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GALERKIN APPROXIMATIONS FOR THE OPTIMAL CONTROL OF NONLINEAR DELAY
DIFFERENTIAL EQUATIONS

MICKAËL D. CHEKROUN, AXEL KRÖNER, AND HONGHU LIU

ABSTRACT. Optimal control problems of nonlinear delay differential equations (DDEs) are considered
for which we propose a general Galerkin approximation scheme built from Koornwinder polynomials.
Error estimates for the resulting Galerkin-Koornwinder approximations to the optimal control and the
value function, are derived for a broad class of cost functionals and nonlinear DDEs. The approach is il-
lustrated on a delayed logistic equation set not far away from its Hopf bifurcation point in the parameter
space. In this case, we show that low-dimensional controls for a standard quadratic cost functional can
be efficiently computed from Galerkin-Koornwinder approximations to reduce at a nearly optimal cost
the oscillation amplitude displayed by the DDE’s solution. Optimal controls computed from the Pon-
tryagin’s maximum principle (PMP) and the Hamilton-Jacobi-Bellman equation (HJB) associated with
the corresponding ODE systems, are shown to provide numerical solutions in good agreement. It is fi-
nally argued that the value function computed from the corresponding reduced HJB equation provides
a good approximation of that obtained from the full HJB equation.
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1. INTRODUCTION

Delay differential equations (DDEs) are widely used in many fields such as biosciences [20, 41, 45,
54], climate dynamics [15,24,40,56,58], chemistry and engineering [26,38,43,46,55]. The inclusion of
time-lag terms are aimed to account for delayed responses of the modeled systems to either internal
or external factors. Examples of such factors include incubation period of infectious diseases [41],
wave propagation [10, 56], or time lags arising in engineering [38] to name a few.

Key words and phrases. Delay differential equations, Galerkin approximations, Hamilton-Jacobi-Bellman equation, Hopf
bifurcation, Koornwinder polynomials, Optimal control.
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In contrast to ordinary differential equations (ODEs), the phase space associated even with a scalar
DDE is infinite-dimensional, due to the presence of delay terms implying thus the knowledge of a
function as an initial datum, namely the initial history to solve the Cauchy problem [18, 26]; cf. Sec-
tion 2. The infinite-dimensional nature of the state space renders the related optimal control problems
more challenging to solve compared to the ODE case. It is thus natural to seek for low-dimensional
approximations to alleviate the inherent computational burden. The need of such approximations is
particularly relevant when (nearly) optimal controls in feedback form are sought, to avoid solving
the infinite-dimensional Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal control
problem of the original DDE.

For optimal control of linear DDEs, averaging methods as well as spline approximations are often
used for the design of (sub)optimal controls in either open-loop form or feedback form; see e.g. [1, 4,
34, 42] and references therein. The usage of spline approximations in the case of open-loop control
for nonlinear DDEs has also been considered [44], but not in a systematic way. Furthermore, due to
the locality of the underlying basis functions, the use of e.g. spline approximations for the design
of feedback controls leads, especially in the nonlinear case, to surrogate HJB equations of too high
dimension to be of practical interest.

In this article, we bring together a recent approach dealing with the Galerkin approximations for
optimal control problems of general nonlinear evolution equations in a Hilbert space [11], with tech-
niques for the finite-dimensional and analytic approximations of nonlinear DDEs based on Legendre-
type polynomials, namely the Koornwinder polynomials [9]. Within the resulting framework, we
adapt ideas from [11, Sect. 2.6] to derive—for a broad class of cost functionals and nonlinear DDEs—
error estimates for the approximations of the value function and optimal control, associated with the
Galerkin-Koornwinder (GK) systems; see Theorem 2.1 and Corollary 2.1. These error estimates are
formulated in terms of residual energy, namely the energy contained in the controlled DDE solutions
as projected onto the orthogonal complement of a given Galerkin subspace.

Our approach is then applied to a Wright equation1 with the purpose of reducing (optimally)
the amplitude of the oscillations displayed by the DDE’s solution subject to a quadratic cost; see
Sect. 3. For this model, the oscillations emerge through a supercritical Hopf bifurcation as the delay
parameter τ crosses a critical value, τc, from below. We show, for τ above and close to τc, that a
suboptimal controller at a nearly optimal cost can be synthesized from a 2D projection of the 6D GK
system; see Sect. 3.3. The projection is made onto the space spanned by the first two eigenvectors of
the linear part of the 6D GK system; the sixth dimension constituting for this example the minimal
dimension—using Koornwinder polynomials—to resolve accurately the linear contribution to the
oscillation frequency of the DDE’s solution; see (3.29) in Sect. 3.3.

Using the resulting 2D ODE system, the syntheses of (sub)optimal controls obtained either from
application of the Pontryagin’s maximum principle (PMP) or by solving the associated HJB equation,
are shown to provide nearly identical numerical solutions. Given the good control skills obtained
from the controller synthesized from the reduced HJB equation, one can reasonably infer that the
corresponding “reduced” value function provides thus a good approximation of the “full” value
function associated with the DDE optimal control problem; see Sect. 4.

The article is organized as follows. In Sect. 2, we first introduce the class of nonlinear DDEs consid-
ered in this article and recall in Sect. 2.1 how to recast such DDEs into infinite–dimensional evolution
equations in a Hilbert space. We summarize then in Sect. 2.2 the main tools from [9] for the analytic
determination of GK systems approximating DDEs. In Sect. 2.3, we derive error estimates for the
approximations of the value function and optimal control, obtained from the GK systems. Our ap-
proach is applied to the Wright equation in Sect. 3. Section 3.1 introduces the optimal control problem

1Analogue to a logistic equation with delay; see Sect. 3.1.
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associated with this equation and its abstract functional formulation following Sect. 2.1. The explicit
GK approximations of the corresponding optimal control problem are derived in Sect. 3.2. Numeri-
cal results based on PMP from a projected 2D GK system are then presented in Sect. 3.3. In Sect. 4,
we show that by solving numerically the associated reduced HJB equation, a (sub)optimal control
in a feedback form can be synthesized at a nearly optimal cost. Finally, directions to derive reduced
systems of even lower dimension from GK approximations are outlined in Sect. 5.

2. OPTIMAL CONTROL OF DDES: GALERKIN-KOORNWINDER APPROXIMATIONS

In this article, we are concerned with optimal control problems associated with nonlinear DDEs of
the form

(2.1)
dm(t)

dt
= am(t) + bm(t− τ) + c

∫ t

t−τ
m(s)ds + F

(
m(t), m(t− τ),

∫ t

t−τ
m(s)ds

)
,

where a, b and c are real numbers, τ > 0 is the delay parameter, and F is a nonlinear function.
We refer to Sect. 2.3 for assumption on F. To simplify the presentation, we restrict ourselves to this
class of scalar DDEs, but nonlinear systems of DDEs involving several delays are allowed by the
approximation framework of [9] adopted in this article.

Note that even for scalar DDEs such as given by Eq. (2.1), the associated state space is infinite-
dimensional. This is due to the presence of time-delay terms, which require providing initial data
over an interval [−τ, 0], where τ > 0 is the delay. It is often desirable, though, to have low-
dimensional ODE systems that capture qualitative features, as well as approximating certain quanti-
tative aspects of the DDE dynamics.

The approach adopted here consists of approximating the infinite-dimensional equation (2.1) by a
finite-dimensional ODE system built from Koornwinder polynomials following [9], and then solve
reduced-order optimal control problems aimed at approximating a given optimal control problem
associated with Eq. (2.1).

To justify this approach, Eq. (2.1) needs first to be recast into an evolution equation, in order to
apply in a second step, recent results dealing with the Galerkin approximations to optimal control
problems governed by general nonlinear evolution equations in Hilbert spaces, such as presented
in [11].

As a cornerstone, rigorous Galerkin approximations to Eq. (2.1) are crucial, and are recalled here-
after. We first recall how a DDE such as Eq. (2.1) can be recast into an infinite-dimensional evolution
equation in a Hilbert space.

2.1. Recasting a DDE into an infinite–dimensional evolution equation. The reformulation of a sys-
tem of DDEs into an infinite-dimensional ODE is classical. For this purpose, two types of function
spaces are typically used as state space: the space of continuous functions C([−τ, 0]; Rd), see [26], and
the Hilbert space L2([−τ, 0); Rd)×Rd, see [18]. The Banach space setting of continuous functions has
been extensively used in the study of bifurcations arising from DDEs, see e.g. [8, 17, 19, 21, 37, 47, 60],
while the Hilbert space setting is typically adopted for the approximation of DDEs or their optimal
control; see e.g. [1–3, 9, 22, 28, 33, 35, 36, 42].

Being concerned with the optimal control of scalar DDEs of the form (2.1), we adopt here the
Hilbert space setting and consider in that respect our state space to be

(2.2) H := L2([−τ, 0); R)×R,

endowed with the following inner product, defined for any ( f1, γ1) and ( f2, γ2) inH by:

(2.3) 〈( f1, γ1), ( f2, γ2)〉H :=
1
τ

∫ 0

−τ
f1(θ) f2(θ)dθ + γ1γ2.
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We will also make use sometimes of the following subspace ofH:

(2.4) W := H1([−τ, 0); R)×R,

where H1([−τ, 0); R) denotes the standard Sobolev subspace of L2([−τ, 0); R).
Let us denote by mt the time evolution of the history segments of a solution to Eq. (2.1), namely

(2.5) mt(θ) := m(t + θ), t ≥ 0, θ ∈ [−τ, 0].

Now, by introducing the new variable

(2.6) y(t) := (mt, m(t)) = (mt, mt(0)), t ≥ 0,

Eq. (2.1) can be rewritten as the following abstract ODE in the Hilbert spaceH:

(2.7)
dy
dt

= Ay +F (y),

where the linear operator A : D(A) ⊂ W → H is defined as

(2.8) [AΨ](θ) :=


d+ΨD

dθ
, θ ∈ [−τ, 0),

aΨS + bΨD(−τ) + c
∫ 0

−τ
ΨD(s)ds, θ = 0,

with the domain D(A) of A given by (cf. e.g. [33, Prop. 2.6])

(2.9) D(A) =
{
(ΨD, ΨS)∈ H : ΨD ∈ H1([−τ, 0); R), lim

θ→0−
ΨD(θ) = ΨS

}
.

The nonlinearity F : H → H is here given, for all Ψ = (ΨD, ΨS) inH, by

(2.10) [F (Ψ)](θ) :=

0, θ ∈ [−τ, 0),

F
(

ΨS, ΨD(−τ),
∫ 0
−τ ΨD(s)ds

)
, θ = 0,

With D(A) such as given in (2.9), the operator A generates a linear C0-semigroup onH so that the
Cauchy problem associated with the linear equation ẏ = Ay is well-posed in the Hadamard’s sense;
see e.g [18, Thm. 2.4.6]. The well-posedness problem for the nonlinear equation depends obviously
on the nonlinear term F and we refer to [9] and references therein for a discussion of this problem;
see also [59].

For later usage, we recall that a mild solution to Eq. (2.7) over [0, T] with initial datum y(0) = x in
H, is an element y in C([0, T],H) that satisfies the integral equation

(2.11) y(t) = T(t)x +
∫ t

0
T(t− s)F (y(s))ds, ∀ t ∈ [0, T],

where (T(t))t≥0 denotes the C0-semigroup generated by the operator A : D(A) → H. This notion
of mild solutions extend naturally when a control term C(u(t)) is added to the RHS of Eq. (2.7);
in such a case the definition of a mild solution is amended by the presence of the integral term∫ t

0 T(t− s)C(u(s))ds to the RHS of Eq. (2.11).
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2.2. Galerkin-Koornwinder approximation of DDEs. Once a DDE is reframed into an infinite-
dimensional ODE in H, the approximation problem by finite-dimensional ODEs can be addressed
in various ways. In that respect, different basis functions have been proposed to decompose the state
spaceH; these include, among others, step functions [1,36], splines [2,3], and orthogonal polynomial
functions, such as Legendre polynomials [28,33]. Compared with step functions or splines, the use of
orthogonal polynomials leads typically to ODE approximations with lower dimensions, for a given
precision [2, 28]. On the other hand, classical polynomial basis functions do not live in the domain
of the linear operator underlying the DDE, which leads to technical complications in establishing
convergence results [28, 33]; see [9, Remark 2.1-(iii)].

One of the main contributions of [9] consisted in identifying that Koornwinder polynomials [39]
lie in the domain D(A) of linear operators such as A given in (2.8), allowing in turn for adopting
a classical Trotter-Kato (TK) approximation approach from the C0-semigroup theory [25, 49] to deal
with the ODE approximation of DDEs such as given by Eq. (2.1). The TK approximation approach can
be viewed as the functional analysis operator version of the Lax equivalence principle.2 The work [9]
allows thus for positioning the approximation problem of DDEs within a well defined territory. In
particular, as pointed out in [11] and discussed in Sect. 2.3 below, the optimal control of DDEs benefits
from the TK approximation approach.

In this section, we focus on another important feature pointed out in [9] for applications, namely,
Galerkin approximations of DDEs built from Koornwinder polynomials can be efficiently computed
via simple analytic formulas; see [9, Sections 5-6 and Appendix C]. We recall below the main elements
to do so referring to [9] for more details.

First, let us recall that Koornwinder polynomials Kn are obtained from Legendre polynomials Ln
according to the relation

(2.12) Kn(s) := −(1 + s)
d
ds

Ln(s) + (n2 + n + 1)Ln(s), s ∈ [−1, 1], n ∈N;

see [39, Eq. (2.1)].
Koornwinder polynomials are known to form an orthogonal set for the following weighted inner

product with a point-mass on [−1, 1],

(2.13) µ(dx) =
1
2

dx + δ1,

where δ1 denotes the Dirac point-mass at the right endpoint x = 1; see [39]. In other words,

(2.14)

∫ 1

−1
Kn(s)Kp(s)dµ(s) =

1
2

∫ 1

−1
Kn(s)Kp(s)ds + Kn(1)Kp(1)

= 0, if p 6= n.

It is also worthwhile noting that the sequence given by

(2.15) {Kn := (Kn, Kn(1)) : n ∈N}
forms an orthogonal basis of the product space

(2.16) E := L2([−1, 1); R)×R,

where E is endowed with the following inner product:

(2.17) 〈( f , a), (g, b)〉E =
1
2

∫ 1

−1
f (s)g(s)ds + ab, ( f , a), (g, b) ∈ E .

The norm induced by this inner product will be denoted hereafter by ‖ · ‖E .

2i.e., if “consistency” and “stability” are satisfied, then “convergence” holds, and reciprocally.
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From the original Koornwinder basis given on the interval [−1, 1], orthogonal polynomials on
the interval [−τ, 0] for the inner product (2.3) can now be easily obtained by using a simple linear
transformation T defined by:

(2.18) T : [−τ, 0]→ [−1, 1], θ 7→ 1 +
2θ

τ
.

Indeed, for Kn given by (2.12), let us define the rescaled polynomial Kτ
n by

(2.19)
Kτ

n : [−τ, 0]→ R,

θ 7→ Kn

(
1 +

2θ

τ

)
, n ∈N.

As shown in [9], the sequence

(2.20) {Kτ
n := (Kτ

n, Kτ
n(0)) : n ∈N}

forms an orthogonal basis for the space H = L2([−τ, 0); R) ×R endowed with the inner product
〈·, ·〉H given in (2.3). Note that since Kn(1) = 1 [9, Prop. 3.1], we have

(2.21) Kτ
n(0) = 1.

As shown in [9, Sect. 5 & Appendix C], (rescaled) Koornwinder polynomials allow for analytical
Galerkin approximations of general nonlinear systems of DDEs. In the case of a nonlinear scalar DDE
such as Eq. (2.1), the Nth Galerkin-Koornwinder (GK) approximation, yN , is obtained as

(2.22) yN(t) =
N−1

∑
j=0

ξN
j (t)Kτ

j , t ≥ 0,

where the ξN
j (t) solve the N-dimensional ODE system

(2.23)

dξN
j

dt
=

1
‖Kj‖2

E

N−1

∑
n=0

(
a + bKn(−1) + cτ(2δn,0 − 1)

+
2
τ

n−1

∑
k=0

an,k
(
δj,k‖Kj‖2

E − 1
) )

ξN
n (t)

+
1

‖Kj‖2
E

F

(
N−1

∑
n=0

ξN
n (t),

N−1

∑
n=0

ξN
n (t)Kn(−1), τξN

0 (t)− τ
N−1

∑
n=1

ξN
n (t)

)
,

0 ≤ j ≤ N − 1.

Here the Kronecker symbol δj,k has been used, and the coefficients an,k are obtained by solving a
triangular linear system in which the right hand side has explicit coefficients depending on n; see [9,
Prop. 5.1].

In practice, an approximation mN(t) of m(t) solving Eq. (2.1) is obtained as the state part (at time t)
of yN given by (2.22) which, thanks to the normalization property Kτ

n(0) = 1 given in (2.21), reduces
to

(2.24) mN(t) =
N−1

∑
j=0

ξN
j (t).

For later usage, we rewrite the above GK system into the following compact form:

(2.25)
dξN
dt

= MξN + G(ξN),
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where MξN denotes the linear part of Eq. (2.23), and G(ξN) the nonlinear part. Namely, M is the
N × N matrix whose elements are given by

(2.26)

(M)j,n =
1

‖Kj‖2
E

(
a + bKn(−1) + cτ(2δn,0 − 1)

+
2
τ

n−1

∑
k=0

an,k
(
δj,k‖Kj‖2

E − 1
) )

,

where j, n = 0, · · · , N − 1, and the nonlinear vector field G : RN → RN , is given component-wisely
by

(2.27) Gj(ξN) =
1

‖Kj‖2
E

F

(
N−1

∑
n=0

ξN
n (t),

N−1

∑
n=0

ξN
n (t)Kn(−1), τξN

0 (t)− τ
N−1

∑
n=1

ξN
n (t)

)
,

for each 0 ≤ j ≤ N − 1.
For rigorous convergence results of GK systems (2.25) for Eq. (2.1) when F does not depend on the

delay term m(t− τ), we refer to [9, Sect. 4]. When F does depend on m(t− τ), convergence is also
believed to hold, as supported by the striking numerical results shown in [9, Sect. 6].

2.3. Galerkin-Koornwinder approximation of nonlinear optimal control problems associated with
DDEs.

2.3.1. Preliminaries. In this section, we outline how the recent results of [11] concerned with the
Galerkin approximations to optimal control problems governed by nonlinear evolution equations in
Hilbert spaces, apply to the context of nonlinear DDEs when these approximations are built from the
Koornwinder polynomials. We provide thus here further elements regarding the research program
outlined in [11, Sect. 4].

We consider here, given a finite horizon T > 0, the following controlled version of Eq. (2.7),

(2.28)
dy
ds

= Ay +F (y) + C(u(s)), s ∈ (t, T], u ∈ Uad[t, T],

y(t) = x ∈ H.

The (possibly nonlinear) mapping C : V → H is assumed to be such that C(0) = 0, and the control
u(s) lies in a bounded subset U of a separable Hilbert space V possibly different from H. Assump-
tions about the set, Uad[t, T], of admissible controls, u, is made precise below; see (2.36).

Here our Galerkin subspaces are spanned by the rescaled Koornwinder polynomials, namely

(2.29) HN = span{Kτ
0 , · · · ,Kτ

N−1}, N = 1, 2, · · · ,

where Kτ
N is defined in (2.20). Denoting by ΠN the projector of H onto HN , the corresponding GK

approximation of Eq. (2.28) is then given by

(2.30)
dyN

ds
= ANyN + ΠNF (yN) + ΠNC(u(s)), s ∈ (t, T], u ∈ Uad[t, T],

yN(t) = ΠNx ∈ HN ,

where AN := ΠNAΠN .
Given a cost functional assessed along a solution yt,x(·; u) of Eq. (2.28) driven by u

(2.31) Jt,x(u) :=
∫ T

t
[G(yt,x(s; u)) + E(u(s))]ds, t ∈ [0, T), u ∈ Uad[t, T],
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(with G and E to be defined) the focus of [11] was to identify simple checkable conditions that guar-
antee in—but not limited to—such a context, the convergence of the corresponding value functions,
namely

(2.32) lim
N→∞

sup
t∈[0,T]

|vN(t, ΠNx)− v(t, x)| = 0,

where

v(t, x) := inf
u∈Uad[t,T]

Jt,x(u), (t, x) ∈ [0, T)×H and v(T, x) = 0,(2.33a)

vN(t, xN) := inf
u∈Uad[t,T]

JN
t,xN

(u), (t, xN) ∈ [0, T)×HN and vN(T, xN) = 0.(2.33b)

and JN
t,xN

(u) denotes the cost functional J assessed along the Galerkin approximation yN
t,xN

(·; u) to
(2.28) driven by u and emanating at time t from

(2.34) xN := ΠNx.

As shown in [11], conditions ensuring the convergence (2.32) can be grouped into three categories.
The first set of conditions deal with the operatorA and its Galerkin approximationAN . Essentially, it
boils down to show that A generates a C0-semigroup onH, and that the Trotter-Kato approximation
conditions are satisfied; see Assumptions (A0)–(A2) in [11, Section 2.1]. The latter conditions are, as
mentioned earlier, satisfied in the case of DDEs and GK approximations as shown by [9, Lemmas 4.2
and 4.3].

The second group of conditions identified in [11] is also not restrictive in the sense that only local
Lipschitz conditions3 on F , G, and C are required as well as continuity of E and compactness of U
where Uad[t, T] is taken to be

(2.35) Uad[t, T] := {u|[t,T] : u ∈ Uad},
with

(2.36) Uad := {u ∈ Lq(0, T; V) : u(s) ∈ U for a.e. s ∈ [0, T]}, q ≥ 1.

Also required to hold, are a priori bounds—uniform in u in Uad—for the solutions of Eq. (2.28) as well
as of their Galerkin approximations. Depending on the specific form of Eq. (2.28) such bounds can be
derived for a broad class of DDEs; in that respect the proofs of [9, Estimates (4.75)] and [9, Corollary
4.3] can be easily adapted to the case of controlled DDEs.

Finally, the last condition to ensure (2.32), requires that the residual energy of the solution s 7→
y(s; x, u) of (2.28) (with y(0) = x) driven by u, satisfies

(2.37) ‖Π⊥Ny(s; x, u)‖H −→ 0,

uniformly with respect to both the control u in Uad and the time s in [0, T]; see Assumption (A7)
in [11, Section 2.4]. Here,

(2.38) Π⊥N := IdH −ΠN .

Easily checkable conditions ensuring such a double uniform convergence are identified in [11, Section
2.7] for a broad class of evolution equations and their Galerkin approximations but unfortunately do
not apply to the case of the GK approximations considered here. The scope of this article does not
allow for an investigation of such conditions in the case of DDEs, and results along this direction will
be communicated elsewhere.

3Note however that in the case of DDEs, nonlinearities F that include discrete delays may complicate the verification
of a local Lipschitz property in H as given by (2.2). The case of nonlinearities F depending on distributed delays and/or
the current state can be handled in general more easily; see [9, Sect. 4.3.2].
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Nevertheless, error estimates can be still derived in the case of DDEs by adapting elements pro-
vided in [11, Section 2.6]. We turn now to the formulation of such error estimates.

2.3.2. Error estimates. Our aim is to derive error estimates for GK approximations to the following
type of optimal control problem associated with DDEs (2.1) framed into the abstract form (2.7),

(P) min J(x, u) s.t. (y, u) ∈ L2(0, T;H)×Uad solves (2.28),

in which J is given by (2.31) with t = 0, and y solves (2.28) with y(0) = x inH.
To do so, we consider the following set of assumptions

(i) The mappings F : H → H, G : H → R+ are locally Lipschitz, and E : V → R+ is continuous.
(ii) The linear operatorAN : HN → HN is diagonalizable over C and there exists α in R such that

for each N

(2.39) Re λN
j ≤ α, ∀j ∈ {1, · · · , N},

where {λN
j } denotes the set of (complex) eigenvalues of AN .

(iii) Let Uad be given by (2.36) with U bounded in V. For each T > 0, (x, u) inH×Uad, the problem
(2.28) (with t = 0) admits a unique mild solution y(·; x, u) in C([0, T],H), and for each N ≥ 0,
its GK approximation (2.30) admits a unique solution yN(·; xN , u) in C([0, T],H). Moreover,
there exists a constant C := C(T, x) such that

(2.40)
‖y(t; x, u)‖H ≤ C, ∀ t ∈ [0, T], u ∈ Uad,

‖yN(t; xN , u)‖H ≤ C, ∀ t ∈ [0, T], N ∈N∗, u ∈ Uad.

(iv) The mild solution y(·; x, u) belongs to C([0, T], D(A)) if x lives in D(A).

Remark 2.1.
(i) Compared with the case of eigen-subspaces considered in [11, Section 2.6], the main difference here lies

in the regularity assumption (iv) above. This assumption is used to handle the term ΠNAΠ⊥Ny arising
in the error estimates; see e.g. (2.48) below. Note that this term is zero when A is self-adjoint and HN
is an eigen-subspace of A, which is the setting considered in [11, Section 2.6].

(ii) A way to ensure Condition (iv) to hold consists of proving that the mild solution belongs to C1([0, T],H).
For conditions on F ensuring such a regularity see e.g. [6, Theorem 3.2].

Finally, we introduce the cost functional JN to be the cost functional J assessed along the Galerkin
approximation yN solving (2.30) with yN(0) = xN ∈ HN , namely

(2.41) JN(xN , u) :=
∫ T

0
[G(yN(s; xN , u)) + E(u(s))]ds,

along with the optimal control problem

(PN) min JN(xN , u) s.t. (yN , u) ∈ L2(0, T;HN)×Uad solves (2.30),

with yN(0) = xN ∈ HN .

We are now in position to derive error estimates as formulated in Theorem 2.1 below. For that
purpose Table 1 provides a list of the main symbols necessary to a good reading of the proof and
statement of this theorem. The proof is largely inspired from that of [11, Theorem 2.3]; the main
amendments being specified within this proof.

Theorem 2.1. Assume that assumptions (i)-(iv) hold. Assume furthermore that for each (t, x) in [0, T) ×
D(A), there exists a minimizer u∗t,x (resp. uN,∗

t,xN
) for the value function v (resp. vN) defined in (2.33).
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TABLE 1. Glossary of principal symbols

Symbol Terminology

(y∗, u∗) An optimal pair of the optimal control problem (P)
u∗t,x Minimizer of the value function v defined in (2.33)
uN,∗

t,xN
Minimizer of the value function vN defined in (2.33)

yt,x(·; u∗t,x) Mild solution to (2.28) driven by u∗t,x
yt,x(·; uN,∗

t,xN
) Mild solution to (2.28) driven by uN,∗

t,xN
B The closed ball inH centered at 0H with radius C given by (2.40)
‖A‖op Norm of A as a linear bounded operator from D(A) toH

Then for any (t, x) in [0, T)× D(A) it holds that

(2.42)
|v(t, x)−vN(t, xN)|

≤ Lip(G|B)
[√

T − t + (T − t)
√

f (T)
]
R(u∗t,x, uN,∗

t,xN
),

with

(2.43) f (T) :=
(

Lip(F|B) + ‖A‖2
op

)
exp

(
2
[
α +

3
2

Lip(F|B) +
1
2

]
T
)

,

and

(2.44) R(u∗t,x, uN,∗
t,xN

) := ‖Π⊥Nyt,x(·; u∗t,x)‖L2(t,T;D(A)) + ‖Π⊥Nyt,x(·; uN,∗
t,xN

)‖L2(t,T;D(A)).

Proof. We provide here the main elements of the proof that needs to be amended from [11, Theorem
2.3]. First note that mild solutions to (2.28) lie in C([0, T], D(A)) due to Assumption (iv) and since
the initial datum x is taken in D(A).

We want to prove that for each N, there exists a constant β > 0 such that for any (t, x) ∈ [0, T)×
D(A), and u ∈ Uad[t, T],

(2.45) ‖ΠNyt,x(s; u)− yN
t,xN

(s; u)‖2
H ≤ f (T)

∫ s

t
‖Π⊥Nyt,x(s′; u)‖2

D(A) ds′, s ∈ [t, T].

Let us introduce

(2.46) w(s) := ΠNyt,x(s; u)− yN
t,xN

(s; u).

By applying ΠN to both sides of Eq. (2.28), we obtain that ΠNyt,x(·; u) (denoted by ΠNy to simplify),
satisfies:

dΠNy
ds

= ANΠNy + ΠNAΠ⊥Ny + ΠNF (ΠNy + Π⊥Ny) + ΠNC(u(s)).

This together with (2.30) implies that w satisfies the following problem:

(2.47)
dw
ds

= ANw + ΠNAΠ⊥Ny + ΠNF (ΠNy + Π⊥Ny)−ΠN F(yN),

w(t) = 0.

By taking theH-inner product on both sides of (2.47) with w, we obtain:

(2.48)
1
2

d‖w‖2
H

ds
= 〈ANw, w〉H + 〈ΠNAΠ⊥Ny, w〉H

+ 〈ΠN
(
F (ΠNy + Π⊥Ny)−F (yN)

)
, w〉H.
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We estimate now the term 〈ANw, w〉H in the above equation using Assumption (ii). For this purpose,
note that for any p inHN , the following identity holds:

(2.49) 〈AN p, p〉H = 〈Mξ, ξ〉Rn ,

where M is the matrix representation of AN under the Koornwinder basis given by (2.26), and ξ
denotes the column vector (ξ0, · · · , ξN−1)

tr whose entries are given by

ξ j :=
1

‖Kj‖E
〈p,Kτ

j 〉H, j = 0, · · · , N − 1.

Note that the N×N matrix M has the same eigenvalues {λN
j : j = 1, N} asAN . Thanks to Assump-

tion (ii), M is diagonalizable over C. Denoting by f j the normalized eigenvector of M corresponding
to each λN

j , we have

Mξ = M
N

∑
j=1

ξ̃ j f j =
N

∑
j=1

λN
j ξ̃ j f j,

where ξ̃ j = 〈ξ, f j〉Cn . It follows then

〈Mξ, ξ〉Rn = 〈
N

∑
j=1

λN
j ξ̃ j f j, ξ〉Cn =

N

∑
j=1

λN
j |ξ̃ j|2 =

N

∑
j=1

Re λN
j |ξ̃ j|2,

for which the latter equality holds since ξ 7→ 〈Mξ, ξ〉Rn is real-valued. Due to the bound (2.39), we
have thus

(2.50) 〈Mξ, ξ〉Rn ≤ α
N

∑
j=1
|ξ̃ j|2.

On the other hand, by noting that

(2.51) |ξ̃ j|2 = 〈ξ̃, ξ̃〉Cn = 〈ξ, ξ〉Rn = 〈p, p〉.

we obtain from (2.49)–(2.51), by taking p = w, that

(2.52) 〈ANw(s), w(s)〉H ≤ α‖w(s)‖2
H, s ∈ [t, T].

We infer from (2.48) that

1
2

d‖w(s)‖2
H

ds
≤
(

α +
3
2

Lip(F|B) +
1
2

)
‖w(s)‖2

H

+
1
2
‖A‖2

op‖Π⊥Ny‖2
D(A) +

1
2

Lip(F|B)‖Π⊥Ny‖2
H,

in which we have also used Assumption (iii) and the local Lipschitz property of F on the closed ball
B inH centered at 0H with radius C given by (2.40).

By Gronwall’s lemma and recalling that w(t) = 0, we obtain thus

‖ΠNyt,x(s; u)− yN
t,xN

(s; u)‖2
H ≤ f (T)

∫ s

t
‖Π⊥Nyt,x(s′; u)‖2

D(A)ds′,

with

f (T) =
(

Lip(F|B) + ‖A‖2
op

)
exp

(
2
[
α +

3
2

Lip(F|B) +
1
2

]
T
)

.
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Then by noting that

|Jt,x(u)− JN
t,xN

(u)| ≤ Lip(G|B)
∫ T

t

(
‖ΠNyt,x(s; u)− yN

t,xN
(s; u)‖D(A)

+ ‖Π⊥Nyt,x(s; u)‖D(A)

)
ds,

we have

(2.53)
|Jt,x(u)− JN

t,xN
(u)|

≤ Lip(G|B)
[√

T − t + (T − t)
√

f (T)
]
‖Π⊥Nyt,x(·; u)‖L2(t,T;D(A)),

for all u ∈ Uad[t, T].
Finally by noting that

v(t, x) = Jt,x(u∗t,x) ≤ Jt,x(uN,∗
t,xN

) and vN(t, xN) = JN
t,xN

(uN,∗
t,xN

),

we obtain
v(t, x)− vN(t, xN) ≤ Jt,x(uN,∗

t,xN
)− JN

t,xN
(uN,∗

t,xN
).

It follows then from (2.53) that

(2.54)
v(t, x)− vN(t, xN)

≤ Lip(G|B)
[√

T − t + (T − t)
√

f (T)
]
‖Π⊥Nyt,x(·; uN,∗

t,xN
)‖L2(t,T;D(A)).

Similarly,

(2.55)
vN(t, xN)− v(t, x)

≤ Lip(G|B)
[√

T − t + (T − t)
√

f (T)
]
‖Π⊥Nyt,x(·; u∗t,x)‖L2(t,T;D(A)).

The estimate (2.42) results then from (2.54) and (2.55).
�

We conclude this section with the following corollary providing the error estimates between the
optimal control and that obtained from a GK approximation.

Corollary 2.1. Assume that the conditions given in Theorem 2.1 hold. Given x in H, let us introduce the
notations, u∗ := u∗0,x and u∗N := uN,∗

0,xN
. Assume furthermore that there exists σ > 0 such that the following

local growth condition is satisfied for the cost functional J (with t = 0) given by (2.31):

(2.56) σ‖u∗ − v‖q
Lq(0,T;V)

≤ J(x, v)− J(x, u∗),

for all v in some neighborhood O ⊂ Uad of u∗, with Uad given by (2.36). Assume finally that u∗N lies in O.
Then,

(2.57)

‖u∗ − u∗N‖
q
Lq(0,T;V)

≤ 1
σ

Lip(G|B)
[√

T + T
√

f (T)
] (
‖Π⊥Ny∗(·; u∗)‖L2(0,T;D(A))

+ 2‖Π⊥Ny(·; u∗N)‖L2(0,T;D(A))

)
,

where the constant f (T) is given by (2.43).
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Proof. By the assumptions, we have

‖u∗ − u∗N‖
q
Lq(0,T;V)

≤ 1
σ
(J(x, u∗N)− J(x, u∗)) .

Note also that
J(x, u∗N)− J(x, u∗) = J(x, u∗N)− JN(xN , u∗N) + JN(xN , u∗N)− J(x, u∗)

= J0,x(u∗N)− JN
0,xN

(u∗N) + vN(0, xN)− v(0, x),

where we used the fact that
J(x, u∗N) = J0,x(u∗N), JN(xN , u∗N) = JN

0,xN
(u∗N),

JN(xN , u∗N) = vN(0, xN) and J(x, u∗) = v(0, x).

The result follows by applying the estimate (2.53) to J0,x(u∗N)− JN
0,xN

(u∗N) and the estimate (2.42) to
vN(0, xN)− v(0, x).

�

3. APPLICATION TO AN OSCILLATION AMPLITUDE REDUCTION PROBLEM

3.1. Optimal control of the Wright equation. As an application, we consider the Wright equation

(3.1)
dm
dt

= −m(t− τ)(1 + m(t)),

where m is the unknown scalar function, and τ is a nonnegative delay parameter. This equation has
been studied by numerous authors, and notably among the first ones, are Jones [29, 30], Kakutani
and Markus [31], and Wright [61]. This equation can also be transformed via a simple change of
variable [53] into the well-known Hutchinson equation [27] arising in population dynamics. It cor-
responds then to the logistic equation with a delay effect introduced into the intraspecific competition
term, namely with the change of variable m = −1 + p, Eq. (3.1) becomes

(3.2)
dp
dt

= p(t)(1− p(t− τ)).

Essentially the idea of Hutchinson [27] was to point out that negative effects that high population
density p has on the environment, influences birth rates at later times due to developmental and
maturation delays, justifying thus Eq. (3.2).

As a result, the solutions of Eq. (3.1) are obtained from a simple shift of the solutions of Eq. (3.2),
and reciprocally. Since Eq. (3.2) benefits of a more intuitive interpretation, we will often prefer to
think about Eq. (3.1) in terms of Eq. (3.2).

Anyway, it is known that Eq. (3.1) (and thus Eq. (3.2)) experiences a supercritical Hopf bifurcation
as the delay parameter is varied and crosses a critical value, τc, from below; see e.g. [17, Sect. 9]
and [57].4

Figure 1 shows—in the embedded reduced phase space (m(t), m(t − τ))—the corresponding bi-
furcation of the limit cycle unfolding from the trivial steady state, as τ is varied5. As Fig. 1 illustrates,
the amplitude of the oscillation that takes place via the Hopf bifurcation, increases as τ is increased
away from τc.

4The critical value τc at which the trivial steady state of the Wright equation (3.1) loses its linear stability is given by
τc =

π
2 . This can be found by analyzing the associated linear eigenvalue problem−φ(θ− τ) = βφ(θ), θ ∈ [−τ, 0]. By using

the ansatz φ(θ) = eβθ , we obtain −e−βτ = β. Assuming that β = ±iω, we get − cos(ωτ) + i sin(ωτ) = iω, leading thus to
ω = 1 and τ = (2n+1)π

2 , n = 0, 1, 2, · · · . Consequently, the critical delay parameter is τc =
π
2 .

5Such an embedded phase space is classically used to visualize attractors associated with DDEs; see e.g. [15].
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FIGURE 1. Unfolding of the Hopf bifurcation taking place for Eq. (3.1) as τ is varied. The limit
cycles are represented in the the embedded reduced phase space (m(t), m(t − τ)). The limit cycle in
heavy black indicates the “τ-secion” considered for the numerical results of Sectns. 3.3 and 4 below. The
trivial steady state is represented via a dotted line when unstable and a plain one when stable.

Since fluctuating populations are susceptible to extinction due to sudden and unforeseen environ-
mental disturbances [51], a knowledge of the conditions for which the population is resilient to these
disturbances is of great interest in planning and designing control as well as management strategies;
see e.g. [14, 50, 52].

Given a convex functional depending on m and a control to be designed, our goal is to show (for
Eq. (3.1)) that relatively close to the criticality (i.e. τ ≈ τc), the oscillation amplitude can be reduced
at a nearly optimal cost, by solving efficiently low-dimensional optimal control problems.

For that purpose, we consider, given u in L2(0, T; R) and T > 0, the following forced version of
Eq. (3.1)

(3.3)
dm
dt

= −m(t− τ)(1 + m(t)) + u(t), t ∈ (0, T),

supplemented by the initial history m(t) = φ(t) (with φ ∈ L2(−τ, 0; R)) for t in the interval [−τ, 0),
and by m(0) = m0 (in R) at t = 0. In Eq. (3.3), u(t) can be thought as an environmental management
strategy. Our goal is to understand the management strategies that may lead to a reduction of the
oscillation amplitude of the population (and possibly a stabilization); i.e. to determine u for which
m ≈ 0 and thus p ≈ 1, while dealing with limited resources to plan such strategies.

Naturally, we introduce thus the following cost functional

(3.4) J(m, v) :=
∫ T

0

[
1
2

m(t)2 +
µ

2
u(t)2

]
dt, µ > 0.

We are interested in solving optimal control problem associated with Eq. (3.3) for this cost functional.
To address this problem, we recast first this optimal control problem into the abstract framework of
Sect. 2.1.
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In that respect, we introduce the variables

(3.5) y := (mt, mt(0)), with m solving (3.3),

and we take Uad defined in (2.36) with q = 2 and with U to be (possibly) a bounded subset of V := R.
The control operator C : V → H appearing in Eq. (2.28) is taken here to be linear and given by

(3.6) [Cv](θ) :=

{
0, θ ∈ [−τ, 0)

v, θ = 0
, v ∈ V.

As explained in Sect. 2.1, Eq. (3.3) can be recast into the following abstract ODE posed onH

(3.7)
dy
dt

= Ay +F (y) + Cu(t),

with the linear operator A given in (2.8) that, in the case of Eq. (3.3), takes the form

(3.8) [AΨ](θ) :=


d+ΨD

dθ
, θ ∈ [−τ, 0),

−ΨD(−τ), θ = 0,

with domain given in (2.9). The nonlinearity F given in (2.10) takes here the form,

(3.9) [F (Ψ)](θ) :=

{
0, θ ∈ [−τ, 0),

−ΨD(−τ)ΨS, θ = 0,
∀Ψ = (ΨD, ΨS) ∈ H.

Let Φ be inH given by

(3.10) Φ := (φ, m0), with φ ∈ L2(−τ, 0; R), m0 ∈ R.

We rewrite now the cost functional defined in (3.4) by using the state-variable y given in (3.5), and
define thus

(3.11) J(y, u) :=
∫ T

0

[
1
2
(
mt(0)

)2
+

µ

2
u(t)2

]
dt;

still denoted by J.
The optimal control problem associated with Eq. (3.7) becomes then

(3.12) min J(Φ, u) s.t. (y, u) ∈ L2(0, T;H)×Uad solves Eq. (3.7) with y(0) = Φ ∈ H,

with Uad defined in (2.36) with q = 2 and with either U = R or U to be a bounded subset of V = R.

Remark 3.1. Note that in the case u(t) in Eq. (3.3) is replaced by u(t− r) (with 0 < r), one can still recast
Eq. (3.3) into an abstract ODE of the form (3.7); i.e. to deal with control with delay. In that case by taking
V := H1(−r, 0; R)×R, the operator C becomes

(3.13) [C(φD, φS)](θ) :=

{
0, θ ∈ [−τ, 0)

φD(−r), θ = 0
, (φD, φS) ∈ V.

This reformulation is compatible with the framework of [9] and thus allow us to derive GK approximations of
such abstract ODEs. We leave the associated optimal control problems to the interested reader.
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3.2. Galerkin-Koornwinder approximation of the optimal control problem. First, we specify for
Eq. (3.3), the (concrete) ODE version (2.23) of the (abstract) Nth GK approximation (2.30). For this
purpose, we first compute ΠNCu(s).

Note that since {Kτ
j : j ∈ N} forms a Hilbert basis of H, for any Ψ = (ΨD, ΨS) in H, we have

(see also [9, Eq. (3.25)])

(3.14)

Ψ =
∞

∑
j=0

〈Ψ,Kτ
j 〉H

‖Kτ
j ‖2
H
Kτ

j

=
∞

∑
j=0

( 1
τ
〈ΨD, Kτ

j 〉L2 + ΨSKτ
j (0)

) Kτ
j

‖Kτ
j ‖2
H

.

By taking now Ψ = Cv with C given by (3.6) and v in R, we have

(3.15) Cv =
∞

∑
j=0

(
vKτ

j (0)
) Kτ

j

‖Kτ
j ‖2
H

,

which leads to

(3.16) ΠNCv = v
N−1

∑
j=0

Kτ
j

‖Kτ
j ‖2
H

,

recalling that Kτ
j (0) = 1; see (2.21).

Then by defining CN : V → RN to be

(3.17) CNv :=
( 1
‖K0‖2

E
, · · · ,

1
‖KN−1‖2

E

)tr
v,

one can write the Galerkin approximation (2.30) in the Koornwinder basis as the ODE system

(3.18)
dξN
dt

= MξN + G(ξN) + CNu(t),

ξN(0) = ζN ∈ RN .

Here ξN = (ξN
0 , · · · , ξN

N−1)
tr; the N × N-matrix M given in (2.26) has its elements given here by

(3.19) (M)j,n =
1

‖Kj‖2
E

(
− Kn(−1) +

2
τ

n−1

∑
k=0

an,k
(
δj,k‖Kj‖2

E − 1
) )

, j, n = 0, · · · , N − 1;

Recall that here the Kronecker symbol δj,k has been used, and the coefficients an,k are obtained by
solving a triangular linear system in which the right hand side has explicit coefficients depending on
n; see [9, Prop. 5.1].

The initial datum ζN := (ζN
0 , · · · , ζN

N−1)
tr has its components defined by

(3.20) ζN
j =

1
‖Kj‖2

E
〈Φ,Kτ

j 〉H, j = 0, · · · , N − 1,

where Φ inH denotes the initial data given by (3.10) for the abstract ODE (3.7).
The nonlinearlity G given in (2.27) takes, in the case of Eq. (3.1), the form

(3.21) Gj(ξN) = −
1

‖Kj‖2
E

[
N−1

∑
n=0

ξN
n (t)

][
N−1

∑
n=0

ξN
n (t)Kn(−1)

]
, 0 ≤ j ≤ N − 1.
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We turn next to the rewritting—using the variables ξN
n —of the corresponding cost functional JN

given in its abstract version by (2.41). To do so, it is sufficient to recall from (2.24) that the N-dim GK
approximation mN is given by

mN(t) =
N−1

∑
n=0

ξN
n (t)Kτ

n(0) =
N−1

∑
n=0

ξN
n (t),

which, denoting still by JN the rewritten cost functional, gives

(3.22) JN(ζN , u) :=
∫ T

0

[
1
2

( N−1

∑
n=0

ξN
n (t; ζN , u)

)2
+

µ

2
u(t)2

]
dt, ζN ∈ RN .

We are now in position to write the corresponding Galerkin approximations of the initial optimal
control problem (3.12). More precisely, the (reduced) optimal control problem associated with the
N-dimensional GK approximation (3.18) of Eq. (3.3), is

(3.23)
min JN(ζN , u) subject to (ξN(·; ζN , u), u) ∈ L2(0, T; RN)×Uad

solves the ODE system (3.18) supplemented with ξN(0) = ζN ,

with Uad defined in (2.36) with q = 2 and with either U = R or U to be a bounded subset of V = R;
see Sect. 4.

3.3. Numerical results. As mentioned earlier, the delay parameter τ in Eq. (3.1) is taken to be slightly
above its critical value τc at which the supercritical Hopf bifurcation takes place; see again Figure 1.
In particular, the τ-value is selected so that there is only one conjugate pair of unstable eigenmodes
for the linearized DDE. We can thus hope for relatively low-dimensional Galerkin systems aimed at
the synthesis of (sub)optimal controls at a nearly optimal cost [11, Sect. 4], and obtained in a feedback
form from the associated reduced HJB equation if the reduced dimension is low enough; see Sect. 4
below.

Indeed, for this choice of τ-value, a very good approximation of the optimal control can be already
synthesized from the 6D-GK system via a PMP approach, as checked by comparison with higher-
dimensional GK systems. To further reduce the dimension, we will show that a 2D projected GK
system obtained from the 6D-GK system allows for the synthesis of a sub-optimal control at a nearly
optimal cost (see Table 2) whereas, the 2D-GK system fails to do so.

We describe next the precise setup of the optimal control problem. After that, we provide the ex-
plicit forms of the 2D- and 6D-GK systems, and explain how the 2D projected GK system is obtained.
The control synthesis results by using the PMP approach are then presented at the end of this section.
As a comparison, the results by using the HJB approach are presented in Sect. 4.

3.3.1. The numerical setup. For the delay parameter, we take τ = 1.58. Although this τ value repre-
sents less than 1% increase from the critical value τc = π/2, the amplitude of the emerged stable
periodic oscillation is already not so small, as can be observed from Figure 1 (the thick black limit
cycle). The parameter µ in the cost functional J given by (3.11) is taken to be 1/2. For the selection of
initial history segment and the time horizon of the control, the uncontrolled Wright equation (3.1) is
integrated over a sufficiently long time interval [0, t∗] so that the solution has already settled down to
the attracting periodic orbit. The control horizon T is chosen such that a half of the oscillation period
has developed6 for the uncontrolled problem (see the dashed curve in Figure 2), and we take then a
“snippet” of this periodic orbit over [t∗ − T − τ, t∗ − T] as the initial history for the controlled prob-
lem (3.3). In other words, the DDE (3.3) is initiated from a snippet of the attracting periodic orbit, Φ,

6In our experiments it corresponds to T = 4.
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from which we want to reduce its amplitude at an optimal cost by solving (3.12). We turn hereafter
to the determination of the relevant GK systems in order to propose an approximate solution to this
problem.

3.3.2. The concrete Galerkin-Koornwinder approximation systems. Recall that the N-dim GK system of
Eq. (3.3) is given by Eq. (3.18)–(3.21). To get access to the numerical values of the coefficients involved
in Eq. (3.18), we only need to specify the matrix M, the square of the norm of the basis function ‖Kj‖2

E
as well as the value Kj(−1) of the Koornwinder polynomials at the left endpoint for j = 0, · · · , N− 1.

In our case, we have (cf. [9, Proposition 3.1])

(3.24)

(
‖K0‖2

E , · · · , ‖K5‖2
E
)
= (2, 3.333, 10, 24.2857, 49.1111, 87.4545),

(K0(−1), · · · , K5(−1)) = (1, −3, 7, −13, 21, −31).

With N = 6, we have from (3.19) that the matrix M appearing in Eq. (3.18) is given after computation
by

(3.25) M6 =


−0.5000 2.7658 −5.3987 10.9304 −16.8291 25.6266
−0.3000 0.1405 2.8367 −2.5557 6.6114 −7.4089
−0.1000 0.0468 −2.2190 8.6418 −9.8215 18.4165
−0.0412 0.0193 −0.9137 −1.6538 8.4652 −7.0109
−0.0204 0.0095 −0.4518 −0.8178 −3.2628 11.8690
−0.0114 0.0054 −0.2537 −0.4593 −1.8323 −3.1193

 ,

up to four digits precision after the decimal place.
The initial data for the 6D-GK system is simply taken to be the projection of the aforementioned

DDE initial history segment Φ onto the first 6 Koornwinder basis functions; cf. (3.20). We have thus

(3.26) ζ6 = (0.0590, 0.0827, 0.0014, −0.0006, 0.0, 0.0)tr.

For the 2D-GK sytem, the matrix M2 consists of the 2× 2 block in the upper left corner of M6 given
by (3.25). Namely,

(3.27) M2 =

(
−0.5000 2.7658
−0.3000 0.1405

)
.

The initial data for the 2D-GK system is the same as the first two component of ζ6 given by (3.26).
As reported in Table 2 below, the 6D-GK system produces a control strategy that is already optimal

as compared with the cost from the 12D-GK system. On the other hand, the 2D-GK system leads to
a control strategy that significantly inflates the control cost. This failure of the 2D-GK system can be
understood by simply inspecting its linear part.

Indeed, although the first two Koornwinder modes already capture more than 98% of the L2-
energy contained in the uncontrolled DDE solution, the linear part of the corresponding 2D-GK sys-
tem does not resolve well the pair of unstable eigenvalues of the DDE’s linear part. More precisely,
while the eigenvalues of M2 are given by

(3.28) β2,1 = −0.1798 + 0.8527 i, β2,2 = −0.1798− 0.8527 i,

the first pair of eigenvalues of the DDE’s linear part is given up to four significant digits by

(3.29) β1 = 0.0026 + 0.9958 i, β2 = 0.0026− 0.9958 i.

This unstable pair of eigenvalues can nevertheless be resolved up to the given precision from M6
given in (3.25), which actually corresponds to the lowest dimension to do so.
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Although, the 2D-GK system lacks to resolve important dynamical features such as the dominant
eigenpair of the DDE’s linear part, we provide for later usage the explicit expression of the 2D-GK
system:

(3.30)
dξ2
dt

= M2ξ2 −
(

0.5(ξ2,1)
2 − ξ2,1ξ2,2 − 1.5(ξ2,2)2

0.3(ξ2,1)
2 − 0.6ξ2,1ξ2,2 − 0.9(ξ2,2)2

)
+

(
0.5
0.3

)
u(t),

where ξ2 := (ξ2,1, ξ2,2)tr, and the initial data is ξ2(0) = (0.0590, 0.0827)tr.
Let J2 be the cost functional given by (3.22) with N = 2, the control problem of the form (3.23)

associated with (3.30) reads

(3.31)
min J2(ζ2, u) subject to (ξ2(·; ζ2, u), u) ∈ L2(0, T; R2)×Uad

solves the ODE system (3.30) supplemented with ξ2(0) = ζ2,

where the initial data ζ2 is taken to be (0.0590, 0.0827)tr.

3.3.3. The projected GK system. In this section we propose a natural way to cope with the resolution
issue of the dominant eigenpair (3.29), while keeping the dimension of the reduced system as small
as possible. It is based on the projection onto the space Ĥ2 spanned by the first two eigenvectors7

of the matrix M6 given by (3.25); recalling that the sixth dimension constituting for this example the
minimal dimension to resolve accurately (3.29).

Note that since the eigenvalues of M6 are all complex-valued, the resulting 2D projected GK system
has complex-valued coefficients. However, the eigenvectors of M6 appear in conjugate pairs because
M6 is a real-valued matrix. As a result, the two components of the projected system, denoted by
z2 := (z2,1, z2,2)tr, are complex conjugate to each other. We can thus rewrite the system under a new
real-valued variable ξ̃2 := (ξ̃2,1, ξ̃2,2)tr defined by

(3.32) ξ̃2,1 =
z2,1 + z2,2

2
, ξ̃2,2 =

z2,1 − z2,2

2 i
.

Using the MATLAB built-in function eig to compute the eigenbasis of M6 and the MATLAB Sym-
bolic Math Toolbox, the resulting transformed equations for the ξ̃2-variable are given by

(3.33)
dξ̃2
dt

=

(
0.0026 −0.9958
0.9958 0.0026

)
ξ̃2 +

(
b1

20(ξ̃2,1)
2 + b1

11ξ̃2,1ξ̃2,2 + b1
02(ξ̃2,2)2

b2
20(ξ̃2,1)

2 + b2
11ξ̃2,1ξ̃2,2 + b2

02(ξ̃2,2)2

)
+

(
α1
α2

)
u(t),

with the coefficients given by α1 = 0.0608, α2 = 0.1133, and

b1
2,0 = −1.7887, b1

1,1 = 2.1915, b1
0,2 = 1.7996,

b2
2,0 = −3.3320, b2

1,1 = 4.0824, b2
0,2 = 3.3524.

The initial data is given by

(3.34) ξ̃2(0) = (0.0107, 0.0253)tr,

obtained by projecting the initial data of the 6D Galerkin system given by (3.26) onto Ĥ2, followed
by the transformation (3.32).

Associated with the cost functional J6 defined by (3.22) for the 6D GK system, we have the follow-
ing cost functional J̃2 associated with the 2D projected GK system (3.33):

(3.35) J̃2(ζ̃2, u) :=
∫ T

0

[
1
2

(
d1ξ̃2,1(t; ζ̃2, u) + d2ξ̃2,1(t; ζ̃2, u)

)2
+

µ

2
u(t)2

]
dt, ζ̃2 ∈ R2,

7Note that the eigenvalues are labeled in the lexicographical order. Namely, for 1 ≤ n < n′ ≤ 6, we have either
Reβn > Reβn′ , or Reβn = Reβn′ and Imβn ≥ Imβn′ .
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with d1 = −4.0668 and d2 = 7.2710.
Then, corresponding to the optimal control problem (3.23), the optimal control problem associated

with (3.33)–(3.34) reads:

(3.36)
min J̃2(ζ̃2, u) subject to (ξ̃2(·; ζ̃2, u), u) ∈ L2(0, T; R2)×Uad

solves the ODE system (3.33) supplemented with ξ̃2(0) = ζ̃2,

where the initial data ζ̃2 is given by (3.34).

3.3.4. Numerical results obtained from the PMP. We present now the numerical results obtained by ap-
plying the PMP to the the optimal control problems associated with the three ODE systems specified
above, namely, the problem (3.23) associated with the GK system for N = 2 and N = 6, and the
problem (3.36) associated with the 2D projected GK system (3.33).

In each case, the PMP approach leads to a boundary value problem (BVP) for the corresponding
state and co-state variables, which is solved using the MATLAB built-in function bvp4c; see e.g. [12,
Sect. 5] for more details. The results are shown in Fig. 2. As already mentioned earlier, the 6D-GK
system allows for a control synthesis that is nearly optimal by comparison with that synthesized from
the 12D-GK system; cf. Table 2. In contrast, the control synthesized from the 2D-GK system leads to
a substantially higher cost value. Remarkably, the 2D projected GK system (3.33) allows for a control
synthesis at a cost value very close to that obtained from higher-dimensional GK systems, i.e. at a
nearly optimal cost. This success is due simply to the fact that the latter system resolves the unstable
pair of eigenvalues of the DDE’s linear part, while the former does not.

t
0 1 2 3 4

-0.2

-0.1

0

0.1

0.2

DDE trajectories

Forced by ũ∗2
Forced by u∗2
Forced by u∗6
Without control

t
0 1 2 3 4

-0.4

-0.3

-0.2

-0.1

0

0.1
Controller

ũ∗2 based on PMP
u∗2 based on PMP
u∗6 based on PMP

FIGURE 2. Left panel: DDE trajectories by solving Eq. (3.3) driven respectively by
the (sub)optimal control ũ∗2 , u∗2 , and u∗6 ; the uncontrolled trajectory is also plotted as
a comparison. Right panel: The controller ũ∗2 synthesized by (3.36) based on the 2D
projected GK system, and the controllers u∗2 and u∗6 synthesized by (3.23) based respec-
tively on the 2D- and 6D-GK systems. We have taken µ = 0.5 in the cost functional
(3.4). The maximal time of control is T = 4 and the delay parameter is taken to be
τ = 1.58.
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TABLE 2. Cost values and relative errors

12D-GK 6D-GK 2D-GK 2D projected GK

Cost values 0.0163 0.0163 0.0253 0.0166
Relative error 54.93% 1.4655%

4. TOWARDS THE APPROXIMATION OF HJB EQUATIONS ASSOCIATED WITH DDES

In this section we compute optimal controls by solving the HJB equations associated with the
control problems (3.31) and (3.36). This allows to obtain (numerically) the controls in feedback form.
However, the approach becomes infeasible in higher dimensions by the curse of dimensions (i.e.
the exponential increase of complexity with the number of unknowns), since the dimension of the
underlying Galerkin system is equal to the dimension of the space the HJB equation is defined on
(with respect to the spatial variable).

Let us introduce for (η, u) ∈ R2 ×V the functionals

L(η, u) :=
1
2
|η|2 + µ

2
u2,(4.1a)

L̃(η, u) :=
1
2
(−4.0668η1 + 7.2710η2)

2 +
µ

2
u2.(4.1b)

Here the functional L is associated with the 2D-GK system (3.30), while the functional L̃ is associated
with the 2D projected GK system (3.33).

Given a control u in Uad[t, T], we define then the following cost functionals over the interval [t, T]

Jt,η(u) :=
∫ T

t
L(ξ2(s; η, u), u(s))ds, J̃t,η(u) :=

∫ T

t
L̃(ξ̃2(s; η, u), u(s))ds(4.2)

where ξ2(s; η, u) denotes the solution of the 2D-GK system (3.30), and ξ̃2(s; η, u) the solution of the
2D projected GK system (3.33); solutions emanating in each case from the initial datum η in R2. The
associated value functions are given by

v(t, η) := inf
u∈Uad[t,T]

Jt,η(u), ṽ(t, η) := inf
u∈Uad[t,T]

J̃t,η(u).(4.3)

Formally, the value functions are associated with the instationary HJB equation of the following
type

∂tv(t, η) + H(η,∇ηv(t, η)) = 0 in (0, T)×R2, v(T, η) = 0 in R2;(4.4)

with Hamiltonian

H(η, p) := inf
u∈U

(〈 f (η, u), p〉R2 + L(η, u)) , (η, p) ∈ R2 ×R2;(4.5)

where f denotes either the RHS of (3.30) if L is given by (4.1a), or the RHS of (3.33) if L = L̃ given by
(4.1b). To be more specific, we denote by α the vector of coefficients in front of u(t) in either Eq. (3.30)
or Eq. (3.33). We can then write f (η, u) under the following generic compact form

(4.6) f (η, u) := Kη+ N(η) + αu,

with K = M2 and N(η) corresponding to the quadratic terms in Eq. (3.30), or with Kη and N(η)
corresponding respectively to the linear and quadratic terms in Eq. (3.33).
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In each case, by noting that the terms depending on u in 〈 f (η, u), p〉R2 + L(η, u), can be rewritten
as

(4.7)

µ

2
u2 + 〈α, p〉R2 u =

µ

2

(
u2 +

2
µ
〈α, p〉R2 u

)
=

µ

2

((
u +

1
µ
〈α, p〉R2

)2 − 1
µ2 〈α, p〉2

R2

)
.

we obtain, for U = R, that

(4.8) H(η, p) =
1
2
〈η, Qη〉R2 + 〈Kη+ N(η), p〉R2 −

〈α, p〉2
R2

2µ
,

with Q = Id2 in the case of Eq. (3.30), and 〈η, Qη〉R2 = (−4.0668η1 + 7.2710η2)2 in the case of
Eq. (3.33).

To prove that the value functions are the unique viscosity solutions of (4.4) goes beyond the scope
of this paper; here, we formulate the HJB equation and the feedback law formally; we also assume
that the value function is smooth. For an analysis of HJB equations associated with infinite horizon
optimal control problems for differential equations with distributed delays we refer to [22].

4.0.1. Discretization. For solving the HJB equation (4.4) there exist various schemes. In the presented
setting we are in particular interested in efficient solvers for high dimensional HJB equations to allow
also the treatment of reduced systems of more than two dimensions. Recently, different approaches
have been considered to address this challenge arising from the curse of dimensions when solving
HJB equations; see e.g. [32] for a polynomial approximation of high-dimensional HJB equations. In
the context of suboptimal control of PDEs an approach to solve the associated HJB equation based on
sparse grids was considered in [23]. Here, we use a finite difference scheme method; more precisely,
an essentially non-oscillatory (ENO) scheme [48] for space discretization is coupled with a Runge-Kutta
time discretization scheme of second order following [7, 48].

We give a brief description of the scheme for a given continuous Hamiltonian H : R2 ×R2 → R.
For temporal mesh parameter ∆t > 0 and spatial mesh parameter h = (h1, h2) ∈ R2

>0, we define a
spatial mesh

T := {(kh1, lh2) ∈ R2 : (k, l) ∈ Z2}(4.9)

and temporal mesh

(4.10) t = t0 < t1 < ... < tN = T, ∆t = tj+1 − tj,

for j = 0, ..., N− 1 and N in N∗. Given an approximation of the value function on the mesh T at time
step tj denoted by v : Z2 → R, where vkl for (k, l) ∈ Z2 gives an approximation of the value function
at grid point ηkl := (kh1, lh2), we define the difference quotients

(4.11) (D+v)kl := ((D+
1 v)kl , (D+

2 v)kl), (D−v)kl := ((D−1 v)kl , (D−2 v)kl)

with

(4.12) (D±1 v)kl := ± (vk±1,l − vkl)

h1
, (D±2 v)kl := ± (vk,l±1 − vkl)

h2
.

Then the Lax-Friedrichs scheme for the HJB equation reads as follows at mesh node ηkl by:

(4.13)

{
vN

kl = 0,

vj−1
kl = vj

kl − ∆tHLF(ηkl , (D+vj)kl , (D−vj)kl) for j = N, · · · , 1,
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with H given in (4.8) and the Lax-Friedrichs Hamiltonian HLF : R2 ×R2 → R given by

(4.14) HLF(η̂, p+, p−) := H
(

η̂,
p+ + p−

2

)
−

2

∑
i=1

νi(η̂)

2
(p+i − p−i ),

and the stabilizing functions νi(η̂) satisfying

(4.15) max
p∈R2

∣∣∂pi
H(η̂, p)

∣∣ ≤ νi(η̂),

for all η̂ ∈ R2 and i = 1 to 2. The Lax-Friedrichs scheme is monotone and the convergence is of first
order as far as the following Courant-Friedrichs-Lewy (CFL) condition is satisfied,

(4.16) ∆t max
η̂∈T

(
ν1(η̂)

h1
+

ν2(η̂)

h2

)
≤ 1.

An ENO scheme can be obtained by considering a variant of the Lax-Friedrichs scheme, namely

(4.17) vj−1
kl = vj

kl − ∆tHLF(ηkl , (D̃+vj)kl , (D̃−vj)kl),

where D̃±vj are higher order approximations of the gradient of the value function at time step tj
coupled with a Runge-Kutta time discretization scheme of second order, see [7] and [48].

The HJB equation is posed on the full space R2 for the spatial variable. For the numerical compu-
tation we restrict it to a bounded domain

(4.18) D := [c1, d1]× [c2, d2],

for some c, d in R2, such that D contains the trajectory obtained from the PMP approach in Sect. 3.3.
Choosing numbers of grid points p1 and p2 for each of the spatial dimension, we set

(4.19) hi :=
di − ci

pi − 1
, i = 1, 2.

and obtain the spatial meshing

{(c1 + kh1, c2 + lh2) : (k, l) ∈ [0, · · · , p1 − 1]× [0, · · · , p2 − 1]}.(4.20)

An appropriate choice for the boundary condition is required to get a well defined numerical scheme.
At time steps tj for j from N to 1 and grid point ηkl we define the upwind derivatives on the boundary
for all l ∈ [0, · · · , p2 − 1] by

(4.21)
k = 0 : (D+

η1
v)kl =

vk+1,l − vkl

h1
,

k = p1 − 1 : (D−η1
v)kl = −

vk−1.l − vkl

h1
,

and for all k ∈ [0, · · · , p1 − 1] by

(4.22)
l = 0 : (D+

η2
v)kl =

vk,l+1 − vkl

h2
,

l = p2 − 1 : (D−η2
v)kl = −

vk,l−1 − vkl

h2
.

This choice of boundary condition corresponds to a vanishing second order derivative boundary
condition.
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4.0.2. Computation of optimal trajectories. For the computation of optimal trajectories we formulate a
feedback law based on the solution of the HJB equation (4.4); the solution is assumed to be smooth
here. Following e.g. [5, p. 11] a control u∗ is optimal for the initial condition η if and only if

(4.23) u∗(s) = S(s, ξ∗(s; η, u)) for a.e. s ∈ (0, T),

with

S(s, η̂) := argminu∈U
(
〈 f (η̂, u)∇ηv(s, η̂)〉R2 + L(η̂, u)

)
for all η̂ ∈ R2,(4.24)

where, here again, f denotes either the RHS of (3.30) if L is given by (4.1a), or the RHS of (3.33) if
L = L̃ given by (4.1b). To obtain an optimal trajectory one then solves the system

(4.25) dξ(s; η, u)
ds

= f (ξ(s; η, u), S(s, ξ(s; η, u))), s > 0, ξ(0; η, u) = η.

From (4.7), the element u∗ that leads after minimization to the Hamiltonian H given in (4.8) (and
thus to (4.24)), is given by

(4.26) u∗ = − 1
µ
〈α, p〉R2 .

which leads thus to the following feedback law:

S(s, η̂) = − 1
µ
〈α,∇ηv(s, η̂)〉R2 .(4.27)

For the numerical computations, the gradient ∇ηv is approximated component-by-component by a
central difference quotient. Once the feedback operator is defined, the optimal trajectory is derived
from (4.25).

4.0.3. Numerical results. Here, we compute optimal controls for (3.31) and (3.36) by solving the cor-
responding HJB equation as described above. We choose the domain D given in (4.18) in such a
way that it contains the optimal trajectory by using the numerical results obtained from the PMP
approach.

For (3.31) we set c1 = c2 = −0.02 and d1 = d2 = 0.1, the temporal mesh parameter to ∆t =
1.543 · 10−4 and the spatial one to h1 = h2 = 8.5 · 10−3. The CFL constants in (4.16) are chosen to be
ν1 = 5 and ν2 = 2.

For (3.36), we set c1 = c2 = −0.04 and d1 = d2 = 0.04, ∆t = 1.543 · 10−4, and h1 = h2 = 1.33 · 10−3.
The CFL constants are here ν1 = 1.5 and ν2 = 1.5.

For the computation of the optimal control from (4.27) for (3.31) or (3.36), we use the corresponding
spatial and temporal mesh parameters given above.

Figure 3 shows the optimal controls for problems (3.31) and (3.36) derived from the corresponding
HJB equations as described above, and also computed from the PMP approach; see Sect. 3.3. In each
case, the syntheses of (sub)optimal controls obtained either from application of the PMP or by solving
the associated HJB equations, provide nearly identical numerical solutions.

Figure 4 shows an approximation8 of the value function v(0, η) solving, at t = 0, the HJB equation
(4.4) associated with (3.36). We observe that the value function is smooth and convex, which justifies
numerically the above assumption concerning the smoothness of the value function. Given the good
control skills obtained from the controller synthesized from the reduced HJB equation (4.4) associated
with (3.36), one can reasonably infer that the corresponding “reduced” value function v(0, η) shown
in Fig. 4 provides thus a good approximation of the “full” value function associated with the DDE

8According to the ENO scheme (4.17) over the domain (4.18) with parameters specified as above and supplemented
with the boundary conditions (4.21)-(4.22).
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FIGURE 3. Left panel: Control obtained without basis transformation (HJB vs PMP),
i.e. by solving (3.31). Right panel: Control obtained after basis transformation (HJB
vs PMP), i.e. by solving (3.36).

FIGURE 4. Value function solving, at t = 0, the reduced HJB equation (4.4) associated
with (3.36).

optimal control problem. Due to its simple shape, a polynomial approximation of v(0, η) can be easily
computed and gives (up to a small residual9)

(4.28) v(0, η) = 28.0025η2
1 − 7.8733η1η2 + 0.0046η1 + 10.6258η2

2 + 0.0525η2,

9The root mean square error between v(0, η) and the polynomial approximation is 12× 10−4.
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i.e. a quadratic polynomial asymmetric in the η1- and η2-directions. Besides the quadratic cost func-
tional used here, such a low-order approximation of the value function is probably due to the prox-
imity to the first criticality and not limited to time t = 0 shown here. This observation deserves of
course more understanding which although not pursued here, is, we believe, worth mentioning.

5. CONCLUDING REMARKS

As mentioned earlier, the good numerical skills shown in Sections 3.3 and 4, as obtained from low-
dimensional Galerkin systems, are conditioned to the distance from the first criticality, here the Hopf
bifurcation. In fact a numerical estimation of the RHS in the error estimate (2.42) of Theorem 2.1
reveals that the corresponding residual energies are actually small (not shown), in agreement with
the numerical results.

As one gets further away from the first criticality, a larger number of Koornwinder polynomials
is typically required to dispose of good GK approximations of, already, the uncontrolled dynamics;
see [9]. The numerical burden of the synthesis of controls at a nearly optimal cost—by solving the
HJB equations corresponding to the relevant GK systems—becomes then quickly prohibitive, espe-
cially for the case of locally distributed controls10. One avenue to work within reduced state spaces
of further reduced dimension compared to what would be required by a GK approximation, is to
search for high-mode parameterizations that help reduce the residual energy contained in the unre-
solved modes, i.e. to reduce a quantity likeR(u∗t,x, uN,∗

t,xN
) in (2.42) that involves the residual energies,

‖Π⊥Nyt,x(·; u∗t,x)‖L2(t,T;D(A)) and ‖Π⊥Nyt,x(·; uN,∗
t,xN

)‖L2(t,T;D(A)).
The theory of parameterizing manifolds (PM) [12, 13, 16] allows for such a reduction leading typ-

ically to approximate controls coming essentially with error estimates that introduce a multiplying
factor 0 ≤ Q < 1 (related to the PM) in an RHS similar to that of (2.42); see [12, Theorem 1 &
Corollary 2]. The combination of the GK framework of [9] with the PM reduction techniques of [12]
constitutes thus an idea that is worth pursuing for solving efficiently optimal control problems of
nonlinear DDEs.
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