𝑝, is given by (𝐴𝐴𝑝𝑝,𝐵𝐵𝑝𝑝,𝐶𝐶𝑝𝑝). 

 𝐴𝐴𝑝𝑝 = �
𝐴𝐴𝑝𝑝1 0

0 𝐴𝐴𝑝𝑝1
�, 𝐵𝐵𝑝𝑝 = �

𝐵𝐵𝑝𝑝1 0
0 𝐵𝐵𝑝𝑝1

�, 𝐶𝐶𝑝𝑝 = �
𝐶𝐶𝑝𝑝1 0
0 𝐶𝐶𝑝𝑝1

�. (71) 

Schematically, the interconnection of the sub-systems can be seen in Figure 13. The following change of 

notation is introduced for the complete system model: 𝑢𝑢1 ≜ 𝐹𝐹𝑝𝑝, 𝑢𝑢2 ≜ 𝐹𝐹𝑚𝑚, 𝑦𝑦1 ≜ 𝑦𝑦𝑎𝑎1 , and 𝑦𝑦2 ≜ 𝑦𝑦𝑎𝑎2 . 

 

 

Stethoscope Observer Design 

It is possible to construct a full system observer for the combined model. However, here we have 

chosen to design an unknown input observer for each cascaded subsystem. This minimizes the number of 

output derivatives required for each estimator (and thus reduces the effect of measurement noise). 
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The dynamic model, 𝐺𝐺𝑑𝑑, has well defined relative degree equal to one for each output �𝑟𝑟𝑑𝑑1 = 1, 𝑟𝑟𝑑𝑑2 =

1�. The piezo subsystems each have a relative degree of three �𝑟𝑟𝑝𝑝1 = 3, 𝑟𝑟𝑝𝑝2 = 3�, and each preamplifier 

subsystem has a relative degree of two �𝑟𝑟𝑎𝑎1 = 2, 𝑟𝑟𝑎𝑎2 = 2�. 

The inversion based observer for this system can be given by 

 𝑥𝑥�̇𝑎𝑎 = �𝐴𝐴𝑏𝑏,𝑎𝑎 − 𝐿𝐿𝑎𝑎𝐶𝐶𝑎𝑎�𝑥𝑥�𝑎𝑎 + 𝐵𝐵𝑏𝑏,𝑎𝑎𝑦𝑦�𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑦𝑦𝑎𝑎, (72) 

 𝑥𝑥�̇𝑝𝑝 = �𝐴𝐴𝑏𝑏,𝑝𝑝 − 𝐿𝐿𝑝𝑝𝐶𝐶𝑝𝑝�𝑥𝑥�𝑝𝑝 + 𝐵𝐵𝑏𝑏,𝑝𝑝𝑦𝑦��𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑦𝑦�𝑝𝑝, (73) 

 𝑥𝑥�̇𝑑𝑑 = �𝐴𝐴𝑏𝑏,𝑑𝑑 − 𝐿𝐿𝑑𝑑𝐶𝐶𝑑𝑑�𝑥𝑥�𝑑𝑑 + 𝐵𝐵𝑏𝑏,𝑑𝑑𝑦𝑦��𝑑𝑑 + 𝐿𝐿𝑑𝑑𝑦𝑦�𝑑𝑑, (74) 

where the observer gains 𝐿𝐿𝑎𝑎 ∈ ℝ8×2, 𝐿𝐿𝑝𝑝 ∈ ℝ6×2, and 𝐿𝐿𝑑𝑑 ∈ ℝ10×2 were selected as  

 𝐿𝐿𝑑𝑑 =

�−3.39e−3 −4.30e−3 −1.04e−2 −1.73e−2 −3.99e−4 −5.27e−3 5.76e−3 −1.74e−3
−1.77e−3 −1.52e−3 8.06e−4 5.42e−4 2.68e−4 −4.26e−4 3.60e−5 2.21e−4

�
T

, 

 𝐿𝐿𝑝𝑝 = �516.16 713052.69 2797.54 0 0 0
0 0 0 240.93 1078955.40 3684.15�

T
, 

 𝐿𝐿𝑎𝑎 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

43.08 0
151.58 0
280.68 0
2157.8 0
709.71 0

0 1.5636
0 −6.0234
0 37.024
0 443.2
0 348.38 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (75) 

by solving the linear matrix inequality given by condition that a positive definite 𝑃𝑃 and 𝑄𝑄 must exist 

where 𝑄𝑄 is defined by equation (59). 

The state matrix (Ab,a, Ab,p, and , Ab,d) and input matrix (Bb,a, Bb,p, and , Bb,d) for each observer were 

obtained by equation (46) based on the original dynamic model for each subsystem. There are two inputs 

to the first observer given by equation (72). As the first stage in the series of three observers, the feedback 

term 𝑦𝑦𝑎𝑎 for this observer is the measured signal from the piezo, and the inverted system input 𝑦𝑦�𝑎𝑎 is a 
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vector of the measurement derivatives as defined by equation (43). For each subsequent observer in the 

series, the inputs are similarly defined.  

Due to the cascaded observer design selected, all systems after the first observer rely on the use of 

output estimates (the result of the prior observer’s estimate) and not a direct measurement. In the steady 

state, the internal stability of each observer guarantees that the cascaded observer will converge. 

Similarly, a non-inversion based observer can be design for the stethoscope system. The state 

estimates are given by the following 

 𝑥𝑥�̇𝑎𝑎 = (𝐴𝐴𝑎𝑎 − 𝐿𝐿𝑎𝑎𝐶𝐶𝑎𝑎)𝑥𝑥�𝑎𝑎 + 𝐵𝐵𝑎𝑎𝑑̂𝑑𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑦𝑦𝑎𝑎, (76) 

 𝑥𝑥�̇𝑝𝑝 = �𝐴𝐴𝑝𝑝 − 𝐿𝐿𝑝𝑝𝐶𝐶𝑝𝑝�𝑥𝑥�𝑝𝑝 + 𝐵𝐵𝑝𝑝𝑑̂𝑑𝑝𝑝 + 𝐿𝐿𝑝𝑝𝑦𝑦�𝑝𝑝, (77) 

 𝑥𝑥�̇𝑑𝑑 = (𝐴𝐴𝑑𝑑 − 𝐿𝐿𝑑𝑑𝐶𝐶𝑑𝑑)𝑥𝑥�𝑑𝑑 + 𝐵𝐵𝑑𝑑𝑑̂𝑑𝑑𝑑 + 𝐿𝐿𝑑𝑑𝑦𝑦�𝑑𝑑. (78) 

The update laws for the unknown input estimates for each stage of the observer are given by  

 𝑑̇̂𝑑𝑎𝑎 = −𝒢𝒢𝑎𝑎𝒞̃𝒞𝑎𝑎𝑥𝑥�𝑎𝑎 −ℋ𝑎𝑎𝒟𝒟�𝑎𝑎𝑑̂𝑑𝑎𝑎 + 𝒢𝒢𝑎𝑎𝓎𝓎�𝑎𝑎, (79) 

 𝑑̇̂𝑑𝑝𝑝 = −𝒢𝒢𝑝𝑝𝒞̃𝒞𝑝𝑝𝑥𝑥�𝑝𝑝 −ℋ𝑝𝑝𝒟𝒟�𝑝𝑝𝑑̂𝑑𝑝𝑝 + 𝒢𝒢𝑝𝑝𝓎𝓎�𝑝𝑝, (80) 

 𝑑̇̂𝑑𝑑𝑑 = −𝒢𝒢𝑑𝑑𝒞̃𝒞𝑑𝑑𝑥𝑥�𝑑𝑑 −ℋ𝑑𝑑𝒟𝒟�𝑑𝑑𝑑̂𝑑𝑑𝑑 + 𝒢𝒢𝑑𝑑𝓎𝓎�𝑑𝑑. (81) 

The state observer gains 𝐿𝐿𝑎𝑎 ∈ ℝ8×2, 𝐿𝐿𝑝𝑝 ∈ ℝ6×2, and 𝐿𝐿𝑑𝑑 ∈ ℝ10×2 and the disturbance observer gains 𝒢𝒢𝑎𝑎 ∈

ℝ2×4, 𝒢𝒢𝑝𝑝 ∈ ℝ2×4, 𝒢𝒢𝑑𝑑 ∈ ℝ2×6, ℋ𝑎𝑎 ∈ ℝ2×2, and ℋ𝑝𝑝 ∈ ℝ2×2 were obtained by solving the linear matrix 

inequality given by condition that a positive definite 𝑃𝑃 and 𝑄𝑄 must exist where 𝑄𝑄 is defined by equation 

(59).   

Similar to the inversion based observer, there are two inputs to each stage of the observer. The input 

to the amplifier system observer, 𝑦𝑦𝑎𝑎, is the measured signal from the piezo and the estimated input given  

defied by equation (79). The input to the unknown input observer for this system 𝓎𝓎�𝑎𝑎 is a vector of the 

measurement derivatives as defined by equations (54) and (55). For each subsequent observer in the 

series, the inputs are similarly defined. Once again, the measurements used by the second and third 

observer are given by the estimated output from the observer which precedes it. 
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Experimental Results 

In order to experimentally verify the proposed design and algorithm on the physical system, a 

prototype of the proposed dual-piezo assembly was constructed and tested. Experimental testing was 

accomplished by stimulating the dual-piezo assembly with vibrational noise from both potential noise 

sources. For the generation of patient noise, a vibration shaker was used to generate a vibrational noise 

signal representative of a standard heartbeat. During each test, the housing for the first piezo assembly 

was bonded to the shaker via a foam disk with double-sided adhesive tape. The second unknown input, a 

disturbance due to physician handling noise, could be created by rubbing and tapping on the top surface 

of the second (upper) piezo housing. Although a known reference disturbance signal was not used for this 

noise source, knowledge of the desired chest sound signal allows for a sufficient assessment of the 

algorithm’s performance.  

In order to monitor the actual input acceleration experienced by the sensor assembly, a single axis 

accelerometer was rigidly attached to the shaker head. A National Instruments CompactRio chassis (NI 

cRIO-9074) with an analog input (NI 9205) and an analog output (NI 9264) module has been used to 

generate and acquire the test signals [61]. A constant sampling rate of 25 kHz has been used for all results 

presented.  

Results using an initial white noise only patient input with no added disturbance signal are presented 

herein. The following measurements from each piezo sensor were obtained (see Figure 14). 

 

Since only a single input was present, after processing the data through the designed observer, the 

signal energy should all be attributed to a single input. More specifically, all the input should be identified 

as having originated from input 1 (𝑢𝑢1). As shown in Figure 16, in general this is confirmed in the 

processed data.  

Limited circulation. For review only

Preprint submitted to IEEE Control Systems Magazine. Received July 16, 2016 10:56:00 PST



 24 

For frequency components below approximately 800 Hz, the signal estimate agrees well with the 

original input signal. In this same frequency range, the second input estimate has been reduced greatly. 

However, in both datasets it can be seen that considerable high frequency components exist which diverge 

from the desired signal (see Figure 15). These errors are once again due to the numerical derivative 

approximation and the given choice of observer gains. Given that much of the estimate error lies above 

the frequency range of interest, it can be removed with filtering. After appropriate low-pass filtering, the 

time domain signal estimates shown in Figure 16 are obtained. 

The estimate of the first input agrees well with the actual input signal used for the experiment. 

Additionally, as desired, the amplitude of the second input estimate is considerably smaller. 

In summary, existing approaches to minimize the effect of disturbances caused by a physician during 

auscultation have been focused on passive improvements to the design. These methods attempt to isolate 

the transducer from such input signals and dissipate their energy prior to reaching the measurement 

sensor. Depending on the nature of the design, this isolation may not achieve sufficient noise reduction 

without compromising the device’s sensitivity to patient signals. Using spatially separated sensors and an 

unknown input observer design based on a model of how these interference signals reach each sensor, 

their effects can be removed digitally. 

An unknown input observer design has been presented, which does not rely explicitly on the system 

inverse model, to estimate both the states and the two unknown inputs.  Its performance has been 

demonstrated on a simplified laboratory system using a dual piezo sensor assembly. The use of numerical 

differentiation required within each algorithm degrades the estimate performance in the high frequency 

range, but low frequency estimates demonstrate a high level of performance. 

Using the developed approach, it is feasible that the unwanted effects of disturbances caused by a 

physician can be reduced while providing a high quality estimate of the original auscultation signal. This 

technology can improve the stethoscope’s performance and generally improve the quality of patient 

examination possible in a wide variety of environments. 
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Conclusions 

This work on the use of dual identical but spatially separated sensors was inspired by the dual 

sensing organs in humans and other creatures in nature.  The article showed how the use of dual sensors 

could be used to compensate for unknown parameters and unknown disturbance inputs, while estimating 

states in linear and nonlinear dynamic systems.  Applications of the dual sensor methodology were 

discussed for  

a) An industrial pneumatic actuator system in which magnetic sensors were used for position 

estimation without requiring pre-calibration of magnetic field parameters,  

b) An automotive systems in which dual accelerometers were used to estimate states and an 

unknown tire deflection input, and 

c) An electronic stethoscope in which unknown physician created handling noise was estimated 

and removed from chest sounds to enable medical auscultation. 

A building window with a transparent acoustic speaker in which dual microphones were used to 

separate internal and external noise was also discussed briefly (See sidebar on “Application to Separation 

of Directional Noise Components in Acoustics”). 

Both analytical observer design results and experimental implementation results for these 

applications were presented. 
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Side Bar: Observers for Nonlinear Systems with Output Nonlinear Functions 

Although many nonlinear observer design methods have been reported in literature [21], [22], [23], 

their application is often limited only to systems in which the nonlinearity is contained entirely in the state 

equation. The output equation is typically assumed to be linear. In the cases where the output equation 

allows a nonlinear function [20], [58], [59], the constraints on this function do not allow for the inverse-

power nonlinearities described in the magnetic position sensor application.  

The argument cited by researchers in favor of the output linearity assumption is that a coordinate 

transformation can be used to convert algebraic nonlinear output equations into linear equations. 

However, a practical investigation shows that using coordinate transformations for the purpose of making 

output equations linear can be a complicated approach. 

  Consider the following dynamic model and output equation 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥
𝑥̇𝑥
𝑥̈𝑥
� = �

0 1 0
0 0 1
0 0 0

� �
𝑥𝑥
𝑥̇𝑥
𝑥̈𝑥
� 

(S1) 

𝑦𝑦 = 𝐵𝐵(𝑥𝑥) =
𝑝𝑝(2𝑥𝑥2 − 𝑧𝑧2)

2(𝑥𝑥2 + 𝑧𝑧2)
5
2

+ 𝑟𝑟 
(S2) 

This is the type of model that is obtained when the magnetic sensor is placed on top of the cylinder, 

instead of co-axial with the cylinder, as shown in Figure S1. The kinematic model in equation (S1) is 

straightforward. The jerk (derivative of acceleration) of the piston position is assumed to be zero. The 

output (S2) is the measured magnetic field at a sensor location which is a direct algebraic function of the 

piston positon. Unfortunately, the output equation is nonlinear.  Attempting to convert the nonlinear 

output equation to a linear equation turns out to be non-trivial. 

Consider the coordinate transformation (S3) to a new set of state variables: 

𝑤𝑤 = {𝐵𝐵 𝐵̇𝐵 𝐵̈𝐵}𝑇𝑇. (S3) 

With this transformation, the output equation is now linear, 

𝑦𝑦 = 𝐵𝐵 = [1 0 0]𝑤𝑤, (S4) 
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but the state equations are not easy to determine with the new states.  Differentiating the variable 𝐵𝐵 and 

simplifying, the equations in (S5) are obtained, 

𝐵̇𝐵 =  
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑝𝑝(2𝑥𝑥2 − 𝑧𝑧2)
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5
2

+ 𝑟𝑟� =
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4
𝑝𝑝(2𝑥𝑥2 − 𝑧𝑧2)

(𝑥𝑥2 + 𝑧𝑧2)
7
2
𝑥̇𝑥 . 

(S5) 

In equation (S5) above, it is very difficult to replace the variables 𝑥𝑥 and 𝑥̇𝑥 with a function of the new 

states 𝐵𝐵, 𝐵̇𝐵 and 𝐵̈𝐵.  In order to determine the equation for the dynamics (derivative) of 𝐵̈𝐵, it is necessary to 

further differentiate (S5) .  However, this does NOT lead to an explicit set of equations for the new state 

variables.  The above conversion process becomes even more challenging when more complicated output 

equations are involved. 

Another difference of the results in this article compared to the nonlinear observer design results 

presented in [20] is that a simpler way to structure the sector condition on the difference of two 

differentiable nonlinear functions has been proposed.  This avoids having to use another LMI to search 

for the incremental quadratic constraints. 

It should be noted that in the model equation (S2), both the function and its partial derivative with 

respective to 𝑥𝑥 are bounded, since the variable 𝑧𝑧 is always positive (non-zero).  
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Side Bar: Application to Separation of Directional Noise Components in 

Acoustics 

Estimation of directional components of sound: A mixed audio signal can be separated into its 

directional components using spatially separated, but otherwise identical, dual microphones. 

Figure S2 shows a schematic of a building window in which a transparent actuator is used in the 

window to cancel acoustic disturbances that travel into the room through the window pane.  Noise from 

aircraft is a significant environmental disturbance for buildings close to airports and highways [52].  The 

use of a transparent acoustic actuator in the window pane can be used to control the noise transmission 

through the window and make the room quieter [51], [52]. 

One of the estimation challenges in this active noise control problem is the need to estimate the 

“reference” signal which is needed for feedforward adaptive noise cancellation.  The use of a single 

microphone to measure the reference signal related to the external disturbance is complicated by the fact 

that in addition to measuring external aircraft noise the external microphone will also measure noise 

created by the window actuator itself and noise coming from inside the home, such as music being played 

in the home.  The use of dual microphones can be used to separate the two noise components based on 

their direction of travel.  Using partial differential acoustic model equations and the relationships created 

by spatially separating the two reference microphones, the estimation of each sound component 

(decoupling) is possible [51]. 
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𝑥̇𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵

Δ

𝑧𝑧 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐵𝐵

𝑧𝑧𝐵𝐵

 

Figure 1. The Lur’e System 
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𝑒̇𝑒 = 𝐴𝐴 − 𝐿𝐿1𝐶𝐶 𝑒𝑒 − 𝐿𝐿1𝜙𝜙(𝑡𝑡, 𝑒𝑒)

Difference of 
nonlinear functions

𝑒𝑒 𝜙𝜙(𝑡𝑡, 𝑒𝑒)

 

Figure 2. Application of the Lur’e system theory to the observer error dynamics system 
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Figure 3. Schematic of a piston in a pneumatic actuator 

  

Limited circulation. For review only

Preprint submitted to IEEE Control Systems Magazine. Received July 16, 2016 10:56:00 PST



 43 

 

Figure 4. Photograph of a pneumatic actuator and co-axial magnetic sensors 
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 (a) Measured and estimated position profile 

 

(b) Estimation of parameter p      and     (c) Estimation of parameter q 

Figure 5. Experimental results on piston position estimation for a pneumatic actuator using 

the developed dual sensor observer 
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Position estimation error - (a) Transient   (b) Steady-state 

Figure 6. Performance of observer in experimental results for piston position estimation in 

pneumatic actuator 
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Figure 7. Schematic of a quarter-car automotive suspension 
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(a) Suspension deflection 

 

(b) Tire deflection 

Figure 8. A comparison of estimates and actual states for a 1 Hz road input 
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(a) Suspension deflection 

 

(b) Tire deflection 

Figure 9. A comparison of estimates and actual states for a band-limited multi-frequency road 

input 
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(a) Modern electronic stethoscope and its 

internal components 

 

 

 

(b) Schematic of the stethoscope for construction of model 

equations 

Figure 10. Schematic illustration of a stethoscope with its internal components and 

corresponding dynamic model 
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Figure 11. Schematic embodiment of a dual-piezo stethoscope assembly 
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Figure 12. Dual-piezo transducer assembly one-dimensional mechanical model 
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Figure 13. Dual-piezo sensor system model schematic diagram 
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Figure 14. Dual-piezo sensor assembly measurement in presence of unknown vibrational inputs 

from bottom of assembly only 
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Figure 15. Frequency response of estimate of unknown inputs from a dual-piezo sensor assembly 

subject to only a white noise patient input 
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Figure 16. Time series data of estimate of unknown inputs from a dual-piezo sensor assembly 

subject to only a white noise patient input 
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Figure S1. Schematic of a piston-cylinder system with sensor placed on top of cylinder 
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Figure S2. Schematic of a building window, a transparent actuator and microphones 

 

Limited circulation. For review only

Preprint submitted to IEEE Control Systems Magazine. Received July 16, 2016 10:56:00 PST


