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Abstract Due to their flexibility, Gaussian processes (GPs) have been
widely used in nonparametric function estimation. A prior information about
the underlying function is often available. For instance, the physical system
(computer model output) may be known to satisfy inequality constraints
with respect to some or all inputs. We develop a finite-dimensional approx-
imation of GPs capable of incorporating inequality constraints and noisy
observations for computer model emulators. It is based on a linear combina-
tion between Gaussian random coefficients and deterministic basis functions.
By this methodology, the inequality constraints are respected in the entire
domain. The mean and the maximum of the posterior distribution are well
defined. A simulation study to show the efficiency and the performance of the
proposed model in term of predictive accuracy and uncertainty quantification
is included.

Keywords Gaussian processes - inequality constraints - finite-dimensional
approximation - uncertainty quantification - truncated Gaussian vector



1 Introduction and related work

In the estimation of nonparametric function, Gaussian processes (GPs) are
the most popular choices. This is because of their flexibility and other nice
properties. For instance, the conditional GP with linear equality constraints
is still a GP (Cramer and Leadbetter, 1967). Additionally, some inequal-
ity constraints (such as monotonicity and convexity) of output computer
responses are related to partial derivatives. The partial derivatives of the
GP remain GPs (Cramer and Leadbetter, 1967; Parzen, 1962). Incorporat-
ing an infinite number of linear inequality constraints (such as boundedness,
monotonicity and convexity) into a GP model is a difficult problem. This is
because the resulting conditional process is not a GP in general.

Constrained GPs (or kriging) has been studied in the domain of geostatis-
tics (Freulon and de Fouquet, 1993; Kleijnen and Van Beers, 2013). In the
literature, there are a variety of ways for incorporating linear inequality con-
straints into a GP emulator. In Abrahamsen and Benth (2001), the idea is
based on a discrete location approximation. In that case, the inequality con-
straints are satisfied in a finite number of input locations. For monotonicity
and isotonicity constraints, some methodologies are based on the knowledge
of the derivatives of the GP at some input locations (Golchi et al., 2015; Ri-
ihiméki and Vehtari, 2010; Wang and Berger, 2016). As mentioned in Wang
and Berger (2016), ‘only a modest number of virtual derivative points seems
to be needed to effectively impose the desired shape constraint’. In Lin and
Dunson (2014), Gaussian process projection is studied. A comparison with
spline-based models is included. Recently, a new methodology based on a
modification of the covariance function in Gaussian processes to correctly
account for known linear constraints is developed in Jidling et al. (2017).

For monotone function estimations, using B-splines was firstly introduced
by Ramsay (1988, 1998). The idea is based on the integration of B-splines
defined on a properly set of knots with positive coefficients to ensure mono-
tonicity constraints. Xuming and Peide (1996) take the same approach and
suggest the calculation of the coefficients by solving a finite linear minimiza-
tion problem. In Delecroix et al. (1996), nonparametric function estimation
in a general cone is studied. Their method is based on a projection into a
discretized version of the cone, using the theory of reproducing kernel Hilbert
spaces. In Shively et al. (2009), a Bayesian approach to estimate nonpara-
metric monotone functions using restricted splines is developed. In Saarela
and Arjas (2011); Tutz and Leitenstorfer (2007), the generalization of mono-
tonic regression to multiple dimensions are studied.

The methodology developed in the present paper is quite different. It is
based on a finite-dimensional approximation of GPs (or a GP approxima-



tion) that converges uniformly pathwise. It can be seen as a linear combina-
tion between deterministic basis functions and Gaussian random coefficients,
where the coefficients are not independent. The main idea is to choose the
basis functions such that the infinite number of inequality constraints on
the GP approximation are equivalent to a finite number of constraints on
the coefficients. Therefore, the simulation of the conditional GP approxima-
tion is reduced to the simulation of a Gaussian vector (random coefficients)
restricted to convex sets which is a well-known problem with existing algo-
rithms (Botts, 2013; Chopin, 2011; Maatouk and Bay, 2016; Philippe and
Robert, 2003; Robert, 1995).

The article is structured as follows. In Section 2, Gaussian processes
for computer experiments, their derivative processes and the choice of co-
variance functions are briefly reviewed. In Section 3, a finite-dimensional
approximation of GPs capable of incorporating inequality constraints and
noisy observations is developed. Section 4 shows some simulated examples
of the finite-dimensional approximation of GPs conditionally to inequality
constraints (such as boundedness and monotonicity) and noisy observations
in one and two dimensions. Section 5 investigates the performance of the
proposed model in terms of predictive accuracy and uncertainty quantifica-
tion.

2 Gaussian processes for computer experiments

The following model is considered
y=f(z), zeR

where the simulator response y is assumed to be a deterministic real-valued
function of the d-dimensional variable & = (z1,...,24) € R%. The true func-
tion is supposed to be continuous and evaluated at data of size n (design of
experiments) given by the rows of the n x d matrix X = (:I:(l), ey w("))T,
where ¥ € R4, i = 1...,n. In many practical situations, it is not possible
to get exact evaluations of y at the design of experiments, but rather point-
wise noisy measurements. In such case, an approximate response y(X) + € is
available, where ¢ ~ N(0, 02, I) with 02, the noise variance and I the iden-
tity matrix. To simplify notations, we denote §; = y(x®) + ¢, i =1,...,n.
In the statistical framework, y is viewed as a realization of a continuous GP

Z(x) =n(x) +Y(x), zcDcCR

where D is a compact subset of R? and the deterministic continuous function
n : x€R' — pn(x) € R is the mean and Y is a zero-mean GP with
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continuous covariance function
K : (x,)eDxD — K(z,2')eR

In that case, the GP can be written as Z ~ GP (n(x), K(x,’)). Condition-
ally to noisy observations ¢4 = (71, ...,%.) ', the process remains a GP

Z(x) | Z(X) =9 ~GP (C(2),m*(2)),

where

N

(x) = n(z) + k(@) (K+ op D)™ (§ — 1) (1)

7 (z) = K(z, @) — k(z)" (K+ 0.1 (),
and p = n(X) is the vector of trend values at the design of experiments,
Kij = K(x®, 29), 4,5 = 1,...,n is the covariance matrix of Z(X) and
k(x) = K(x, X) is the vector of covariance between Z (x) and Z (X). Ad-
ditionally, the covariance function between any two inputs is equal to

C(x,x') = Cov(Z(x), Z(x) | Z(X) =9) = K(x,x')—k(z) " (K+o2, I " k(z),

noise

where C'is the covariance function of the conditional GP. The mean ((x) is
called kriging mean prediction of Z(x) based on the computer model outputs
Z (X) =y (Rasmussen and Williams, 2006).

2.1 The choice of covariance function

The covariance function K controls the smoothness of the kriging metamodel.
It must be chosen in the set of definite and positive kernels. In Table 1, some
popular covariance functions used in kriging methods are given. Notice that
these covariance functions are placed in decreasing order of smoothness, the
squared exponential covariance function corresponding to C* function (i.e.,
the space of functions that admit derivatives of all orders) and the exponential
covariance function to continuous one (Rasmussen and Williams, 2006).

2.2 Derivatives of Gaussian processes

In this subsection, the paths of the GP (Z(x))zegae are assumed to be of class
CP (i.e., the space of functions that admit derivatives up to order p). This
can be guaranteed if K is smooth enough, and in particular if K is of class
C® (Cramer and Leadbetter, 1967). Since differentiation is a linear operator,



Table 1: Some popular covariance functions used in kriging methods.

Name Expression Class
Squared exponential % exp (— (x;;/F) C™
Matérn 5/2 o? (1 + \/5|f9*l“’\ + 5(1379:;/)2) exp —@ C?
Matérn 3/2 o? <1 + @) exp (_%> Cl
Exponential o2 exp (J“qu) o0

the order partial derivatives of a GP remain GPs (Cramer and Leadbetter,
1967; Parzen, 1962) and

oP

P _
Cov (67 Z(x®Y. 57 7(z0) O o) )
ov '), 0! Z(x = —— Kz, V).
(@, 2),08,26) — oK, a)

3 Finite-dimensional approximation of GPs

Without loss of generality the input set is supposed the unit hypercube
D = [0,1]%. The input set D is discretized uniformly to (N + 1) knots.
For example, in one dimension where D = [0, 1], the discretization can be
summarized as follow: 0 =tng,...,txn = 1. Let Y ~ GP(0, K(x,x')) be a
zero-mean GP with covariance function K. The finite-dimensional approxi-
mation of Gaussian processes is defined as

N
YN<w) = Z Y<tN,Z'17 S 7tN7id> H Piy, (SL’m) <2>
i1 ey g=0 me{l,....d}
= Gityia H i (), @ €D CR,
me{l,...,d}
where (¢, .i,) = (Y(tniy, .- tni,))" is a zero-mean Gaussian vector with

covariance matrix I'V and ¢;_ is the hat function associated to the knots

tNim: i (@) = O((x =N, ) /AN), where Ay = 1/N and ¢(x) = (1 — |2]) L(jz<1), @ €
R. The value of any basis function at any knot is equal to Kronecker’s Delta
function (¢, (tn, ) = Oipsi, s Gmsim = 0,...,N), where &;,; , is equal to

one if 4,, = i,y and zero otherwise. The covariance function Ky (x,x’) of the
Gaussian process approximation Y is equal to

Ky(z, ') = &(x) TN O(x),
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where ®(x) = ([[.cq1. a4y Pim(®m))in,- This type of covariance functions
are very similar to ones used in Cressie and Johannesson (2008), where T'V
is a square positive definite matrix estimated from the data, which it is
not the case in the present paper. By this approach (2), simulate the GP
approximation is equivalent to simulate the Gaussian vector (i, i, )iy...ig
restricted to

YN(m(Z)):yl+€z:gla izl)"'ana
(Civoig)izoiy € Coeoets

where ¢; N (0,02%,.) and Ceoet is the space of coefficients which ver-
ify some linear constraints. Next, we show how C,.; can be computed in
each inequality constraints case. In this paper, boundedness, monotonicity
and convexity constraints are considered but the methodology can be easily
adapted to any convex sets.

Notice that, model (2) does not correspond to a truncated Karhunen-
Loeve expansion Y (z) = ]28 Zjej(x); see, for example, Rasmussen and
Williams (2006); Trecate et al. (1999) since the coefficients (; are not inde-
pendent (unlike the coefficients Z;) and the basis functions ¢; are not the
eigenfunctions e; of the Mercer kernel K (x,2’).

3.1 Boundedness constraints

The one dimension is a particular case of the two dimensional one. The input
x = (11, 72) € R? and without loss of generality in the unit square D = [0, 1]2.
The real function is supposed continuous and belong to the convex set

C={feC (D) : —0<a< f(x)<b< 400, € D}.

The finite-dimensional approximation of GPs (Y (:1r:))ac€D is defined as

N
YN<x17x2> - Z Y<tNZ7tN]>¢Z('r1 (b_] x2 Z Cl,j(bl T ¢]<x2)
i,7=0 1,j=0

where (;; = Y(tni ty;) and (¢;); are the hat functions. Then, Y is
bounded between a and b with respect to the two inputs if and only if the
(N + 1)? random coefficients ¢; ; € [a,b]. This is because Y is a piecewise-
linear function. In that case, the space of inequality constraints on the coef-
ficients is equal to

Ccoef:{(gz,j),jeRN+l)2 Cz] [ ] Za]:()aaN}
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Remark 1. The multidimensional case is an easy extension of two dimen-
sional one. The input £ € D C [0,1]%. The model defined in (2) is bounded
between a and b (i.e., YN (x) € [a,b]) if and only if the random coefficients

(Cih---,id) = (Y<tN7i17 s 7tN7id>> S [a’v b]

Proposition 1. If the realizations of the original GP'Y are continuous, then
the finite-dimensional approzimation of GPs Y is almost surely converge
uniformly to'Y when N tends to infinity.

Proof. To prove the almost sure uniform convergence of the approximating
random process YV to the limiting process Y, write more explicitly, for any
we

YN(J?M):Z (tnj;w)d;(x), © €D =[0,1].

Using the fact that ¢;(z) > 0 and ij:o ¢j(x) =1, for all x € D, we get

YN (zyw) = Y(z;w)| = Y(tnjw) = Y(z;w))d;(x)

M2“M2

< sup Y (2';w) — Y (z;w)| ¢;(z)

j=0 lz—a'|<AN

= sup  |[Y(2hw) = Y(zw)l.

lz—a'|<ANn
Thus, one can deduce that

VN (z;w) = Y (a; — 0
sup [Y¥(;0) — Y (@5w)| 2

with probability 1, since the sample paths of the process Y are uniformly
continuous on the compact interval D. ]

3.2 Isotonmicity constraints

The isotonicity constraints in two dimensions are considered. The input
x = (71, 72) € R? and without loss of generality in the unit square D = [0, 1]%.
The real function f is supposed to be monotone (non-decreasing) with respect
to the two inputs

v <z and 1<z, = f(ag,3) < f(a], ).



The finite-dimensional approximation of GPs (YN (:13))9361)2 is defined as

N
YN (2, 29) = Z Y(tni, tng)@i(z1) i (z2) Z Gijti(w1)dj(w2),  (3)
2,7=0 2,7=0

where (;; = Y(tni,tn;) and (¢;); are the hat functions. Then, Y* is non-
decreasing with respect to the two inputs if and only if the (N + 1)? random
coefficients (; ; verify the following linear constraints:

L Gy < Gjand Gj1 <Gy, 6,7 =1,...,N;
2. Gic10 <G, t=1,...,N;
3. Coj-1<¢Co , j=1,...,N.

Remark 2 (Isotonicity with respect to one variable). If the function is non-
decreasing with respect to the first variable only, then model (3) is non-

decreasing with respect to x1 if and only if the random coefficients verify:
Q_Lj SQJ‘, 1= ]_,...,N cmdj:O,,N

Remark 3 (Monotonicity constraints). For monotonicity constraints, the
finite-dimensional approrimation of GPs can be written as

N
YN(2) = Y(0) + ) Y (tn ) 7+Zgj rel0,1], (4)
=0
where v = Y(0), ¢; = Y'(tny) and Ij(x) = [5 ¢;(t)dt. In that case, Y

1s monotone if and only if the mndom coeﬁiczents ¢; are all nonnegative.
In fact, since (I;) are non-decreasing functions and ((;) are nonnegative,
then YN is non-decreasing. Conversely, if Y is non-decreasing, then (; =
(YNY(tn;) > 0. Thus, the space of inequality constraints on the coefficients
18
Ccoef: {(’Yag) € |RN+2 : C] Zoa jzoa"'aN}a

where ¢ = (Co,...,(n)". For all z,2' € D = [0,1], the covariance function
of YV is equal to

Ky(z,2') = Cov (Y¥(z),Y"(2)) = K(0,0) + Z %—I;(t]vl, 0)I;(x)
+ 3T 0 ) 0) + Y (st ()



3.3 Convexity constraints

For convexity in two dimensions, the finite-dimensional approximation of

GPs defined as

N
YNy a0) = Y Vitn trg)di(w1)d;(w2) Z Gi (1) (w2),
i,7=0 1,j=0

is convex with respect to the two inputs if and only if the random coefficients
verify

1. Gij—Ci—1,5 < Cit1,j—Ci,j and Gij—Cij—1 < Gij+1—Gi,j ’ i,j =1,..., N — 1;
tNi—tNi—1 — tNi+1—tN tNj—tNj—1 — tN,j+1—tN,j
9 Ci,0—Ci—1,0 < Ci+1,0—Ci0 i = 1’ N -1

) I

CANi—tNi—1 — INi+1— NG

€05 =601 $0.+1=Co.5 j=1,...,N—1.

B e 2 e A

Remark 4 (Convexity in one dimension). If the realizations of the origi-
nal GP'Y are assumed to be at least twice differentiable. Then, the finite-
dimensional approximation of GPs can be defined as

V(@) =Y (0) +Y(0)r + 3 V" (s )s(o) = 7+ K+ D G (o)

where v =Y (0), K =Y'(0) and (; =Y"(tn,;). The basis functions (p;); are
the two times primitive functions of ¢;

_ /0 (/Otgbj(u)du) dt, reD.

In that case, Y™ is convez if and only if the random coefficient Y (tx ;) are
all nonnegative. Thus, the space of inequality constraints on the coefficients
Ceoet 18 equal to

Ccoef:{(’Ya’%ag)elRN—’—g : Cjzoa jzoa"'aN}a

where ¢ = ((o,...,Cn)". The covariance function of the GP approzimation
15 equal to

Ky(z,2') = (l,x, cp(:p)T) Ny (1,x’,<p(:p’)T)T,
where () = (¢o(x), ..., on(x))" and

2
K(0,0) 58(0,0) 575 (0, twy)
- 2 3
FN = %—5(0, O) aaxal; (07 O) 8J:%(K) (0 tN,J) ’
82K BSK N
o (tN,i, O) 5200 (tN,ia 0) Fi,j 0<i,j<N
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and

MK

N .o
r i COV(Y”(tNJ‘), Y”(tN,])) - W(tl\ﬂia tN,j)a 1) = 07 R N.

3.4 Simulated paths

This subsection is devoted to the sampling scheme of the proposed model
conditionally to inequality constraints and noisy observations. To simplify
notations, the finite-dimensional approximation of GPs in one dimension is
considered

YN(@) =) Y(ty,)e(a Z Goi(x), xe€D.

J=0

In this paper, the GP is observed with error. The space of noisy observations
is defined as

N
Teoer = {C € [RNJFI : Zgj(bj(x(l)) = giu 1= 17 .. -un}
7=0
— {CeRY AC=g),

where §; = yi + €, i=1,...,n, & "= N(0,02,.) and Ai; = ¢j(z). The
set of inequality constraints on the coefficients Cioef is a convex set (for in-
stance, the nonnegative quadrant ¢; > 0, 7 = 0,..., N for non-decreasing
constraints in one dimension). The sampling scheme can be summarized in
two steps: first, the conditional Gaussian vector ¢ with only noisy observa-

tions is simulated

C | AC = g ~ N ((AFN) (AFNAT + UnmseI) 1:’;) FN - (AFN) (AFNAT + Unmse ) 1AFN) .

Second, by an improved rejection sampling (Maatouk and Bay, 2016), only
the random coefficients in the convex set C.,f are selected. Now, the three
estimates used in the illustrative examples (Section 4) are defined.

Definition 1. The so-called unconstrained mean is defined as
m¥(z) = E(YN(2) | YN(@D) =i, i =1,...,n) = ¢(2) "¢,
where & = E (C | ¢ € Leoet) = TNAT (ATNAT 462, 1) §.

10



Similarly to the kriging mean of the original GP Y (Eq. (1), Z =Y
when 7 is the null function), the kriging mean m® of the finite-dimensional
approximation of GPs YV can be written as

m(z) = kon(2)" (Kn + 025 0) 7 4,
where ky(z) = Ky(z,X) = (AI'V¢(z)) is the vector of covariance be-
tween YV (z) and YV (X) and (Ky);; = Kn(29,20)) = (ATNAT)M, i,j =

1,...,n is the covariance matrix of Y~ (X).

Remark 5. The unconstrained mean m™ (x) respects inequality constraints
in the entire domain if and only if the conditional Gaussian vector to only
noisy observations (; lies inside the convexr set Coer.

Definition 2. The mean of the posterior distribution of Y conditionally to
inequality constraints and noisy observations is defined as

mf;\;s(x) =F (YN("E) } YN(x(i)) =i, (€ Ccoef) = gf)(l‘)TCpos,

where Coos = E(C | € € Leoer N Ceoer) is the mean of the truncated Gaussian
vector which is computed from simulations.

Finally, let 2 be the maximum of the probability density function (pdf)
of ( restricted to Ioer N Ceoer. It is the solution of the following convex
optimization problem

[ =arg min (%H (FN)lx), (5)

T€lcoetNCeoet

where I'V is the covariance matrix of the Gaussian vector ¢. The quadratic
optimization problem (5) is equivalent to

1 _
[ = arg min (éxT (Tona) Yo+ CITx) , (6)

xeccoef

where T'V . is the covariance matrix of the conditional Gaussian vector
¢ | AC = g. In fact, pu representes the maximum of the pdf of the Gaussian
vector ( restricted to Ieoer M Ceoer and its numerical calculation is a standard
problem in the minimization of positive quadratic forms subject to convex
constraints (Boyd and Vandenberghe, 2004; Goldfarb and Idnani, 1983). Let
us mention that in all simulated examples illustrated in this paper, the R-
package ‘solve.QP’ described in Goldfarb and Idnani (1983) is used to solve
the quadratic convex optimization problems (5)-(6).
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Definition 3. The mazimum of the posterior distribution of Y condition-
ally to inequality constraints and noisy observations is defined as

N
Mé\([)S<I) = Z,Uj(bj(x), T € [Rdv
=0

where = (po, ..., pun)" is computed by (6).

Remark 6. The mazimum a posterior: estimate Méﬁs does not depend on
the variance hyper-parameter o of the covariance function K as well as on
the simulations but depends on the length hyper-parameters of the covariance

function @ = (04, ...,0,).

Remark 7. In the case where the GP is observed without error (i.e., with
noise-free data), the maximum a posteriori estimate Mé\gs converges uni-
formly to the constrained interpolation function solution of the following con-
vex optimization problem

. 2
i 1Ml
where H is the reproducing kernel Hilbert space (RKHS) associated to the
positive type kernel K (Aronszagn, 1950; Berlinet and Thomas-Agnan, 2004),
I is the set of functions verify interpolation conditions and the convex set C' is
the space of functions verify inequality constraints (Bay et al., 2016, 2017).
This generalizes to the case of interpolation conditions and inequality con-
straints the well known correspondence established by Kimeldorf and Wahba
(1970) between Bayesian estimation on stochastic process and smoothing by
splines.

In Algorithm 1, the sampling scheme of the proposed model is described.
It is based on the rejection sampling from the Mode (RSM) algorithm to
simulate the Gaussian vector ( restricted to the convex set Ioer N Ceoef (see,
Maatouk and Bay (2016) for more details).

4 Illustrative examples

The goal of this section is twofold: first, to illustrate the condition simula-
tion of the GP approximation developed in the present paper with certain
constraints such as boundedness, positivity and monotonicity in one and two
dimensions and noisy observations. Second, to describe the two different
cases in the simulation.

12



Algorithm 1: Sampling scheme
Initialization:
C ¢ C1coef; C — Ccurrent
1 < unif; 0 < ¢
while unif > ¢ do
C < Ccurrent
while Ccurrent ¢ Ccoef do
| N (:uv P({\gnd) «— Ccurrent
end
eXp (MT(Fé\c[)nd)il(M - CI - Ccurrent) + (Ilrrent(ré\c[)nd)ilﬁ) —t
U(0,1) + unif
end

e The unconstrained mean respects the constraints and then coincides
with the maximum of the posterior distribution.

e The unconstrained mean does not respect the constraints, then the
unconstrained mean and the maximum of the posterior distribution
are different.

The Matérn 3/2 and squared exponential (or Gaussian) covariance functions
are used (Table 1).

4.1 Boundedness constraints

The real function is supposed to respect boundedness constraints
C={rec0,1]) : —co<a< flz)<b<+oo, z€[0,1]}. (7)

The constrained data of size n = 10 (black points in Fig. 1) are not taken
from constrained functions. The noise variance is fixed to o2, = 1.1%
Additionally, the Matérn 3/2 covariance function is used with the hyper-
parameters fixed to (0, 0) = (0.3, 10).

In Fig. 1a, we generate one hundred sample paths taken from model (2)
with d = 1 and N = 50 conditionally to positivity constraints (i.e., a = 0
and b = +oo in (7)). The simulated trajectories (gray lines) respect posi-
tivity constraints in the entire domain as well as the mean of the posterior
distribution. The unconstrained mean and the maximum of the posterior
distribution coincide and respect positivity constraints in the entire domain
as well: it corresponds to the situation where the conditional Gaussian vec-
tor (; lies inside the acceptance region Cioer (Remark 5). In Fig. 1b, the

13



= = unconstrained mean o |
—— mean a posteriori
A maximum a posteriori

Positive GP
Bounded GP

= = unconstrained mean

s | —— mean a posteriori
! A maximum a posteriori

T T
0.0 02 0.4 06 08 1.0 0.0 02 0.4 06 08 1.0

(a) (b)

Figure 1: The GP approximation with positivity constraints (a) and bound-
edness constraints (b). The unconstrained mean coincides with the maximum
a posteriori in (a) but not in (b).

boundedness constraint is considered (i.e., @ = —20 and b = 20 in (7)). The
simulated trajectories (gray lines) respect boundedness constraints in the
entire domain as well as the mean and the maximum of the posterior distri-
bution, contrarily to the unconstrained mean. This is the case where (7 lies
outside the acceptance region Cpoef (Remark 5). This numerical result can be
seen as a generalization of the Kimeldorf-Wahba correspondence Kimeldorf
and Wahba (1970) in the case of inequality constraints and errors measure-
ments between Bayesian estimation on stochastic process and smoothing by
splines.

4.2 Monotonicity constraints

The monotone (non-decreasing) function f(z) = 0.32(x+ sin(z)), x € [0, 10]
used in the literature to compare different models is considered. It is evalu-
ated at data of size n = 50 chosen randomly on [0, 10] (black points in Fig. 2)
with standard deviation o, = 1.

In Fig. 2, we generate one hundred sample paths taken from model (4)
with N = 50 conditionally to monotonicity (non-decreasing) constraints.
The squared exponential covariance function is used with hyper-parameters
(0,0) = (2.5,1). Notice that, the simulated trajectories (gray lines) are non-
decreasing in the entire domain as well as the mean and the maximum of
the posterior distribution, contrarily to the unconstrained mean. It corre-
sponds to the case where the conditional Gaussian vector (; lies outside the

14



Monotone GP

° = = unconstrained mean
o -
. [ —— mean a posteriori
A maximum a posteriori

T T T T T T
0 2 4 6 8 10

X

Figure 2: The GP approximation (4) with monotonicity constraints for sinu-
soidal function f(z) = 0.32(x + sin(z)). The unconstrained mean does not
coincide with the maximum a posteriori.

acceptance region Ceoer (Remark 5).

4.3 Isotonicity in two dimensions

In two dimensions, the monotone (non-decreasing) function with respect to
the two inputs used in Saarela and Arjas (2011); Shively et al. (2009)

f(37171’2) = 1{(x7171)2+(1271)2<1}{1—(371—1)2—(552—1)2}1/27 (1’17372) € [07 1]2

is considered. It is evaluated at data of size n = 100 chosen randomly on
[0,1]* with standard deviation o, = 0.1. In Fig. 3, the two-dimensional
squared exponential covariance function is used

: (21 — )? (z — 75)°
K(x,z') = 0% exp <_T%1 X exp —TSQ , (8)

where the variance hyper-parameter ¢ = 1 and the length hyper-parameters
(01,62) = (0.02,0.17) are estimated using cross-validation methods (Maatouk
et al., 2015). Figure 3 shows the maximum of the posterior distribution
using model (3) with N = 10 and the associated contour levels. It respects
monotonicity (non-decreasing) constraints with respect to the two inputs.

Remark 8. For monotonicity with respect to only one variable, model (3)
(with noise-free data) has been used in Cousin et al. (2016) to estimate the
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Figure 3: The maximum of the posterior distribution drawn from model (3)
respecting monotonicity (non-decreasing) constraints for the two inputs, and
the associated contour levels.

discount factor surface as a function of time-to-maturities and quotation
dates. It is a monotone (non-increasing) function with respect to time-to-
maturities at each quotation date.

5 Simulation study

In this section, a comparison between the finite-dimensional approximation
of GPs developed in the present paper and models deal with monotonicity
and isotonicity constraints is shown. The real non-decreasing functions pro-
posed by Holmes and Heard (2003); Neelon and Dunson (2004) and used in
a comparative study by Shively et al. (2009); Lin and Dunson (2014) are
considered

e flat function fi(x) =3, z € (0,10];

sinusoidal function fy(x) = 0.32{x + sin(z)}, = € (0, 10];

step function f3(z) =3 if z € (0,8] and f3(x) =8 if x € (8, 10];

linear function fy(x) = 0.3z, x € (0, 10];

exponential function f5(z) = 0.15exp(0.6z — 3), = € (0, 10];

logistic function fg(x) = 3/{1 + exp(—2x + 10)}, z € (0, 10].
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Table 2: Length hyper-parameter estimates using a suited cross-validation
method.

Flat Step Linear Exponential Logistic Sinusoidal
6 100.0 0.8 8.6 1.0 2.0 2.5

Table 3: Root-mean-square error (x 100) for data of size n = 100. The
results are obtained by repeating the simulation 5000 times.

Flat Step Linear Exponential Logistic Sinusoidal
Gaussian process 15.1 271  16.7 19.7 25.5 21.9
Gaussian process projection 11.3 253 16.3 19.1 22.4 21.1
Regression spline 9.7 285  24.0 21.3 19.4 22.9
Gaussian process approximation 8.2  41.1 15.8 20.8 21.0 20.6

These functions are supposed to be evaluated at data of size n = 100
with standard deviation opese = 1. The root-mean-square error (RMSE)
of the estimates is computed at the one hundred x values taken uniformly
(equidistant) in the interval (0, 10]:

1 <& . 2

RMSE =, 3 (£l = F@) .
where f(z) is the estimate of f(z) and z; are the n equally-spaced z-values.
For the GP approximation developed in this paper, the maximum a posteriori
estimate (Definition 3) is used as an estimate of f(z), where N is fixed to
fifty. Let us recall that this estimate depends only on the length hyper-
parameter . The squared exponential covariance function (Table 1) is used
in the simulation, with ¢ fixed to 1 and # estimated using the suited cross-
validation method (Maatouk et al., 2015; Cousin et al., 2016). Table 2 shows

the values of the parameter estimation 6.

In Table 3, the RMSE of the estimates is calculated for the finite-dimensional

approximation of GPs, and it is compared with results of Gaussian process
with and without projection given in Lin and Dunson (2014) and results of
the regression spline method given in Shively et al. (2009). To ensure stability
of results, the simulations have been repeated 5000 times. Table 3 shows that
the finite-dimensional approximation of GPs outperforms regression splines
(resp. Gaussian process with and without projection) except in the step and
logistic cases (resp. in the step and exponential cases).

Remark 9. Let us recall that the finite-dimensional approximation of GPs
developed in the present paper is supposed centered (i.e., mean-zero). To be

17



—— 95% credible intervals
- - - true sinusoidal function
----- maximum a posteriori -

Figure 4: The 95% credible intervals of the Gaussian process approximation
together with the sinusoidal function, the observations (grey crosses) and the
maximum a posteriori estimate.

coherent, the results presented in Table 3 should be computed when the output
values are normalized

glzyl_ga izla"'ana

where y; is the normalized value of the ith output observation and y =
1/n 7" y; is the mean of the output observations. In that case, the finite-
dimensional approximation of GPs outperforms regression spline and Gaus-
sian process with and without projection except in the step case.

Now, the uncertainty quantification is investigated. The monotone (non-
decreasing) function f(z) = 0.32(x+sin(zx)), = € (0, 10] (sinusoidal function)
is considered (dashed lines in Fig. 4). It is evaluated at data of size n =
100 distributed randomly on (0, 10] (grey crosses in Fig. 4), with standard
deviation e = 1.

In Table 4, the percentage of the empirical coverage of 95% pointwise
credible intervals of GP approximation is computed by repeating the simula-
tion 1000 times. The coverage for Gaussian process approximation is closer to
the nominal 95% than is that of the Gaussian process at most of input loca-
tions chosen by Lin and Dunson (2014). Additionally, the finite-dimensional
approximation of GPs outperforms Gaussian process with projection at some
input locations and slightly bad at the other locations.

To compare the proposed approach with the methodology based on the
knowledge of the derivatives of the GP at some input locations, the logistic
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Table 4: Empirical coverage (%) for 95% credible intervals at different x
values. The simulations are repeated 1000 times.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 )

Gaussian process 97.3 94.6 91.8 88.0 90.5 952 96.8 91.0 86.5 86.3
Gaussian process projection 94.1 954 92.0 89.5 93.1 946 96.0 90.0 89.0 86.9
Gaussian process approximation 97.0 93.0 89.6 90.1 94.1 97.1 95.5 89.5 &85.4 86.7

—— root-mean-square error
= = RMSE=0.062
+ RMSE=0.077

root-mean-square error
0.08 0.09
I

0.07

0.06

60 80 100 120 140 160 180 200

sample size

Figure 5: The root-mean-square error at different sample sizes together with
the optimal values obtained in Riihiméki and Vehtari (2010).

artificial function f(z) = 2/(1+exp(—8x+4)), x € [0, 1] defined in Riihiméki
and Vehtari (2010) is considered. This function is supposed to be evaluated at
data of size n with standard deviation 0, = 0.5. The squared exponential
covariance function is used.

In Riihiméki and Vehtari (2010), the RMSE is equal to 0.077 (resp. 0.062)
for n = 100 (resp. n = 200). In Fig. 5, the root-mean-square error using
the GP approximation is illustrated at different sample sizes together with
the optimal values obtained by Riihiméki and Vehtari (2010). Notice that,
we just need data of size n = 160 to reach the optimal value 0.062 obtained
by Riihiméki and Vehtari (2010). The results are based on 1000 simulation
replicates.

The isotonicity (non-decreasing) functions with respect to the two inputs
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Table 5: The summary of length hyper-parameter estimates in two dimen-
sions using cross-validation methods.

Ji Ja /3 Ja s J6

(6;,05) (0.17,0.38) (0.46,1.32) (0.18,0.22) (0.38,0.01) (0.08,0.09) (0.02,0.17)

Table 6: Mean square error (x 100) for data of size n = 1024 with standard
deviation op.ise = 0.1. The results are based on 100 simulation replicates.

fi fo 3 fo fs  fe
Gaussian process projection 0.04 0.02 0.05 0.20 0.19 0.10
Gaussian process approximation 2.86e-3 4.40e-4 7.09e-3 0.55 0.34 0.04

used in Lin and Dunson (2014); Saarela and Arjas (2011) are considered

i ) = V71, (1,22) € [0,1]%

fa( ) = 0.521 + 0.519, (11,25) € [0,1]%

J3( ) = min(xy, z5), (21,22) € [0,1]%

fa(z1,2) = 0.2521 + 0.2522 4+ 0.5 X Ly 1451y, (21, 22) € [0,1]%
fs( ) = 0.2521 + 0.2525 4+ 0.5 X Limin(a1,20)>5}, (21, 22) € [0, 1]%
Jo( )

- 1 {(z1—-1)24(z2—1)2 <1}\/1 - xl - 1) (xQ - 1) ) ({L‘l,l‘g) € [07 1]2

The two-dimensional squared exponential covariance function (8) is used,
with o fixed to 1 and (0, 6,) estimated using the suited cross-validation
method (Maatouk et al., 2015; Cousin et al., 2016). Table 5 shows the values
of the parameter estimation (6;,6s).

In Table 6, the mean square error (MSE) of the estimates is calculated for
the finite-dimensional approximation of GPs, and it is compared with results
of Gaussian process projections given in Lin and Dunson (2014). Table 6
shows that the finite-dimensional approximation of GPs outperforms Gaus-
sian process projections except in f; and f5 cases. This is very similar to the
one-dimensional case results, because of the similarity of f, and f5 functions
to the step case.

T1,T2

6 Real application: nuclear safety

In this section, the performance of the proposed model has been investigated
using the real-word data provided by the ‘Institut of Radioprotection and
Nuclear Safety’ (IRSN), France. The nuclear reactor of the uranium sphere
called ‘Lady Godiva device’ situated at Los Alamos National Laboratory
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(LANL), New Mexico, U.S. has been studied. The nuclear reactor of the
sphere is increasing with respect to the two considered input parameters:
its radius (between 0 and 20 cm) and density (between 10 and 20 g/cm?).
The one hundred and tweenty one observations defined on [0, 20] x [10 x 20]

Vi %
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%
»"‘

<>
<>

<

>
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T
6%“'9" <
SSose R

Figure 6: (a) 3D visualization of Godiva’s data. (b) the maximum of the pos-
terior distribution with 121 observations. (c) the unconstrained GP model
with fives observations. (d) the constrained GP model with fives observa-
tions.

(see Figure 6a) have been used to show the efficiency of the proposed model
in term of prediction and to compare it with the unconstrained Gaussian
process model. The idea is to fix some of these observations and to test
the quality of prediction of the proposed estimator at the other ones. The
squared exponential covariance function has been used. In Figure 6c, we
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fix five observations using maximin Latin hypercube and we plot the un-
constrained mean with the hyper parameters estimated by cross-validation
methods. Notice that the unconstrained mean does not respect monotonicity
constraints in the entire domain. In Figure 6d, the same observations have
been used to plot the maximum of the posterior distribution. The hyper pa-
rameters (01, 0s) have been estimated by the suited cross-validation method
Maatouk et al. (2015). We remark that with few observations, the proposed
estimator verifies monotonicity constraints in the entire domain. Finally, the
()? criteria has been used to evaluate the quality of predictions

1— E:L(f(ﬂ?z) _ f(ﬂfz))Q
S (f(z) =g)* 7
where f is the proposed estimator, 7 is the mean of the observations and

n; is the number of tested data. The constrained model outperforms the
unconstrained one with Q2 equal to 0.98 versus 0.69.

Q=

7 Conclusion

In this paper, a finite-dimensional approximation of Gaussian processes to
incorporate infinite number of inequality constraints (such as boundedness,
monotonicity and convexity) and noisy observations is developed. It is based
on a linear combination between Gaussian random coefficients and determin-
istic basis functions. The basis functions are chosen such that the infinite
number of inequality constraints on the Gaussian process approximation are
equivalent to a finite number of constraints on the coefficients. Consequently,
simulate the conditional approximating process is equivalent to simulate a
truncated Gaussian vector restricted to convex sets. By this methodology,
the mean and the maximum of the posterior distribution are well defined. To
show the performance of the proposed model in term of predictive accuracy
and uncertainty quantification, a comparison with several recently models
dealing with the same constraints is shown.
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