
HAL Id: hal-01533051
https://hal.science/hal-01533051v4

Preprint submitted on 13 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

P versus NP
Frank Vega

To cite this version:

Frank Vega. P versus NP. 2017. �hal-01533051v4�

https://hal.science/hal-01533051v4
https://hal.archives-ouvertes.fr

P versus NP
Frank Vega1

1 Joysonic, Uzun Mirkova 5/Belgrade, Serbia
vega.frank@gmail.com

Abstract
P versus NP is considered one of the great open problems of science. This consists in knowing
the answer of the following question: Is P equal to NP? This incognita was first mentioned
in a letter written by John Nash to the National Security Agency in 1955. However, a precise
statement of the P versus NP problem was introduced independently in 1971 by Stephen Cook
and Leonid Levin. Since that date, all efforts to find a proof for this huge problem have failed.
We prove P = NP ⇒ ∃k ∈ N : TIME(n k

2) = NTIME(n k
2). However, we demonstrate that

∀k ∈ N : TIME(n k
2) 6= NTIME(n k

2). In this way, we show that P 6= NP .

1998 ACM Subject Classification F.1.3.3: Relations among complexity classes

Keywords and phrases P, NP, TIME, NTIME, Minimum

1 Issue

P versus NP is a major unsolved problem in computer science [3]. It is considered by many
to be the most important open problem in the field [3]. It is one of the seven Millennium
Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for
the first correct solution [3].

In 1936, Turing developed his theoretical computational model [1]. The deterministic
and nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [6]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [6].

Another huge advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [2].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [2].

The set of languages decided by deterministic Turing machines within time f is an
important complexity class denoted TIME(f(n)) [6]. In addition, the complexity class
NTIME(f(n)) consists in those languages that can be decided within time f by nondeter-
ministic Turing machines [6]. The most important complexity classes are P and NP . The
class P is the union of all languages in TIME(nk) for every possible positive constant k [6].
At the meantime, NP consists in all languages in NTIME(nk) for every possible positive
constant k [6].

The biggest open question in theoretical computer science concerns the relationship
between these classes: Is P equal to NP? In 2002, a poll of 100 researchers showed that 61
believed that the answer was no, 9 believed that the answer was yes, and 22 were unsure; 8
believed the question may be independent of the currently accepted axioms and so impossible
to prove or disprove [4]. All efforts to solve the P versus NP problem have failed [6]. The
goal of this work is to show that P 6= NP .

XX:2 P versus NP

2 Motivation

Most complexity theorists already assume P is not equal to NP , but nobody has found a
valid proof yet [4]. There are several consequences if P is not equal to NP , such as many
common problems cannot be solved efficiently [3]. Indeed, that could help us to certainly
deduce the separation of classes below P from classes above P [1]. Besides, if P is not equal
to NP , then this could be a good indication that important mathematical problems, such as
GRAPH ISOMORPHISM and FACTORIZATION might not be solved in polynomial time
[3]. To sum up, P versus NP is one of the great open problems in science and a correct
solution for this incognita will have a great impact not only for computer science, but for
other fields too [3].

3 Summary

In this work, we proved that ∀k ∈ N : TIME(n k
2) 6= NTIME(n k

2). This is a new approach
for an open question in complexity theory, that is understanding the relation between
TIME(nk) and NTIME(nk) for an arbitrarily selected positive constant k [7]. We also
demonstrated that P = NP ⇒ ∃k ∈ N : TIME(n k

2) = NTIME(n k
2). In this way, it is

showed that P 6= NP . This result is based on the conclusion if we have to know the answer of
a total number of different computations from a deterministic Turing machine over different
inputs, then the only optimal and possible way for an arbitrary case is to do it just executing
each computation and checking the answer for every input. This notion is very similar of
what it has been studied as optimal for the number of comparisons in the problem of finding
the minimum inside an arbitrary array of positive integers [2].

4 Highlights

For the total comprehension of this work, it is important to take into special consideration
the parts in the paper where we used the word “note”, because in those short fragments we
tried to explain the real intention and purpose for those principal ideas that might be cause
confusion to the reader. Here are some few examples in the paper where was used that word
(there are more . . .):

. . . Note that L[M] definition is different of L(M) . . .

. . . Note that Ωs definition is different of Ω . . .

. . . Note that the intention is not exactly to define a linear order . . .

. . . It is important to note the size of N and c× |x|j would not affect the membership of
L in TIME(nj) . . .

But, we really think the most important detail in the paper was inside the Definition of
the language HNP , where we guaranteed this problem is actually in NP–complete due to the
following restriction: “ . . . 1i is strictly non-superpolynomial in relation to the size of x . . . ”,
because without that restriction, then the problem would trivially be EXP–complete since
the mentioned integer i in the Definition should be given in binary encoding.

Finally, we did not waste so much effort in explaining some details that are trivial
to understand even by a non-specialist reader in complexity theory and we cited a refe-
rence which explains those kinds of topics in each case, such as the following statement:
“ . . .we can decide a finite subset of a language in linear time . . . ”, because we can trivially
simulate a (probably large) deterministic Turing machine which identifies each string of the

F. Vega XX:3

finite subset just reading each symbol into a sequential way until it halts in the blank symbol
and deciding whether that element belongs to that finite set or not (this can be always done
in linear time no matter how large could be the finite set).

5 Theory

I Definition 1. Given an array ai of m positive integers, SEARCH–MINIMUM is the
problem of finding the minimum of ai.

How many comparisons are necessary to determine the minimum of an array of m positive
integers? We can easily obtain an upper bound of m− 1 comparisons: examine each integer
of the array in turn and keep track of the smallest element seen so far [2]. Is this the best we
can do? Yes, since we can obtain a lower bound of m− 1 comparisons for the problem of
determining the minimum [2].

I Definition 2. Given a number x and an array ai of m positive integers, MINIMUM is
the problem of deciding whether x is the minimum of ai.

How many comparisons are necessary to determine whether some x is the minimum of
an array of m positive integers? We can easily obtain an upper bound of m comparisons:
find the minimum in the array and check whether the result is equal to x. Is this the best
we can do? Yes, since we can obtain a lower bound of m− 1 comparisons for the problem
of determining the minimum and another obligatory comparison for checking whether that
minimum is equal to x.

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite
strings over Σ [1]. A Turing machine M has an associated input alphabet Σ [1]. For each
string w in Σ∗ there is a computation associated with M on input w [1]. We say that M

accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [1].
Note that M fails to accept w either if this computation ends in the rejecting state, that is
M(w) = “no”, or if the computation fails to terminate [1].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet
Σ and is defined by

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

We denote by tM (w) the number of steps in the computation of M on input w [1]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [1]. We say that M runs in polynomial
time if there exists k such that for all n, TM (n) ≤ nk + k [1].

A verifier for a language L is a deterministic Turing machine M , where

L = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [1]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L. NP is also known
as the complexity class of languages defined by polynomial time verifiers [6].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M , on every input w, halts in polynomial time with just f(w) on its tape

XX:4 P versus NP

[6]. Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there exists a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. A language L ⊆ {0, 1}∗ is NP–complete if

L ∈ NP , and
L′ ≤p L for every L′ ∈ NP .

If any single NP–complete problem can be solved in polynomial time, then every NP

problem has a polynomial time algorithm [2]. No polynomial time algorithm has yet been
discovered for any NP–complete problem [3].

6 Results

I Definition 3. Given a deterministic Turing machine M , we define a language L[M] ⊆
{0, 1}∗ when L[M] has as a polynomial time verifier the Turing machine M . Note that L[M]
definition is different of L(M).

Just as O–notation provides an asymptotic upper bound, Ω–notation provides an asymp-
totic lower bound [2]. In computer science, O–notation and Ω–notation are used to classify
algorithms according to their running time or space requirements [2].

I Definition 4. Given a deterministic Turing machine M , we say that L[M] ∈ Ωs(nk) for
some k ∈ N if the verifier M has the best asymptotic lower bound in comparison with all
possible verifiers of L[M] and decides M(w, c) in Ω(|w|k) where | . . . | denotes the bit-length
function. Note that Ωs definition is different of Ω.

I Definition 5. Given a deterministic Turing machine M and a binary string x, we say that
x is equal to another binary string y on M when M(x, y) = “yes” and M(y, x) = “yes”, x is
smaller than or equal to y on M when M(x, y) = “yes” or y is smaller than or equal to x on
M when M(y, x) = “yes”. Note that the intention is not exactly to define a linear order.

I Definition 6. If there is an array ai of m binary strings, then we would say x is the
minimum of ai on M if and only if for every element y in the array ai we have that x is
smaller than or equal to y on M . Note, in this definition the minimum on M of an array ai

of m binary strings could not be unique.

I Definition 7. Given a string x and an array ai of m binary strings such that |x| = m

and |ai| ≤ m2, GENERALIZED–MINIMUM[M] is a problem defined only into a specific
deterministic Turing machine M and consists of deciding whether x is the minimum of ai on
M where | . . . | denotes the bit-length function. We abbreviate this problem as GM[M].

I Theorem 8. Given a problem GM[M] based on a given deterministic Turing machine M

that is a polynomial time verifier of a language L[M], if L[M] ∈ Ωs(nk) for some k ∈ N,
then GM[M] must be solved in Ω(n k+1

2).

Proof. How many computations are necessary to determine whether some x is the minimum
on M of an array of m binary strings? We can easily obtain an upper bound of m computations:
examine each string y of the array in turn and check whether x is smaller than or equal to y

on M . Is this the best we can do?

F. Vega XX:5

Think of any algorithm that determines the minimum on M as a tournament among the
elements [2]. Each computation of M is a match in the tournament in which the smaller or
equal on M of the two elements wins [2]. The key observation is that every element must
lose at least one match [2]. Hence, m computations are necessary to determine whether x

is the minimum on M of an array ai of m binary strings, and this algorithm for GM[M] is
optimal with respect to the number of computations performed.

Finally, since L[M] ∈ Ωs(nk), then we must verify m computations on M in Ω(mk)
because |x| = m. For that reason, we must decide (x, ai) ∈ GM[M] in Ω(mk+1). Due
to |ai| ≤ m2, then the bit-length n of the instance (x, ai) will comply with m = Ω(n 1

2).
Note that “ = ” in m = Ω(n 1

2) is not meant to express “is equal to”, but rather a more
colloquial “is” [2]. Consequently, we must decide the elements of GM[M] in Ω(n k+1

2) under
the assumption of L[M] ∈ Ωs(nk), because the verifier M has the best asymptotic lower
bound for the language L[M]. J

Note that the relation between TIME(nk) and NTIME(nk) is widely open for general
k. This is only answered for k = 1 until now, where both classes are different [7].

I Theorem 9. ∀k ∈ N : TIME(n k
2) 6= NTIME(n k

2).

Proof. Suppose there exists a k ∈ N such that TIME(n k
2) = NTIME(n k

2). We define a
language GM[M] based on a given deterministic Turing machine M such that there exists a
language L[M] ∈ Ωs(nk) where M is the polynomial time verifier of the language L[M]. Let’s
define the complement of GM[M] as coGM[M] such that for an appropriate input (x, ai) we
have (x, ai) ∈ coGM[M] if and only if (x, ai) /∈ GM[M]. Now, let’s define an algorithm for
coGM[M] as follows:

On appropriate input (x, ai)
Choose nondeterministically an integer j such that 0 ≤ j ≤ length(ai)− 1
if (M(x, ai[j]) = “no”)
return “yes”

else
return “no”.

Certainly, if there is some (x, ai) ∈ coGM[M], then there will be an acceptance path on
this algorithm for that input. This algorithm is nondeterministic since we choose j in a
nondeterministic way. Indeed, we could create a random positive integer j in O(length(ai))
just initializing it to 0 and adding 1 until at most length(ai)− 1 times. In addition, once
we generate j, then we can compute M(x, ai[j]) in Ω(|x|k) because of L[M] ∈ Ωs(nk) where
ai[j] is the element of ai in the jth index position. For that reason, we conclude coGM[M]
can be solved in Ω(mk) where m = length(ai), |x| = m and |ai| ≤ m2 because (x, ai) is an
appropriate input. Thus coGM[M] ∈ NTIME(n k

2), because the bit-length n of the instance
(x, ai) will comply with m = Ω(n 1

2).
If TIME(n k

2) = NTIME(n k
2), then GM[M] ∈ TIME(n k

2) because the language
coGM[M] would be in TIME(n k

2) and we have that TIME(n k
2) is closed under com-

plement [6]. But this is a contradiction with Theorem 8 because GM[M] must be sol-
ved in Ω(n k+1

2) under the assumption of L[M] ∈ Ωs(nk). Therefore, for the sake of
contradiction TIME(n k

2) 6= NTIME(n k
2). Since we take an arbitrary k ∈ N, then

∀k ∈ N : TIME(n k
2) 6= NTIME(n k

2). J

I Definition 10. Let define HNP to be the restricted nondeterministic polynomial time
bounded version of HALTING language [6]:

HNP = {(i, x, N) : N accepts input x after at most i steps

XX:6 P versus NP

and 1i is strictly non-superpolynomial in relation to the size of x}

when N is a nondeterministic Turing machine and i ∈ N where 1i is a string of 1’s of length
i. Certainly, HNP ∈ NP–complete [6].

I Theorem 11. P = NP ⇒ ∃k ∈ N : TIME(n k
2) = NTIME(n k

2).

Proof. Suppose that P = NP . Thus, there will be a polynomial time algorithm for HNP .
Therefore, there would exist a j ∈ N such that HNP ∈ TIME(nj). We could reduce every
instance x ∈ L of an arbitrary language L ∈ NTIME(nj) to (c× |x|j , x, N) ∈ HNP where
N is the nondeterministic Turing machine that decides L and c×|x|j is a polynomially upper
bound of the time in which N accepts x and c ∈ N. Since the string 1c×|x|j is polynomially
bounded by x and N is previously fixed, then we can reduce every instance x ∈ L of a
language L ∈ NTIME(nj) to HNP in O(nj).

As conclusion, we obtain that L ∈ TIME(nj) because HNP ∈ TIME(nj). It is important
to note the size of N and c× |x|j would not affect the membership of L in TIME(nj). It
could be the case the string 1c×|x|j would be superpolynomially larger in relation to the size
of certain instances x ∈ L, because the constant j ∈ N could be a big number. In this way, it
might be affected the reduction of L to HNP for those instances. However, that occurs for a
finite amount of instances x ∈ L, because when the size of the string x is bigger, then the
size of the string 1c×|x|j stops of being superpolynomial in relation to x. But, we already
know we can decide a finite subset of a language in linear time and thus this would not affect
the membership of L in TIME(nj) too [6].

Consequently, since we take L as an arbitrary language of NTIME(nj), then we can
conclude TIME(nj) = NTIME(nj). Finally, if we take the natural number k = 2× j, then
TIME(n k

2) = NTIME(n k
2) and in this way the Theorem is proved. J

I Theorem 12. P 6= NP

Proof. This is a direct consequence of Theorems 9 and 11. J

7 Significance

This proof explains why after decades of studying the NP problems no one has been able to
find a polynomial time algorithm for any of more than 3000 important known NP–complete
problems [5]. Indeed, it shows in a formal way that many currently mathematically problems
cannot be solved efficiently, so that the attention of researchers can be focused on partial
solutions or solutions to other problems [3].

Although this demonstration removes the practical computational benefits of a proof that
P = NP , it would represent a very significant advance in computational complexity theory
and provide guidance for future research. On the one hand, it proves that could be safe most
of the existing cryptosystems such as the public key cryptography [5]. On the other hand, we
will not be able to find a formal proof for every theorem which has a proof of a reasonable
length by a feasible algorithm [3].

References
1 Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cambridge

University Press, 2009.
2 Thomas H. Cormen, Charles Eric Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-

duction to Algorithms. MIT Press, 2 edition, 2001.

F. Vega XX:7

3 Lance Fortnow. The Golden Ticket: P, NP, and the Search for the Impossible. Princeton
University Press. Princeton, NJ, 2013.

4 William I. Gasarch. The P=?NP poll. SIGACT News, 33(2):34–47, 2002. doi:10.1145/
1052796.1052804.

5 Oded Goldreich. P, Np, and Np-Completeness. Cambridge: Cambridge University Press,
2010.

6 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
7 W. J. Paul, N. Pippenger, E. Szemeredi, and W. T. Trotter. On Determinism Versus

Non-Determinism and Related Problems. IEEE Symp. on Foundations of Comp. Sci.,
24:429–438, 1983. doi:10.1109/SFCS.1983.39.

http://dx.doi.org/10.1145/1052796.1052804
http://dx.doi.org/10.1145/1052796.1052804
http://dx.doi.org/10.1109/SFCS.1983.39

	Issue
	Motivation
	Summary
	Highlights
	Theory
	Results
	Significance

