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Abstract

This paper notes first that the effectiveness of mathematics in sci-
ence appears to some writers to be “mysterious” or “unreasonable”.
Then reasons are given for thinking that science is, at root, the search
for compression in the world. At more length, several reasons are
given for believing that mathematics is, fundamentally, a set of tech-
niques for information compression via the matching and unification
of patterns (ICMUP), and their application. From there, it is argued
that the effectiveness of mathematics in science is because it provides
a means of achieving the compression of information which lies at the
heart of science. The anthropic principle provides an explanation for
why we find the world—aspects of it at least—to be compressible.
ICMUP may be seen to be important in both science and mathemat-
ics, not only as a means of representing knowledge succinctly, but as a
basis for scientific and mathematical inferences—because of the inti-
mate relation that is known to exist between information compression
and concepts of prediction and probability. Since ICMUP is a key
part of the SP theory of intelligence, evidence presented in this paper
strengthens the already-strong evidence for the SP theory as a unifying
principle across artificial intelligence, mainstream computing, mathe-
matics, human learning, perception, and cognition, and neuroscience.
The evidence and ideas in this paper may provide the basis for a “new
mathematics for science” with potential benefits and applications in
science and science-related areas.
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1 Introduction

Although mathematics is a phenomenally successful “handmaiden” of sci-
ence,1 the reason that it is so effective in science has been described as a
“mystery” that is “unreasonable”. Thus:

• Roger Penrose writes:

“It is remarkable that all the SUPERB theories of Nature
have proved to be extraordinarily fertile as sources of mathe-
matical ideas. There is a deep and beautiful mystery in
this fact: that these superbly accurate theories are also ex-
traordinarily fruitful simply as mathematics.” ([37, pp. 225–
226], bold face added).

• In a similar vein, John Barrow writes:

“For some mysterious reason mathematics has proved
itself a reliable guide to the world in which we live and of
which we are a part.2 Mathematics works: as a result we have
been tempted to equate understanding of the world with its
mathematical encapsulization. ... Why is the world found
to be so unerringly mathematical?” ([6, Preface, p. vii],
bold face added).

• And Eugene Wigner [50] writes about “The unreasonable effectiveness
of mathematics in the natural sciences”:

“The miracle of the appropriateness of the language of math-
ematics for the formulation of the laws of physics is a won-
derful gift which we neither understand nor deserve. We
should be grateful for it and hope that it will remain valid
in future research and that it will extend, for better or for
worse, to our pleasure, even though perhaps also to our baf-
flement, to wide branches of learning.” (ibid, p. 14, bold face
added).

1The slightly whimsical idea that mathematics might be some kind of servant of
science, and the use of the curiously archaic word “handmaiden”, seems to have
originated with The Handmaiden of the Sciences, a book by Eric Bell [8].

2It is clear that, in this quote, the expression “the world” is intended to mean
“everything in the observable universe”, in accordance with normal usage. That
expression is intended to have the same meaning elsewhere in this paper.
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This paper, which draws on, and considerably expands, some of the think-
ing in [52, Chapter 10], offers some reasons why mathematics can be effective
in many areas of science.

1.1 Overview of arguments to be presented

The gist of the arguments presented in this paper is that:

• Much of mathematics, perhaps all of it, may be understood as a set of
techniques for the compression of information3 via the matching and
merging or ‘unification’ of patterns,4 and their application. In this
view:

– Mathematics is not merely some kind of tool for compressing in-
formation like WinZip or Gzip. Instead, mathematics is seen here
as being, at its most fundamental level, about the compression of
information.

– As described in Section 2.6, the search for patterns that match
each other, and their merging or unification, is an effective ap-
proach to the compression of information. As described in [60],
this approach is prominent in human learning, perception, and
cognition.

– As argued in Sections 3 and 4, compression of information in math-
ematics, and in the mathematics-related disciplines of logic and
computing, is achieved largely via the matching and unification of
patterns.

For the sake of brevity, the expression “information compression via the
matching and unification of patterns” will be referred to as ‘ICMUP’,
the expression “mathematics as a set of techniques for ICMUP, and
their application” will be referred to as ‘MICMUPA’, and the expres-
sion “human learning, perception, and cognition” will be referred to as
‘HLPC’..

3This paper treats terms like ‘information’, ‘data’, and ‘knowledge’ as being
equivalent, although ‘information’ is intended to be most general, ‘data’ is intended to
suggest raw data from the world, with or without some low-level processing, and
‘knowledge’ is intended to suggest information that has been encoded via human
perception and cognition.

4Here and throughout this paper, the term ‘unification’ will mean a simple merging
of two or more matching patterns to make one. This use of the term is only loosely
related to the meaning of the term ‘unification’ in logic and computer science.
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• Since “Science is, at root, just the search for compression in the world”
[6, p. 247], and since mathematics has an important role in science,
MICMUPA may be seen to be an important means, amongst others,
for describing scientific knowledge in a compressed form.

• The idea that science is fundamentally about compressing information
about the world rests on the assumption that that information is com-
pressible, with the implied question: “Why should we assume that the
world is compressible?” An answer to that question is, in accordance
with the anthropic principle, that the world must be at least partly
compressible because, if it were not, everything in it, including our-
selves, would be a soup of randomness.

• In view of the close connection that is known to exist between informa-
tion compression and concepts of prediction and probability (Section 6),
MICMUPA may be seen as a driver for the making of mathematically-
based inferences.

An important point in this paper is that, for reasons given in Section
2.6, ICMUP differs sharply from mathematically-oriented approaches to in-
formation compression including those derived from algorithmic information
theory (AIT) [28] and such techniques as Huffman coding, arithmetic coding,
and wavelet compression.

1.2 Presentation

The next section provides some background to the main body of the paper
including: a summary of variants of the concept of ‘pattern’; a sketch of the
SP theory of intelligence and its realisation in the SP computer model; re-
search relating to the effectiveness of mathematics in science and elsewhere,
to mathematics as compression of information, and to information compres-
sion in science; and an outline of seven techniques for ICMUP.

Section 3 describes how mathematics may be seen as a set of techniques for
the compression of information via the matching and unification of patterns,
and their application.

Section 4 outlines how mathematics-related disciplines—specifically logic
and computing—may be seen as techniques for the compression of informa-
tion via the matching and unification of patterns, and their application.

On the strength of evidence presented in the preceding sections, Section
5 describes a solution to the mystery of why mathematics is effective in
science. This section also contains a brief discussion of the above-mentioned
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anthropic principle as an explanation of why the world that we inhabit should
be compressible.

Section 6 discusses briefly how MICMUPA is in keeping with other evi-
dence that mathematics is fundamentally probabilistic, and how this may be
reconciled with the all-or-nothing, ‘exact’, forms of calculation or inference
that are familiar in mathematics.

Section 7 outlines some possible implications of ideas presented in this
paper.

2 Background

This section outlines some preliminaries to the sections that follow.

2.1 Concepts of ‘Pattern’

Since, in this and related areas of research, the word ‘pattern’ has several
different meanings, they are distinguished here and elsewhere in this paper
by the use of different names:

• Pattern. The word ‘pattern’, without any distinguishing prefix, is in-
tended to mean an array of atomic symbols in one or two dimensions.
Here, an atomic symbol is one that may be matched in an all-or-nothing
manner with any other such symbol, and has no other meaning. Unless
otherwise stated, the meaning of ‘pattern’ is generic and may encom-
pass any or all of the meanings that follow.

• E-pattern. An ‘E-pattern’ is intended to mean a pattern that is derived
relatively directly from the environment of a person or artificial system,
perhaps with the conversion of analogue information to an array of
atomic symbols but without any other processing.

• R-pattern. An ‘R-pattern’ is one that has been created by the merging
or ‘unification’ of two or more patterns and thus reflects informational
redundancy in the information from which it was derived. It is much
like a ‘chunk’ of information in the chunking-with-codes technique for
compression of information (Section 2.6.2).

• A-pattern. An ‘A-pattern’ is an abstract pattern that may be seen
to be derived from E-patterns but via a more complex route than an
R-pattern.

• SP-pattern. An ‘SP-pattern’ is any discrete pattern within the SP
system, as described in Appendix A.
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2.2 The SP Theory of Intelligence

The ideas and arguments presented in this paper are part of a long-term
programme of research developing the SP theory of intelligence and its real-
isation in the SP computer model. This subsection outlines some key ideas
in this research. There is more detail about the SP system in Appendix A
with pointers to where fuller information may be found.

The main aim in this research is, in accordance with Ockham’s razor, sim-
plification and integration of observations and concepts across a wide area.
In this research, that wide area encompasses artificial intelligence, main-
stream computing, mathematics, and HLPC. And in this research, ICMUP
is a unifying theme.5

The focus on ICMUP is because there is substantial evidence that much
of HLPC may be understood in those terms [60].

An important idea in the SP system is the powerful concept of SP-
multiple-alignment, borrowed and adapted from the concept of ‘multiple se-
quence alignment’ in bioinformatics. This concept, outlined in Appendix
A.1, is the key to the SP system’s versatility in modelling diverse aspects
of human intelligence, in the representation of diverse kinds of knowledge,
and in the seamless integration of diverse aspects of intelligence and diverse
forms of knowledge, in any combination.

2.3 Research Relating to the Effectiveness of Mathe-
matics in Science and Elsewhere

This subsection briefly reviews some studies with a bearing on the effective-
ness of mathematics in science and elsewhere.

Mark Colyvan [15], writing about the effectiveness of mathematics in pop-
ulation ecology (as an example of an empirical science that is not physics),
argues that mathematics can play a number of useful roles in ecological the-
ory, that contrary to superficial impressions, mathematics can represent some
biological facts, and that it can help to raise the level of abstraction above
“the push and shove of base-level causal processes”.

Without disagreeing with any of those arguments, some comments are
offered here that relate to themes of this paper:

5Since people often ask what the name “SP” stands for, it is short for Simplicity and
Power, two ideas that, together, mean the same as information compression. This is
because compression of a body of information, I, means maximising the simplicity of I
by reducing, as much as possible, repetition of information or redundancy in I, whilst
retaining a percentage of its non-redundant descriptive or explanatory power: 100% in the
case of lossless compression, or some smaller percentage in the case of lossy compression.
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• With regard to the raising of levels of abstraction, there is nothing
in the concept of MICMUPA to say that processes for compressing
information must necessarily be applied to all the available information
in a given domain. In the same way that people can and frequently
do drive cars without worrying about the details of how a car works,
scientists can and often do abstract away from some aspects of a domain
and concentrate on others.

• Although it is probably true that the mathematics of today can rep-
resent some aspects of the biology of living things, it is probably also
true that it may struggle or fail with some other aspects, and likewise
in other areas of science (more below).

• Although this matter has not yet been explored in any detail, it appears
that the SP system, with its focus on compression of information, may
provide an explanatory framework for causal processes. How the SP
system may be applied in causal analysis is discussed in [52, Section
7.9], with an example from the SP computer model.

Roughly in order of dates, other studies relating to the effectiveness of
mathematics include:

• With reference to Wigner’s [50] paper on “The unreasonable effec-
tiveness of mathematics in the natural sciences”, Richard Hamming
[22] concludes that, for a variety of reasons, “I am forced to conclude
both that mathematics is unreasonably effective” (p. 90) but that “we
... must continue to try to explain why the logical side of science—
meaning mathematics, mainly—is the proper tool for exploring the
universe as we perceive it at present.” (p. 90).

• Mark Steiner, in his book The Applicability of Mathematics as a Philo-
sophical Problem [48], discusses, as the name of the book suggests,
philosophical aspects of the “applicability” of mathematics, taking ac-
count of alternative meanings for that word.

• In a paper called “The unreasonable uncooperativeness of mathematics
in the natural sciences” Mark Wilson [51] writes in support of “math-
ematical opportunism”, the idea that “... it is the job of the applied
mathematician to look out for special circumstances that allow mathe-
matics to say something useful about physical behaviour. ... Descartes
frequently declared ... that many natural phenomena are too compli-
cated to submit to any mathematical description.” (ibid., p. 297, em-
phasis in the original).
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• Mark Colyvan, in his book The Indispensability of Mathematics [14],
writes that “One of the most intriguing features of mathematics is its
applicability to empirical science. ... Not only does mathematics help
with empirical predictions, it allows elegant and economical statement
of many theories. Indeed, so important is the language of mathematics
that it is hard to imagine how some theories could even be stated with-
out it. Furthermore, looking at the world through mathematical eyes
has, on more than one occasion, facilitated enormous breakthroughs in
science.” (p. 6). He goes on to discuss several aspects of the idea that
mathematics is indispensable for empirical science and how that idea
relates to several issues in the philosophy of mathematics, especially
the validity or otherwise of the ‘Platonist’ or mathematical ‘realist’
idea that “... mathematical entities such as functions, numbers, and
sets have mind- and language-independent existence ...” (p. 2).

• Alan Baker [2, 1] and Aidan Lyon with Mark Colyvan [30], like Colyvan
[15] and elsewhere, argue that mathematical models can provide gen-
uinely mathematical explanations of biological facts. As noted above,
the likely truth of that conclusion does not exclude the possibility that
the effectiveness of mathematics in modelling the world may be im-
proved.

• Contrary to Wigner’s [50] perception of the “unreasonable” effective-
ness of mathematics in science, Ivor Grattan-Guinness [21] argues that
the effectiveness of mathematics in science is: 1) because much math-
ematics was brought into being by the need to model one or more
aspects of the world; and 2) because, for several reasons, mathematics
is connected to the natural sciences via rational links.

• Robert Batterman [7] discusses the problem of providing a coherent
account of how mathematical idealisations can play explanatory roles
in physical theory. By contrast with arguments by Otávio Bueno and
Mark Colyvan [11], Batterman argues that it is not always clear that,
when mathematics gets applied in empirical science, it is because the
relevant part of mathematics reflects physical structures. Because of
difficulties like that, he suggests that a completely new approach is
needed with the world as the “driving influence” for how mathematics
gets applied.6 For those kinds of reasons he takes issue with what
[50] implies: that mathematics is always appropriate as a language for
science.

6Reading between the lines, this looks a bit like a “new mathematics for science”
mentioned in Section 7.
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A general point that emerges more-or-less explicitly from several of these
studies is that, while mathematics can be very effective in science, it is by
no means perfect. Mathematics is excellent for expressing such things as
E = mc2 but it is less useful, for example, in expressing the key ideas in the
Darwin/Wallace theory of evolution by natural selection, and there are many
other aspects of science that are not easily described with mathematics.7 If
it were a universal language for science, there would be no need for scientists
to use natural language, still and moving pictures, diagrams, and more, to
express scientific knowledge and scientific concepts.

These points relate to the possible development of a “new mathematics
for science” with enhanced capabilities for modelling scientific observations
and concepts, noted in the fourth bullet point in Section 7.

2.4 Research Relating to Mathematics as Compression
of Information

Three recent books about the philosophy of mathematics [29, 31, 35] make no
mention of anything resembling MICMUPA. More generally, the idea that
information compression might be part of the foundations of mathematics
appears to be invisible in writings about the nature of mathematics.

Keith Devlin’s academic book, Logic and Information [18], aims to de-
velop a mathematical theory of information, a goal which is related to but
distinct from the central idea in MICMUPA, that mathematics may be seen
as a set of techniques for ICMUP.

Devlin’s later book for the general reader, Mathematics: The Science
of Patterns [19], discusses things like “patterns of symmetry [such as] the
symmetry of a snowflake or a flower” (p. 145) and “the patterns involved in
packing objects in an efficient manner” (p. 152) which are somewhat like the
concept of ‘R-pattern’ or ‘A-pattern’ described in Section 2.1. But the key
ideas in MICMUPA, as described in this paper, are not discussed.

Amongst the several “isms” in the philosophy of mathematics—foundationism,
logicism, intuitionism, formalism, Platonism, neo-Fregeanism, and more—

7In this connection: “... against Wigner’s ‘unreasonable effectiveness’ statement
(based on success in the physical sciences) one must ask why maths is often so
unreasonably ineffective in the human and social sciences of behaviour, psychology,
economics, and the study of life and consciousness. These complex sciences are dominated
by non-linear behaviour and only started to be explored effectively by many people
(rather than only huge well-funded research groups) with the advent of small personal
computers (since the late 1980s) and the availability of fast supercomputers. Some
complex sciences contain unpredictabilities in principle (not just in practice): predicting
the economy changes the economy whereas predicting the weather doesn’t change the
weather.” John Barrow, personal communication, 2017-04-06, with permission.
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the three which are perhaps most closely related to MICMUPA are: psy-
chologism (mathematical concepts derive from human psychology); embodied
mind theories (mathematical thought is a natural outgrowth of human cog-
nition); and intuitionism (mathematics is a creation of the human mind).
This is because the latter three views are broadly consistent with the afore-
mentioned evidence that much of HLPC may be understood as compression
of information [60]. But it appears that there is nothing like MICMUPA in
any of those three views or any other school of thought in the philosophy of
mathematics.

2.5 Research Relating to Information Compression in
Science

This section briefly reviews other research relating to information compres-
sion in science, first considering the role of information compression in sci-
ence, and then considering the apparent absence of any recognition of MICMUPA,
or anything like it, as a principle in science.

2.5.1 Compression of Information in Science

Few people will dispute that much of science is concerned with observational
studies of aspects of the world or conducting experiments to obtain empirical
data. And most people with a knowledge of science will agree that compres-
sion of information, also described as simplification, is an important part of
science. Here are some relevant topics:

• Ockham’s Razor. Ockham’s razor, the principle attributed to William
of Ockham, is widely seen as a key principle in the development of
theories, in science and other areas. It is often expressed as “Entities are
not to be multiplied beyond necessity.”—meaning that, when there are
two or more competing theories that explain a given set of phenomena,
we should choose the simplest. More generally:

“There is a widespread philosophical presumption that sim-
plicity is a theoretical virtue. This presumption that simpler
theories are preferable appears in many guises. Often it re-
mains implicit; sometimes it is invoked as a primitive, self-
evident proposition; other times it is elevated to the status
of a ‘Principle’ and labeled as such (for example, the ‘Prin-
ciple of Parsimony’). However, it is perhaps best known by
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the name ‘Occam’s (or Ockham’s) Razor.’ Simplicity prin-
ciples have been proposed in various forms by theologians,
philosophers, and scientists, from ancient through medieval
to modern times. [3].

• Views of Scientists. Respected scientists have often described the goals
of science in similar terms. Isaac Newton wrote that “Nature is pleased
with simplicity” [33, p. 320]; Ernst Mach [4] and Karl Pearson [36] sug-
gested independently of each other that scientific laws promote “econ-
omy of thought”; Albert Einstein wrote that “A theory is more impres-
sive the greater the simplicity of its premises, the more different things
it relates, and the more expanded its area of application.”;8 cosmologist
John Barrow has written that “Science is, at root, just the search for
compression in the world” [6, p. 247];9 and Ming Li with Paul Vitányi
have written that “Science may be regarded as the art of data com-
pression” [28, p. 585]. It is pertinent to mention that George Kingsley
Zipf developed the related idea that human behaviour is governed by
a “principle of least effort” [64].

• Some Examples of Simplifications in Science. Carlo Rovelli [40, Loca-
tion 812] provides an excellent summary of some of the more important
simplifications that have been achieved in physics:

“... as space and time fuse together in a single concept of
spacetime, so the electric field and the magnetic fields fuse
together in the same way, merging into a single entity which
today we call the electromagnetic field. The complicated
equations written by Maxwell for the two fields become sim-
ple when written in this new language. ... The concepts of
‘energy’ and ‘mass’ become combined in the same way as
time and space, and electric and magnetic fields, are fused
together in the new mechanics. ... Einstein realizes that en-
ergy and mass are two facets of the same entity, just as the
electric and magnetic fields are two facets of the same field,
and as space and time are two facets of the one thing: space-
time. This implies that mass, by itself, is not conserved;

8Quoted in [24, p. 512].
9It may seem inappropriate in an academic paper to quote from a book like Pi in the

Sky which is intended for the general reader. But the author, John Barrow, is a
respected cosmologist, theoretical physicist, and mathematician, who is currently
Research Professor of Mathematical Sciences at the University of Cambridge. Even in a
non-academic book, what he has to say about the nature of science carries weight.
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and energy—as it was conceived at the time—is not inde-
pendently conserved either. One may be transformed into
the other: only one single law of conservation exists, not
two. What is conserved is the sum of mass and energy, not
each separately. Processes must exist that transform energy
into mass, or mass into energy.”

• Discussions of Simplicity in Science. A book-length review and dis-
cussion of Simplicity in Science may be found in [42]. A shorter but
relatively full discussion of the role of simplicity in science may be found
in [44]. The main thrust of the latter publication appears to be a plea
for greater precision in definitions of ‘simplicity’ in science.

• Simplicity and Power. Since competing theories rarely address exactly
the same set of phenomena, Ockham’s razor may be adapted to be
“In the development of a scientific theory from a body of data, I, we
should try to maximise the simplicity of I by reducing, as much as
possible, repetition of information or redundancy in I, whilst retaining
a percentage of its non-redundant descriptive or explanatory power:
100% in the case of lossless compression, or some smaller percentage in
the case of lossy compression.” In this connection:

– As noted in a footnote to Section 2.2, the concepts of ‘simplicity’
and ‘power’ are the origin of the name “SP” for the SP theory of
intelligence.

– As previously noted, achieving a good combination of simplicity
and power in a theory derived from a body of data, I, is equivalent
to the lossless or lossy compression of I.

– The concepts of ‘simplicity’ and ‘power’ in the SP theory appear to
be similar to the concepts of ‘simplicity’ and ‘strength’ in [27, 63,
13]. However, a key difference between the two pairs of concepts
is:

∗ On the one hand, [27, 13] refer to a “balance” between sim-
plicity and strength, while [63] refers to a “balance” and a
“trade-off” between simplicity and strength.

∗ On the other hand, by contrast, there is no “balance” or
“trade-off” between simplicity and power in the SP theory.
This is because, with respect to the compression of a tar-
get body of data, I: 1) ‘simplicity’ is about the extraction of
redundant information from I; 2) ‘power’ is about the per-
centage of the non-redundant information in I that is to be
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retained; and 3) in any given body of information, I, redun-
dant information in I and non-redundant information in I are
mutually-exclusive subsets of I.

• Algorithmic Probability Theory. Ray Solomonoff [46] has argued that
the great majority of problems in science and mathematics may be seen
as either ‘machine inversion problems’10 or ‘time limited optimization
problems’,11 and that both kinds of problems may be solved via algo-
rithmic compression from algorithmic probability theory [45],

• Concepts of ‘Pattern’. In research relating to the fundamentals of sci-
ence and of mathematics, concepts of ‘pattern’ have been discussed by
some authors:

– Daniel Dennett [17] writes about the concept of “real patterns”
and links it to the concept of algorithmic compressibility in AIT.
This and related concepts are further discussed at some length in,
for example, [39].

– James Ladyman and Don Ross [26] write that “The deep structure
of the world is arguably not mathematical but statistical, ... The
principles of statistics are generalizations of recurrent patterns
found in data; and such structuring of data is the core business of
both science and its metaphysical unification.” (p. 108, emphasis
added).

– As noted in Section 2.4, Keith Devlin [19] writes about Mathe-
matics: The Science of Patterns in a book for non-specialists.

It seems that these three concepts of ‘pattern’ are, at least approxi-
mately, the same as the concept of ‘R-pattern’, or perhaps ‘A-pattern’,
described in Section 2.1, reflecting informational redundancy in the
domains from which they are drawn.

2.5.2 The Possible Role of MICMUPA in Science

As with the philosophy of mathematics, it appears that there is nothing like
MICMUPA in the philosophy of science:

10“Inversion problems are the P and NP problems of computational complexity theory;
i.e., given a machine M , that maps finite strings onto finite strings and given the finite
string, x, how can we find in minimal time, a string, p, such that M(p) = x?” [46, p. 80].

11“Suppose we have a machine, M , whose inputs are finite strings, and whose outputs
are numbers. We are given a fixed time T . The problem is to find within time T an
input string, s, such that M(s) is as large as possible.” ([46, p. 81].
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• Apart from some brief discussions of Ockham’s razor and the concept
of ‘simplicity’ in science, a recent authoritative book on the philosophy
of science [43] makes no mention of anything resembling MICMUPA
anywhere.

• Similar things can be said about four other books about the philosophy
of science: [47, 20, 25, 9]. Although these are described as “introduc-
tory” books, they are intended for university students and one would
expect MICMUPA, or something like it, to be featured, at least briefly,
if that kind of idea was recognised in the philosophy of science.

2.6 Seven Techniques for the Compression of Informa-
tion Via the Matching and Unification of Patterns

Readers who are acquainted with techniques for the compression of infor-
mation will know that many of them, such as Huffman coding, arithmetic
coding, and wavelet compression, have a mathematical flavour (see, for ex-
ample, [41]). Much the same may be said about algorithmic compression in
the framework of AIT [28].

Since ideas of that kind have a good pedigree and have proved their worth
in many applications, one might suppose that they would be the starting
point for any discussion of how mathematics may be understood in terms of
information compression. But:

• The SP programme of research attempts to reach down below the math-
ematics of other approaches, to focus on the relatively simple, ‘primi-
tive’ idea that information compression may be understood in terms of
the matching and unification of patterns.

• In any discussion of the fundamentals of mathematics, it would not be
appropriate to use mathematics itself.

• Since ICMUP is a relatively ‘concrete’ idea, less abstract than much
of mathematics, it suggests avenues that may be explored in under-
standing possible mechanisms for information compression in artificial
systems and in brains and nervous systems.

ICMUP and its variants may appear too childishly simple to merit atten-
tion in any discussion of the fundamentals of mathematics. But ICMUP is
bedrock in the powerful concept of SP-multiple-alignment, outlined in Ap-
pendix A.1, which has proven capabilities, not only in modelling the six other
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versions of ICMUP described here [61, Appendix B], but also, more impor-
tantly, in diverse aspects of human intelligence, the representation of diverse
forms of knowledge, and the seamless integration of diverse aspects of intel-
ligence and diverse forms of knowledge, in any combination [54, 52]. And, as
described in [60], ICMUP is prominent in HLPC.

While care has been taken in this programme of research to avoid unneces-
sary duplication of information across different publications, the importance
of the following seven variants of ICMUP has made it necessary, for the sake
of clarity, to describe them quite fully both in this paper and also in [60].

2.6.1 Basic ICMUP: Information Compression Via the Matching
and Unification of Patterns

The simplest of the techniques to be described is to find two or more pat-
terns that match each other within a body of information, I, and then merge
or ‘unify’ them so that multiple instances are reduced to one. This is il-
lustrated in the upper part of Figure 1 where two instances of the pattern
‘INFORMATION’ near the top of the figure has been reduced to one instance,
shown in the middle of the figure, with ‘w62’ appended at the front, for
reasons given in Section 2.6.2, below.

Here, and in subsections below, we shall assume that the single pattern
which is the product of unification is placed in some kind of dictionary of
patterns that is separate from I.

The version of ICMUP just described will be referred to as basic ICMUP.
A detail that should not distract us from the main idea is that, when

compression of a body of information, I, is to be achieved via basic ICMUP,
any repeating pattern that is to be unified should occur more often in I than
one would expect by chance.

2.6.2 Chunking-With-Codes

A point that has been glossed over in describing basic ICMUP is that, when a
body of information, I, is to be compressed by unifying two or more instances
of a pattern like ‘INFORMATION’, there is a loss of information about the
location within I of each instance of ‘INFORMATION’. In other words, basic
ICMUP achieves ‘lossy’ compression of I.

This problem is overcome in the chunking-with-codes variant of ICMUP:

• A unified pattern like ‘INFORMATION’, which is often referred to as a
‘chunk’ of information,12 is stored in a dictionary of patterns, as men-

12There is a little more detail about the concept of ‘chunk’ in [60, Section 2.4.2].
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tioned in Section 2.6.1. A chunk in this context is much like an ‘R-
pattern’ described in Section 2.1.

• As before, the unified chunk is given a relatively short name, iden-
tifier, or ‘code’, like the ‘w62’ pattern appended at the front of the
‘INFORMATION’ pattern in the middle of Figure 1.

• Then the ‘w62’ code is used as a shorthand which replaces the ‘INFORMATION’
chunk of information wherever it occurs within I. This is shown at the
bottom of Figure 1.

• Since the code ‘w62’ is shorter than each instance of the pattern ‘INFORMATION’
which it replaces, the overall effect is to shorten I. But, unlike basic
ICMUP, chunking-with-codes achieves ‘lossless’ compression of I.

• A detail here is that compression can be optimised by giving shorter
codes to chunks that occur frequently and longer codes to chunks that
are rare. This may be done using some such scheme as Shannon-Fano-
Elias coding, described in, for example, [16].

2.6.3 Schema-Plus-Correction

A variant of the chunking-with-codes version of ICMUP is called schema-
plus-correction. Here, the ‘schema’ is like a chunk of information and, as
with chunking-with-codes, there is a relatively short identifier or code that
may be used to represent the chunk.

What is different about the schema-plus-correction idea is that the schema
may be modified or ‘corrected’ in various ways on different occasions.

For example, a menu for a meal in a cafe or restaurant may be something
like ‘MN: ST MC PG’, where ‘MN’ is the identifier or code for the menu, ‘ST’ is a
variable that may take values representing different kinds of ‘starter’, ‘MC’ is
a variable that may take values representing different kinds of ‘main course’,
and ‘PG’ is a variable that may take values representing different kinds of
‘pudding’.

With this scheme, a particular meal may be represented economically
as something like ‘MN: ST(st2) MC(mc5) PG(pg3)’, where ‘st2’ is the code
or identifier for ‘minestrone soup’, ‘mc5’ is the code for ‘vegetable lassagne’,
and ‘pg3’ is the code for ‘ice cream’; another meal may be represented eco-
nomically as ‘MN: ST(st6) MC(mc1) PG(pg4)’, where ‘st6’ is the code or
identifier for ‘prawn cocktail’, ‘mc1’ is the code for ‘lamb shank’, and ‘pg4’ is
the code for ‘apple crumble’; and so on. Here, the codes for different dishes
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Figure 1: A schematic representation of the way two instances of the pattern
‘INFORMATION’ in a body of data may be unified to form a single ‘unified
pattern’, with ‘w62’ as an identifier assigned by the system. The lower part of
the figure shows how the data may be compressed by replacing each instance
of ‘INFORMATION’ with a copy of the corresponding identifer. Reproduced
with permission from Figure 2.3 in [52].

serve as modifiers or ‘corrections’ to the categories ‘ST’, ‘MC’, and ‘PG’ within
the schema ‘MN: ST MC PG’.

2.6.4 Run-Length Coding

A third variant, run-length coding, may be used where there is a sequence of
two or more copies of a pattern, each one except the first following immedi-
ately after its predecessor like this:

‘INFORMATIONINFORMATIONINFORMATIONINFORMATIONINFORMATION’.

In this case, the multiple copies may be reduced to one, as before, with
something to say how many copies there are (eg, ‘(INFORMATION)×5’), or
when the repetition begins and ends (eg, ‘[(INFORMATION)*]’ where ‘[’ and
‘]’ are the beginning and end symbols, and ‘*’ signifies repetition), or, more
vaguely, that the pattern is repeated without anything to say when the se-
quence stops (eg, ‘(INFORMATION)*’).

In a similar way, a sports coach might specify exercises as something like
“touch toes (×15), push-ups (×10), skipping (×30), ...” or “Start running
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on the spot when I say ‘start’ and keep going until I say ‘stop’ ”.
With the ‘running’ example, “start” marks the beginning of the sequence,

“keep going” in the context of “running” means “keep repeating the process
of putting one foot in front of the other, in the manner of running”, and
“stop” marks the end of the repeating process. It is clearly much more
econonomical to say “keep going” than to constantly repeat the instruction
to put one foot in front of the other.

2.6.5 Class-Inclusion Hierarchies

A widely-used idea in everyday thinking and elsewhere is the class-inclusion
hierarchy: the grouping of entities into classes and the grouping of classes
into higher-level classes through as many levels as are needed.

This idea may achieve ICMUP because, at each level in the hierarchy,
attributes may be recorded which apply to that level and all levels below it.
This can mean great economies because, for example, it is not necessary to
record that cats have fur, dogs have fur, rabbits have fur, and so on—it is only
necessary to record that mammals have fur and ensure that all lower-level
classes and entities can ‘inherit’ that attribute. In effect, multiple instances
of the attribute ‘fur’ have been merged or unified to create that attribute for
mammals, thus achieving compression of information.13

This idea may be generalised to cross-classification, where any one entity
or class may belong in one or more higher-level classes that do not have
the relationship superclass/subclass, one with another. For example, a given
person may belong in the class ‘woman’ and ‘doctor’ although ‘woman’ is
not a subclass of ‘doctor’ and vice versa.

2.6.6 Part-Whole Hierarchies

Another widely-used idea is the part-whole hierarchy in which a given entity
or class of entities is divided into parts and sub-parts through as many levels
as is needed. Here, ICMUP may be achieved because two or more parts of
a class such as ‘car’ may share the overarching structure in which they all
belong. So, for example, each wheel of a car, the doors of a car, the engine or
a car, and so on, all belong in the same encompassing structure, ‘car’, and it
is not necessary to repeat that enveloping structure for each individual part.

13The concept of class-inclusion hierarchies with inheritance of attributes is quite fully
developed in object-oriented programming, which originated with the Simula
programming language [10] and is now widely adopted in modern programming languages.
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2.6.7 SP-Multiple-Alignment

The seventh version of ICMUP, the SP-multiple-alignment construct outlined
in Appendix A.1, encompasses all the preceding six versions of ICMUP and
much more besides.

How the preceding six versions of ICMUP may be modelled within the SP-
multiple-alignment framework is described in [61, Appendix B]. The strengths
and potential of the SP-multiple-alignment construct in modelling aspects of
human intelligence and the representation of knowledge is outlined in [62]
with pointers to where fuller information may be found. The potential of
this construct in modelling aspects of mathematics is described in [52, Chap-
ter 10].

3 Mathematics As a Set of Techniques for

the Compression of Information Via the

Matching and Unification of Patterns, and

Their Application

The first step in the argument outlined in Section 1.1, depends on evidence
that mathematics is fundamentally about the compression of information.
The following subsections present evidence in support of this idea.

In what follows, the main emphasis is on ICMUP, as described in Section
2.6. This may be seen to have an impact on the structuring of mathematics,
and on the dynamics of mathematical calculation or inference.

3.1 An Example of Information Compression Via Math-
ematics

The equation s = (gt2)/2, one of several that can be derived from Newton’s
Second Law of Motion, is a very compact means of representing any table,
including large ones, showing the distance travelled by a falling object (s)
in a given time since it started to fall (t), as illustrated in Table 1.14 The
constant, g, is the acceleration due to gravity—about 9.8m/s2. That small
equation would represent the values in the table even if it was a 1000 times
or a million times bigger, and so on. Likewise for other equations such as
a2 + b2 = c2, PV = k, F = q(E + v ×B), and so on.

14Of course, the law does not work for something like a feather falling in air.
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Distance (m) Time (sec)

0.0 0
4.9 1

19.6 2
44.1 3
78.5 4

122.6 5
176.5 6
240.3 7
313.8 8
397.2 9
490.3 10
593.3 11
706.1 12
828.7 13
961.1 14

1103.2 15
1255.3 16

Etc Etc

Table 1: The distance travelled by a falling object (metres) in a given time
since it started to fall (seconds).



To make these points, it is not strictly necessary to show Table 1. But the
table helps to emphasise the contrast between the potentially huge volumes
of data in such a table and the small size of the equation which describes
those data—and, correspondingly, the potentially high levels of information
compression that may be achieved with ordinary mathematics which is not
specialised for compression of information.

3.2 How ICMUP May Be Seen in The Structure and
Workings of Mathematics

The subsections that follow describe how some of the basic principles and
techniques for the compression of information that were outlined in Section
2.6 may be seen in the structure and workings of mathematics.

In themselves, these examples do not prove that mathematics may be
understood as being entirely devoted to the compression of information. But
there are reasons to think that compression of information is fundamental in
mathematics:

• Since the techniques to be described are low-level techniques that are
part of the foundations of mathematics and widely used in more com-
plex forms of mathematics, it seems likely that mathematics may indeed
be understood in its entirety to be a set of techniques for compressing
information and their application.

• As described in Section 4.1.1, the workings of simple logical functions,
including the NAND logical function, may be understood in terms of
ICMUP. Since it is widely accepted that, in principle, the compu-
tational heart of any general-purpose digital computer may be con-
structed entirely from NAND gates [34], it appears that, within the
bounds imposed by computational complexity, ICMUP has the gen-
erality to support any kind of computation, including mathematical
computations.

3.3 Basic ICMUP

The ‘basic’ version of ICMUP, “basic ICMUP”(Section 2.6.1) may be seen in
mathematics whenever one identifier is matched with another, with implicit
unification of the two.
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3.3.1 The Matching and Unification of Identifiers

In mathematics, ICMUP may be seen wherever there is a need to invoke a
named entity. If, for example, we want to calculate the value of z from these
equations: x = 4; y = 5; z = x + y, we need to match the identifier x in the
third equation with the identifier x in the first equation, and to unify the
two so that the correct value is used for the calculation of z. Likewise for y.

In a similar way if we wish to invoke or ‘call’ a function such as ‘log x’
(the logarithm of a number), there must be a match between the name of the
function in the call to the function (such as ‘log 1000’ and the name of the
function in its definition, ‘log x’. Unification of the call to the function with
the definition of the function may be seen to have the effect of assigning the
number in the call (1000 in this example) to the variable x in the definition
of the function.

3.3.2 The Execution of a Function

At an abstract level, any function may be seen as a table in which each
row shows the connection between one or more input values and one or
more output values. And simple functions, such as a one-bit adder, may be
specified in exactly that way, as shown in Table 2.

Input (1) Input (2) Sum Carry

1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

Figure 2: A table to define a function for the addition of two one-bit numbers
in binary arithmetic, with provision for the carrying out of one bit.

In the workings of this adder, basic ICMUP may be seen, for example, in
the matching and unification of input values ‘1’ and ‘0’ with corresponding
values in ‘input’ columns of the table. In this case, the matches which achieve
the greatest compression (both ‘1’ and ‘0’ in one row) will be to select the
second row in the table, with the sum ‘1’ and the carry digit ‘0’, which are
of course the correct outputs for those two inputs.

3.3.3 Matching and Unification of Patterns With Peano’s Axiom
for Natural Numbers

The sixth of Peano’s axioms for natural numbers—for every natural number
n, S(n) is a natural number—provides the basis for a succession of numbers:
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S(0), S(S(0)), S(S(S(0))) ..., itself equivalent to unary numbers in which
1 = /, 2 = //, 3 = ///, and so on. Here, S at one level in the recursive
definition is repeatedly matched and unified with S at the next level.

3.4 Chunking-With-Codes

This subsection describes aspects mathematics that may be seen to exemplify
the chunking-with-codes technique for information compression, as described
in Section 2.6.2.

3.4.1 Named Functions

If a body of mathematics is repeated in two or more parts of something larger
then it is natural to declare it once as a named ‘function’, where the body of
the function may be seen as a ‘chunk’ of information, and the name of the
function is its ‘code’ or identifier. This avoids the need to repeat that body
of mathematics in two or more places.

An example of this kind of thing is the calculations needed to find the
square root of a number, often provided as a ready-made square-root function
with the non-alphabetic name ‘

√
x’. That name may be used to invoke the

function wherever it is needed, like this: ‘
√

16’. Similar things may be done
with functions such as ‘sin(x)’, ‘cos(x)’, and ‘log(x)’.

Although they are not commonly seen as ‘functions’, all of the operations
of addition, subtraction, multiplication, the power notation, and division,
may be cast in that mould as, for example, ‘plus(x,y)’, ‘subtract(x,y)’, and
so on. As such, they may be seen as examples of chunking-with-codes and
schema-plus-correction (Section 3.5). As we shall see in Section 3.6, they
may also be seen as examples of run-length coding.

3.4.2 The Number System

Number systems with bases greater than 1, like the binary, octal, decimal
and hexadecimal number systems, may all be seen to illustrate the chunking-
with-codes technique for compressing information. For example:

• A unary number like ‘///////’ may be referred to more briefly in the
decimal system as ‘7’. Here, ‘///////’ is the chunk and ‘7’ is the code.

• A unary number like ‘/////////////////’ may be split into two parts:
‘//////////’ and ‘///////’. Then, in the decimal system, the first
part may be represented by ‘1’ and the second part by ‘7’, giving us
the decimal number ‘17’. The convention is that the right-most digit
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represents numbers less than 10, and the next digit to the left represents
the number of 10s.

• Of course, this ‘positional’ system can be extended so that a digit in
the third position from the right represents the number of 100s, a digit
in the fourth position represents the number of 1000s, and so on.

Here, we can see how the chunking-with-codes technique allows us to
eliminate the repetition or redundancy that exists in all unary numbers ex-
cept ‘/’. This means that large numbers, like 2035723, may be expressed in
a form that is very much more compact than the equivalent unary number.

3.5 Schema-Plus-Correction

Most functions in mathematics, like those mentioned above, are not only
examples of chunking-with-codes: they are also examples of the schema-plus-
correction device for compressing information. This is because they normally
require input via one or more ‘arguments’ or ‘parameters’. For example, the
square root function needs a number like 49 for it to work on. Without
that number, the function is a very general ‘schema’ for solving square root
problems. With a number like 49, which may be regarded as a ‘correction’ to
the schema, the function becomes focussed much more narrowly on finding
the square root of 49.

3.6 Run-Length Coding

Run-length coding appears in various forms in mathematics, often combined
with other things. The key idea is that some entity, pattern, or operation
is repeated two or more times in an unbroken sequence. Here are some
examples:

• Since all numbers with bases above 1 may be seen to be compressed
representations of unary numbers (Section 3.4.2), unary numbers may
be regarded as more fundamental than non-unary numbers. If that is
accepted, then, for example, ‘3 + 7’ may be seen as a shorthand for the
repeated process of transferring one unary digit from a group of seven
unary digits to a group of three unary digits. Thus the expression ‘+7’
within ‘3 + 7’ may be seen as an example of run-length coding.

Subtraction may be interpreted in a similar way when a smaller number
is subtracted from a larger number.
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• Multiplication is repeated addition. So, for example, ‘3 × 10’ is the
10-fold repetition of the operation ‘x + 3’, where ‘x’ starts with the
value ‘0’. Then ‘×10’ within ‘3×10’ may be seen as run-length coding.
Since addition is itself a form of run-length coding (as described in
the preceding bullet point), multiplication may be seen as run-length
coding on two levels.

• Division of a larger number by a smaller one (eg, ‘12/3’) is repeated
subtraction which, as with multiplication, may be seen as run-length
coding. Of course there will be a ‘remainder’ if the larger number is not
an exact multiple of the smaller number. As with addition as a part
of multiplication, subtraction as a part of division means that division
may be seen as run-length coding on two levels.

• The power notation (eg, ‘109’) is repeated multiplication, and is thus
another example of run-length coding. Since multiplication, as repeated
addition, is a form of run-length coding, and since addition may be seen
as run-length coding (the first bullet point above), the power notation
may be seen as run-length coding on three levels!

• A factorial (eg, ‘25!’) is repeated multiplication and subtraction.

• The bounded summation notation (eg, ‘
∑5

i=1
1
i
’) and the bounded power

notation (eg, ‘
∏10

n=1
n

n−1 ’) are shorthands for repeated addition and re-
peated multiplication, respectively. In both cases, there is normally
a change in the value of one or more variables on each iteration, so
these notations may be seen as a combination of run-length coding and
schema-plus-correction.

• In matrix multiplication, ‘AB’, for example, is a shorthand for the
repeated operation of multiplying each entry in matrix ‘A’ with the
corresponding entry in matrix ‘B’.

3.7 Class-Inclusion Hierarchies

Classes and subclasses (Section 2.6.5) feature in mathematics as ‘sets’, both
as a sometimes-disputed foundation for mathematics and as a branch of
mathematics.

The notion of ‘inheritance’ does not have the prominence in set theory
that it does in object-oriented programming, but, nevertheless, ICMUP may
be seen in other concepts associated with sets, described in Section 4.1.
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3.8 Part-Whole Hierarchies

It seems that part-whole hierarchies are not much used in mathematics, ex-
cept perhaps in set theory, but, as we shall see in Section 4.2, they are quite
prominent in the mathematics-related discipline of computing.

3.9 SP-Multiple-Alignment

Preliminary work described in [52, Chapter 10] shows that the SP system,
with SP-multiple-alignment centre-stage, has potential to model mathemat-
ical constructs and mathematical processes. This should not be altogether
surprising since, as noted in Section 2.6.7, SP-multiple-alignments can do
everything that can be done with the six variants of ICMUP described in
Sections 2.6.1 to 2.6.6, and it provides for their seamless integration too.

Other reasons for believing that the SP system has potential to model
many and perhaps all concepts and processes in mathematics are:

• The generality of information compression as a means of representing
knowledge in a succinct manner.

• The central role of information compression in the SP-multiple-alignment
framework.

• The versatility of the SP-multiple-alignment framework in aspects of
intelligence and the representation of knowledge (Appendix A.2).

• The close connection that is known to exist between information com-
pression and concepts of prediction and probability (Section 6).

3.10 Some Equations

It seems that most equations that have become established in mathematics
and science may be interpreted in terms of some combination of the tech-
niques for compressing information described in Section 2.6. Thus:

• Einstein’s equation, E = mc2, illustrates run-length coding in its power
notation (c2) and in the multiplication of m with c2.

• Newton’s equation, s = (gt2)/2, that featured in Section 3.1, illustrates
run-length coding in its power notation (t2), in the multiplication of g
with t2, and in the division of (gt2) by 2.
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• Pythagoras’s equation, a2 + b2 = c2, illustrates run-length coding via
the power notation in a2, b2, and c2, and via the addition of b2 to a2

(the first bullet point in Section 3.6).

• Boyle’s law, PV = k, illustrates run-length coding in the multiplication
of P by V .

• The charged particle equation, F = q(E + v × B), illustrates run-
length coding in the multiplication of v by B, in the multiplication of
(E + v ×B) by q, and in the addition of v ×B to E.

• One of special relativity’s equations for time dilation, ∆t′ = ∆t/
√

1− v2/c2,
illustrates chunking-with-codes and schema-plus-correction in its use of
the square root function, and it illustrates run-length coding in the di-
vision of v2 by c2, in the subtraction of v2/c2 from 1, and in the division

of ∆t by
√

1− v2/c2.

• In its use of bounded summation (
∑

), Shannon’s equation for entropy,
H = −∑

i pi log2(pi), illustrates a combination of run-length coding
and schema-plus-correction (as noted in Section 3.6). It also illustrates
chunking-with-codes in its use of the log2 notation.

Since, addition, subtraction, multiplication, the power notation, and di-
vision, may each be seen as an example of chunking-with-codes and schema-
plus-correction (Sections 3.4 and 3.5), as well as run-length coding (Section
3.6), the same can be said about the appearance of those notations in each
of the examples above.

4 Mathematics-Related Disciplines as Tech-

niques for the Compression of Information,

and Their Application

It seems that, to a large extent, what has been said about mathematics
in Section 3 also applies to the mathematically-related disciplines of logic
and computing.15 The following two subsections present some examples in
support of that idea.

4.1 Logic

Subsections that follow describe some evidence for ICMUP in logic.

15Where computing has its modern sense of computation by machine.
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4.1.1 XOR and Other Logical Operations

The XOR logical function, and other simple logical functions, may be defined
and interpreted in much the same way as the one-bit adder shown in Figure
2, as shown in Table 3.

Input (1) Input (2) Output

1 1 0
0 1 1
1 0 1
0 0 0

Figure 3: A table to define the XOR logical function.

As with the one-bit adder, the operation of the XOR function may be
understood in terms of basic ICMUP. Input values such as 1 (first) and
0 (second) may be matched and unified with values in the corresponding
‘input’ columns of the table. With those two input values, the third row is
selected because it yields most matches—which, with unification, also means
the greatest compression of information. And of course the third row yields
the correct output value, which in this example is 1.

There are two points of interest here:

• The XOR Function and Artificial Neural Networks. As is well known,
Marvin Minsky and Seymour Papert [32] demonstrated that basic per-
ceptrons of the kind that were available in the late 1960s could not
produce correct results with the XOR function, a demonstration which,
for a time, led to a fall in interest in artificial neural networks.

• The Generality of the NAND Logical Function. As noted in Section
3.2, the fact that the NAND logical function may, like XOR and other
simple logical functions, be understood in terms of ICMUP, and the
generally-accepted idea that the computational heart of any general-
purpose computer may, in principle, be constructed entirely from NAND
gates, provide evidence in support of the idea that compression of in-
formation is fundamental in all kinds of computation including math-
ematical computations.

4.1.2 Deriving a Set From a Multiset

In logic and mathematics, a ‘multiset’ or ‘bag’ is like a set but any element
within the multiset may be repeated as, for example, in the multiset {a, b,
a, c, b, b, c, a, c}.
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Conversion of any such multiset into the corresponding set means match-
ing each element within the multiset with every other element and, wherever
a match is found, unifying the two elements, including elements that are the
result of earlier unifications, thus achieving ICMUP. In this case, the multiset
{a, b, a, c, b, b, c, a, c} is reduced to the set {a, b, c}.

4.1.3 The Union and Intersection of Sets

In much the same way that a set may be derived from a multiset (Section
4.1.2), the union and intersection of two sets may be found by the matching
and unification of elements, yielding a reduction in the overall size of the two
sets when unification has been achieved. Thus, for example, the union of the
sets {b, f, d, a, c, e} and {e, g, i, f, d, h} is {a, b, c, d, e, f, g, h, i}, with the
intersection {d, e, f}. In accordance with ICMUP, the union is smaller than
the two sets from which it was derived.

4.1.4 ICMUP in Prolog

Further evidence for the significance of ICMUP in logic is that systems like
Prolog—a computer-based version of logic—may be seen to function largely
via the matching and merging of patterns.

Here, the meaning of ‘unification’ in Prolog—comparing two terms to see
if they can be made to represent the same structure—is quite close to the
meaning of ‘unification’ in this paper.

4.1.5 Versatility in Reasoning With the SP System

Since SP-multiple-alignment is a generalised form of ICMUP (Section 2.6.7),
and since SP-multiple-alignment is an important part of the SP system, it
is pertinent to say that the SP computer model demonstrates several kinds
of reasoning including: one-step ‘deductive’ reasoning; chains of reasoning;
abductive reasoning; reasoning with probabilistic networks and trees; reason-
ing with ‘rules’; nonmonotonic reasoning and reasoning with default values;
Bayesian reasoning with ‘explaining away’; causal reasoning; reasoning that
is not supported by evidence; the inheritance of attributes in class hierarchies;
and inheritance of contexts in part-whole hierarchies [52, Chapter 7].

Because of the probabilistic nature of the SP system, these forms of rea-
soning are probabilistic, although some of them, such as one-step ‘deductive’
reasoning, have the all-or-nothing character of traditional forms of logic.
Nevetheless, if it is accepted that logic, like mathematics, is probabilistic
at a deep level—for reasons given in Section 6—then the above-mentioned
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strengths of the SP system in probabilistic reasoning may be seen as further
evidence for the importance of ICMUP in logic.

4.2 Computing

As with logic, it seems likely that, since computing is closely related to
mathematics, it may, like mathematics, be understood in terms of ICMUP.
Evidence in support of that view is presented in subsections that follow.

4.2.1 Matching and Unification of Patterns in Definitions of ‘Com-
puting’

Emil Post’s [38] “Canonical System”, which is recognised as a definition of
‘computing’ that is equivalent to a universal Turing machine, may be seen
to work largely via the matching and unification of patterns [52, Chapter 4].

Much the same is true of the workings of the transition function in a
universal Turing machine. This is essentially a look-up table like that shown
in Table 2.

Input (1) Input (2) Output (1) Output (2)

s0 1 s0 F
s0 0 s1 1
s1 1 s1 E
s1 0 s2 F

Table 2: An example of a transition function in a universal Turing machine,
represented as a look-up table, as described in the text. Key: ‘F’ means
“move the read/write head one place to the right”; ‘E’ means “move the
read/write head one place to the left”. Based on the example in [5, Section
2], with permission.

Much as with the examples described in Sections 3.3.2 and 4.1.1, ICMUP
may be seen, for example, in the matching and unification of input values ‘s1’
and ‘1’ with corresponding values in the input columns of the table. In this
case, the effect will be to select the third row in the table, with the output
values ‘s1’ and ‘E’—which mean “Set the state of the machine to ‘s1’ and
move the read/write head of the machine one place to the left”.

In a similar way, ICMUP may be seen in the workings of the NAND
logical function which, as noted in Sections 3.2 and 4.1.1 may in principle
provide the computational heart of any general-purpose digital computer.
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4.2.2 Some Other Examples of ICMUP in Computing

Here, in brief, are some other putative examples of ICMUP in computing:

• Basic ICMUP. As in mathematics (Section 3.3), basic ICMUP may be
seen in computing in the matching of identifiers for variables and in
calls to functions.

• Chunking-With-Codes and Schema-Plus-Correction. Again, as in Sec-
tion 3.4, named functions in computing may be seen as examples of the
chunking-with-codes version of ICMUP, and as in Section 3.5, functions
with parameters may be seen as examples of the schema-plus-correction
version of ICMUP.

• Run-Length Coding. As in mathematics (Section 3.6), run-length cod-
ing may be seen in computing in the basic arithmetic functions. It may
also be seen in iteration statements like while ..., do ... while ..., for
..., or repeat ... until .... It may also be seen in the use of recursion in
functions such as factorial(x) for the calculations of the factorial of any
number.

• Class-Inclusion and Part-Whole Hierarchies. In computing, the cre-
ation of classes and hierarchies of classes is supported in such object-
oriented programming languages as Simula, Smalltalk, C++, and many
more. Part-while hierarchies are also prominent in software. In both
cases, ICMUP has a role to play, much as described in Sections 2.6.5
and 2.6.6.

• Retrieving Data From Computer Memory. It is true that electronic cir-
cuits provide the mechanism for finding an address in computer mem-
ory but, at a more abstract level, the process may be seen as one of
searching for a match between the address held in the CPU and the
corresponding address in computer memory. When a match has been
found between the address in the CPU and the corresponding address
in memory, there is implicit unification of the two.

• Query-by-Example. A popular technique for retrieving information
from databases, query-by-example, is essentially a process of finding
good matches between a query pattern and patterns in the database,
with unification of the best matches.
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5 An Apparent Solution to the Mystery of

Why Mathematics Is So Effective in Sci-

ence

In view of evidence that: 1) science is fundamentally a search for compression
in the world (Section 2.5); and evidence that 2) mathematics may be seen to
be largely a set of techniques for compressing information and their applica-
tion (Section 3); and bearing in mind 3) the afore-mentioned intimate relation
between information compression and concepts of prediction and probability
(Section 6); it seems reasonable to conclude that those three things may ex-
plain the effectiveness of mathematics as a means of representing scientific
knowledge and in the making of scientific inferences.

5.1 The Anthropic Principle

An objection to the arguments above is that, even if we accept that math-
ematics provides an effective means of compressing information, we are still
left with the problem of explaining why nature is so often compressible.

A possible answer is that:

“... maths is best thought of as the catalogue of all possible pat-
terns and so it is inevitable that mathematics is effective in de-
scribing the world—it could not be otherwise because the world
must have pattern to allow life to exist.”16

And this appeal to the anthropic principle17 may be adapted for information
compression as something like: “the world must be compressible because
otherwise everything, including ourselves, would be a soup of randomness.”

6 Mathematics, Prediction, and Probabilities

The main focus of this paper is on MICMUPA, but it is relevant to mention
that it has been recognised for some time that there is an intimate connection
between information compression and concepts of prediction and probabil-
ity, as described in Ray Solomonoff’s algorithmic probability theory (APT)
[45, 46], and in the closely-related AIT [28]. Information compression and

16John Barrow, personal communication, 2017-04-06, with permission.
17The anthropic principle, with several of its variants, and with associated

controversies, is well described in “Anthropic principle”, Wikipedia, bit.ly/2pVf1W8,
retrieved 2017-11-24.
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concepts of prediction and probability may be seen as two sides of the same
coin.

The close connection between those things makes sense in terms of ICMUP
(Section 2.6):

• A pattern that repeats is one that, via inductive reasoning, we naturally
regard as a guide to what may happen in the future.

• A pattern that repeats is one that, via the merging or unification of
patterns, may yield compression of information.

• A partial match between one pattern and another can be the basis for
predicting the occurrence of the unmatched parts, a form of inference
that is sometimes called prediction by partial matching [49].

From Solomonoff’s work and associated research, we may conclude that
compression of information is important in science, partly as a means of
representing scientific knowledge in a succinct form, but at least as important
is how information compression can be a key to the making of scientific
inferences and the calculation of probabilities of such inferences.

What has this got to do with mathematics? It would take us too far
afield to discuss this issue in any depth. A few brief remarks are made
here. The close connection between information compression and concepts
of prediction and probability, and evidence for MICMUPA presented in this
paper, suggests that:

• Notwithstanding the apparent certainty of equations like 2 + 2 = 4,
mathematics may be seen to be fundamentally probabilistic.

• In view of the important role that mathematics has in the making of
inferences in science and elsewhere, and notwithstanding the apparent
certainties of many of those inferences, MICMUPA may be seen as a
driver for the making of ‘exact’ inferences.

Regarding the first point, a probabilistic foundation for mathematics is
consistent with the discovery of randomness in number theory:

“I have recently been able to take a further step along the path
laid out by Gödel and Turing. By translating a particular com-
puter program into an algebraic equation of a type that was famil-
iar even to the ancient Greeks, I have shown that there is random-
ness in the branch of pure mathematics known as number theory.
My work indicates that—to borrow Einstein’s metaphor—God
sometimes plays dice with whole numbers.” [12, p. 80].
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As indicated in this quotation, randomness in number theory is closely
related to Gödel’s incompleteness theorems. These are themselves closely
related to the phenomenon of recursion, a feature of many formal systems,
several of Escher’s pictures, and much of Bach’s music, as described in some
detail by Douglas Hofstadter in Gödel, Escher, Bach: An Eternal Golden
Braid [23].

With regard to the second point, it seems possible that, although mathe-
matics may be fundamentally probabilistic, it may, with appropriate data or
under appropriate conditions, deliver results where the associated probabili-
ties are at or very close to 0 or 1. This kind of possibility is discussed briefly
in [52, Sections 10.4.5 and 10.4.6].

7 So What?

While it may be accepted that this paper provides an explanation for the
“mysterious” or “unreasonable” effectiveness of mathematics in science, read-
ers may, nevertheless, wonder what implications there may be, if any, for the
development of mathematics or science or both of them. Here are some
possibilities:

• Since SP-multiple-alignment is a generalised version of ICMUP that
encompasses the first six versions described in Section 2.6, and since
SP-multiple-alignment is central in the SP theory of intelligence, evi-
dence presented in this paper strengthens the already-strong position of
the SP theory as an explanatory principle across artificial intelligence
[54, 52, 59], mainstream computing (ibid.), mathematics (this paper),
HLPC [60], and neuroscience [58].

• In connection with the previous bullet point, there are many potential
benefits and applications of the SP theory, including [57, 56, 55], and
others summarised in [62, Appendix A.7], with pointers to where fuller
information may be found.

• With regard to mathematics and its effectiveness in science, there ap-
pears to be potential for the development of a “new mathematics for
science” by treating the SP system as one of the techniques for the com-
pression of information that are available within mathematics. Such a
development, mentioned near the end of Section 2.3 above, may facil-
itate the automatic or semi-automatic development of new theories in
science, and the quantitative and comparative evaluation of scientific
theories, both existing theories and new ones. Such a development may
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also broaden the scope of mathematics as a means of describing scien-
tific observations and concepts, and as a means of drawing inferences
about those observations and concepts across many areas of science.

8 Conclusion

This paper notes first that the effectiveness of mathematics in science appears
to some writers to be “mysterious” or “unreasonable”. Then reasons are
given for thinking that science is fundamentally a search for compression of
empirical data. At more length, several reasons are given for believing that
mathematics, and related disciplines, are, fundamentally, sets of techniques
for information compression via the matching and unification of patterns
(ICMUP), and their application. From there, it is argued that mathematics
has proved to be effective in science because, with other modes of expression,
it provides a means of achieving the compression of information which lies
at the heart of science.

The anthropic principle provides an explanation of why we find the world—
aspects of it at least—to be compressible.

ICMUP may be seen to be important in both science and mathematics,
not only as a means of representing knowledge succinctly, but as a basis for
scientific and mathematical inferences—because of the intimate relation that
is known to exist between information compression and concepts of prediction
and probability.

Since SP-multiple-alignment is a generalised version of ICMUP that en-
compasses six other versions described in the paper, and since SP-multiple-
alignment is central in the SP theory of intelligence, evidence presented in
this paper strengthens the already-strong position of the SP theory as an
explanatory principle across artificial intelligence, mainstream computing,
mathematics, human learning, perception, and cognition, and neuroscience.
Indirectly, it strengthens evidence for the many potential benefits and appli-
cations of the SP theory.

These ideas may also provide the basis for a “new mathematics for sci-
ence” with potential benefits and applications in science and science-related
areas.
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A The SP Theory of Intelligence and the SP

Computer Model

As noted in Section 2.2, much of the thinking in this paper derives from the
SP theory of intelligence and its realisation in the SP computer model. This
theory, which is described quite fully in [52] and more briefly in [54], aims to
simplify and integrate observations and concepts across artificial intelligence,
mainstream computing, mathematics, and HLPC.

Several other papers in the SP programme of research, most with down-
load links, may be found via www.cognitionresearch.org/sp.htm.

The SP theory is conceived as a brain-like system that receives New in-
formation via its senses and stores some or all of it, in compressed form, as
Old information.

In the SP system, all kinds of knowledge are stored as arrays of atomic
SP-symbols called SP-patterns, mentioned in Section 2.1. At present, the SP
computer model works only with one-dimensional SP-patterns but it is en-
visaged that it will be generalised to work with two-dimensional SP-patterns,
in addition to 1D SP-patterns.

A.1 SP-Multiple-Alignment

A key idea in the SP system is the concept of SP-multiple-alignment borrowed
and adapted from the concept of ‘multiple alignment’ in bioinformatics.

An example of a multiple alignment from bioinformatics is shown in Fig-
ure 4. Here, five DNA sequences have been arranged in rows and, by judicious
“stretching” of sequences in a computer, matching symbols have brought into
line. A ‘good’ multiple alignment is one with a relatively large number of
matching symbols.

The key difference between the concept of multiple alignment in bioin-
formatics and the concept of SP-multiple-alignment is that, in the latter, a
‘good’ SP-multiple-alignment is one that allows one New SP-pattern (some-
times more than one) to be encoded economically in terms of one or more
Old SP-patterns.

An example of an SP-multiple-alignment is shown in Figure 5. Here, the
New SP-pattern is the sentence ‘ t w o k i t t e n s p l a y’ shown
in row 0. Each of rows 1 to 8 shows an Old SP-pattern representing a
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G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 4: A ‘good’ multiple alignment amongst five DNA sequences. Repro-
duced with permission from Figure 3.1 in [52].

grammatical structure, which in rows 1, 3 and 5 is a word. The overall
effect of the SP-multiple-alignment is to analyse or parse the sentence into
its constituent parts, each one marked with its grammatical category.

0 t w o k i t t e n s p l a y 0

| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | |

4 NP D #D N | #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | V Vp Vr #Vr #V 6

| | | | | |

7 S Num ; NP | #NP V | #V #S 7

| | | |

8 Num PL ; Np Vp 8

Figure 5: The best SP-multiple alignment created by the SP computer model
with a store of Old SP-patterns like those in rows 1 to 8 (representing gram-
matical structures, including words) and a New SP-pattern, ‘ t w o k i t

t e n s p l a y’, shown in row 0 (representing a sentence to be parsed).
Adapted from Figures 1 in [53], with permission.

It turns out that the concept of SP-multiple-alignment within the SP
system can do much more than the parsing of sentences, as indicated in the
next subsection.

In connection with the concepts of pattern noted in Section 2.1, a New
SP-pattern like ‘t w o k i t t e n s p l a y’ in row 0 of Figure 5 may
be seen as an example of an ‘E-pattern’; an Old SP-pattern like ‘Vr 1 p l

a y #Vr’ in row 5 of the figure may be seen as an ‘R-pattern’; and an Old
SP-pattern like ‘S Num ; NP #NP V #V #S’ in row 7 of the figure may be
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seen as an example of an ‘A-pattern’. Old SP-patterns will normally include
‘code’ symbols, much like code symbols in Section 2.6.2 but, especially in the
more abstract SP-patterns, with a wider range of functions.

A.2 Strengths of the SP System

Distinctive features and advantages of the SP system compared with other
AI-related systems are described in [59].

Key strengths of the SP system, due mainly to the powerful concept
of SP-multiple-alignment, are: versatility in aspects of intelligence (unsu-
pervised learning, the analysis and production of natural language, pattern
recognition that is robust in the face of errors, pattern recognition at mul-
tiple levels of abstraction, several kinds of reasoning, and more); versatility
in the representation of knowledge (the syntax of natural languages; class-
inclusion hierarchies (with or without cross classification); part-whole hierar-
chies; discrimination networks and trees; and more); and seamless integration
of diverse aspects of intelligence and diverse kinds of knowledge, in any com-
bination. More detail may be found in [62] and in other sources cited there.

A.3 Potential Applications

The SP system has potential in several areas of application including: helping
to solve nine problems with big data; helping in the development of human-
like intelligence in autonomous robots; helping in the understanding of human
vision and in the development of computer vision; functioning as a database
system with intelligence; and more. There is more detail in [62, A.7] with
pointers to where fuller information may be found.

A.4 SP-Neural

Key concepts in the SP theory may be mapped on to structures of neurons
and their interconnections in a version of the SP theory called SP-neural [58].

B Related Issues

This section considers some issues related to the idea that mathematics may
be seen as a set of techniques for the compression of inforamtion, and their
application.
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B.1 The Apparent Paradox of Creating Redundancy
Via Information Compression

The idea that mathematics or computing is largely, perhaps entirely, about
compression of information may seem to conflict with the undoubted fact
that, with some simple mathematics or a simple computer program, it is
possible to create data containing large amounts of repetition or redundancy.

This issue and how it may be resolved is discussed in [60, Appendix C.1].

B.2 Redundancy Is Often Useful in the Storage and
Processing of Information

There is no doubt that informational redundancy—repetition of information—
is often useful. For example, it is standard practice in computing to maintain
two or more copies of important data, and redundancy in messages can pro-
vide a useful means of correcting errors. These kinds of uses of redundancy
may seem to conflict with the idea that information compression—which
means reducing redundancy—is fundamental in mathematics, computing and
cognition.

This issue and how it may be resolved is discussed in [60, Appendix C.2].
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