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Abstract Soil mineral depletion is a major issue due mainly
to soil erosion and nutrient leaching. The addition of biochar is
a solution because biochar has been shown to improve soil
fertility, to promote plant growth, to increase crop yield, and to
reduce contaminations. We review here biochar potential to
improve soil fertility. The main properties of biochar are the
following: high surface area with many functional groups,
high nutrient content, and slow-release fertilizer. We discuss
the influence of feedstock, pyrolysis temperature, pH, appli-
cation rates, and soil types. We review the mechanisms ruling
the adsorption of nutrients by biochar.
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1 Introduction

The needs to develop more sustainable agriculture systems
and improve weak rural economies necessitate major changes
in agriculture management. Soil degradation, including de-
creased fertility and increased erosion, is a major concern in
global agriculture (Jianping 1999). Long-term cultivation of
soils could result in degradation, containing soil acidification,
soil organic matter depletion, and severe soil erosion (De
Meyer et al. 2011). Furthermore, the decrease in soil organic
matter decreases the aggregate stability of soil (Annabi et al.
2011). Therefore, it is crucial to remediate the degradation
soils by simple and sustainable methods.

Manures and composts contain pathogens, heavy metals,
and pharmaceuticals, which may cause long-term contamina-
tion of farmland. Moreover, manures and composts have the
potential to lead to ammonia and methane releases, which can
aggravate global warming and serious groundwater and
stream nutrient pollution. Being a renewable resource and
due to its economic and environmental benefits (Fig. 1), bio-
char is a promising resource for soil’s fertility management.
Furthermore, biochar loaded with ammonium, nitrate, and
phosphate could be also proposed to be a slow-release fertil-
izer to enhance soil fertility (Spokas et al. 2012; Xu et al.
2014; Schmidt et al. 2015; Kammann et al. 2015).

Biochar is the by-product of biomass pyrolysis in an oxygen
depleted atmosphere. It contains porous carbonaceous structure
and an array of functional groups (Lehmann and Joseph 2009).

Biochar’s highly porous structure can contain amounts of extract-
able humic-like and fluvic-like substances (Lin et al. 2012).
Moreover, its molecular structure shows a high degree of chem-
ical and microbial stability (Cheng et al. 2008a). The physical
and chemical properties of biochar are highly dependent on py-
rolysis temperature and process parameters, such as residence
time and furnace temperature, as well as on the feedstock type
(Joseph et al. 2010; Bruun et al. 2011). Awide range of common
raw materials are used as the feedstock, including wood chip,
organic wastes, plant residues, and poultry manure (Sohi et al.
2010). The elemental composition of biochar generally include
carbon, nitrogen, hydrogen, and some lower nutrient element,
such as K, Ca, Na, and Mg (Zhang et al. 2015). Commonly,
the carbon content increased with increasing pyrolysis tempera-
ture from 300 to 800 °C, while the contents of nitrogen and
hydrogen decreased. Biochar has a high specific surface area
and a number of polar or nonpolar substances, which has a strong
affinity to inorganic ions such as heavy metal ions, phosphate,
and nitrate (Schmidt et al. 2015; Kammann et al. 2015).

Biochar was reported to improve not only soil chemical and
physical properties but also soil microbial properties. Many stud-
ies indicated that the combination of biochar with soils could
improve soil structure, increase porosity, decrease bulk density,
and enhance aggregation and water retention (Baiamonte et al.
2015). In addition, biochar can increase soil electrical conductiv-
ity by 124.6 % (Oguntunde et al. 2004) and cation exchange
capacity by 20 % (Laird et al. 2010), while reduce soil acidity
by 31.9 % (Oguntunde et al. 2004). Moreover, biochar has also
been tested to increase soil biological community composition
(Grossman et al. 2010) and microbial biomass by 125 % (Liang
et al. 2010). Steiner et al. (2008a) indicated that, after biochar
application, basal respiration increased about by 30.1 % CO2 in
the following 35 h after substrate addition.

In recent years, an increasing interest in applying biochar is
focused on the amendment of nutrient-poor soil for soil eco-
logical restoration including sequestering carbon (Jiang et al.
2012; Liu et al. 2012). Various mechanisms have been sug-
gested for the increase of plant nutrient availability in nutrient-
limited agroecosystems such as (1) the initial addition of sol-
uble nutrients contained in the biochar (Sohi et al. 2010) and
the mineralization of the labile fraction of biochar containing
organically bound nutrients (Lehmann et al. 2009); (2) reduc-
tion of nutrient leaching due to biochar’s physicochemical
properties (Liang et al. 2006); (3) lower escapable N losses
by ammonia volatilization and N2 and N2O from denitrifica-
tion (Cayuela et al. 2013); and (4) a retention of N, P, and S
associated with the increase in biological activities or commu-
nity shifts (Pietikäinen et al. 2000). In the field trials, many
researchers reported that biochar application improved soil
quality, increased crop production and promoted plant growth
(Lehmann et al. 2006; Major et al. 2010; Zhang et al. 2010)
(Table 1). Uzoma et al. (2011) found that, compared to the
control, maize grain yield significantly increased by 150 and

Fig. 1 The benefits of biochar applied as a tool for soil fertility
management
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98 % after the application of biochar at 15 and 20 t ha−1,
respectively. However, grain yield decreased by 23.3, 10,
and 26.7 % while the application rate of biochar was 4, 8,
and 16 t ha−1, respectively (Asai et al. 2009). The decreased
crop yield may be attributed to the high volatile matter, as well
as toxic and harmful substance in biochar, which can reduce
nutrient uptake and inhibit plant growth. Thereby, the im-
provements of crop production and plant growth may be de-
pendent on the properties of biochar and soil. It is significant
to understand the mechanisms which may induce changes on
soil fertilizer after biochar application into soil.

In this review, we critically discussed the influence of bio-
char on soil properties, including soil physicochemical and
biological properties. Moreover, the mechanisms of biochar
in the improvement of soil fertility were also reviewed. In
order to better understand the connections between biochar
and soil, four following aspects are included in this paper
(Fig. 2): (i) biochar as a source of nutrients; (ii) adsorption
and desorption of nutrients on biochar; (iii) the influence of
biochar on properties of soils; and (iv) the effects of biochar on
biota in soil. The purpose of this review is to lay the founda-
tion for future researches.

Fig. 2 The possible mechanisms
for improving soil fertility

Table 1 Effects of biochar addition on crop yield

Biochar type Biochar rate
(t ha−1)

Crops Soil type Yield/biomass increase
over control (%)

Reference

Secondary forest wood 68 Cowpea Xanthic Ferralsol 20 Glaser et al. (2002)
136.75 Cowpea Xanthic Ferralsol 100
68 Rice Xanthic Ferralsol 50

Poultry litter 10 Radish Alfisol 42 Chan et al. (2008a, b)
50.5 Radish Alfisol 96

Orchard pruning 22 Grape Sandy clay loam 20 Genesio et al. (2015)
Charcoal 0.5 Moong Dehli soil 22 Glaser et al. (2002)
Greenwaste 100 Radish Alfisol 266 Chan et al. (2008a, b)
Cow manure 15 Maize Sandy soil 150 Uzoma et al. (2011)
Logs of Eucalyptus deglupta 30 Rice Inceptisol 294 Noguera et al. (2010)
Wheat straw 40 Rice Paddy soil 14 Zhang et al. (2010)
Hardwood 19 Maize Midwestern mollisols 10 Rogovska et al. (2014)

38 Maize Midwestern mollisols 17
58 Maize Midwestern mollisols 48

Wheat straw 40 Rapeseed Upland red soil 36.02 Liu et al. (2014)
40 Sweet potato Upland red soil 53.77

Black carbon 20 Maize Oxisol 28 (the second year) Major et al. (2010)
20 Maize Oxisol 30 (the third year)
20 Maize Oxisol 140 (the fourth year)
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2 Biochar as a source of nutrients

2.1 The potential of biochar as fertilizer

Organic matter and inorganic salt, such as humic-like and
fluvic-like substances and available N, P, and K, can serve
as f e r t i l i z e r and be as s imi l a t ed by p lan t s and
microorganisms. Lin et al. (2012) indicated that biochars pro-
duced from Acacia saligna at 380 °C and sawdust at 450 °C
contained humics (humic-like and fluvic-like materials) of
17.7 and 16.2 %, respectively. Biochar made from Lantana
camara at 300 °C contained available P (0.64 mg kg−1), avail-
able K (711 mg kg−1), available Na (1145 mg kg−1), available
Ca (5880 mg kg−1), and available Mg (1010 mg kg−1) (Masto
et al. 2013). Similarly, fresh biochar had potential of nutrient
availability and could release large amounts of N (23–
635 mg kg−1) and P (46–1664 mg kg−1) (Mukherjee and
Zimmerman 2013; Zheng et al. 2013). Therefore, these data
may indicate that biochar has great potential as available
nutrients.

Although total N, P, and K in biochars may not nec-
essarily reflect the actual availability of these nutrients to
plants (Spokas et al. 2012), the available N, P, and K
(e.g., ammonia (NH4

+), nitrate (NO3
−), phosphate (PO4

3

−) and K+) may be associated with the amounts of total
N, P, and K. For example, the loss of total N was con-
tributed to the decrease of available N in higher temper-
atures biochars (Koutcheiko et al. 2007). Besides, the
available K content significantly increased with the in-
crease of total K amount (Zheng et al. 2013). Many
current studies evaluated nutrients availability in biochars
by conducting short-term column leaching experiments
or using kinetic models. For instance, Wu et al. (2011)
reported that 15–20 % of Ca, 10–60 % of P, and about
2 % of N in mallee wood biochar was readily leachable
with distilled water after 24 h. However, it is not suffi-
cient to calculate the long-term nutrients availability of
biochars. In the practical application, total N, P, and K in
biochar could be used as an indirect indicator for choos-
ing appropriate biochar.

2.2 Factors affecting nutrient content and availability
in biochars

Nutrient contents in biochars were determined greatly by feed-
stock source and pyrolytic temperature (Table 2). For exam-
ple, N losses began at about 400 °C, then half of the Nwas lost
as volatiles at about 750 °C in three woody and four herba-
ceous biochars (Lang et al. 2005). Moreover, the contents of
available N (water-soluble) in biochars decreased from 39 to
8 mg kg−1 with the increase of pyrolysis temperatures from
350 to 600 °C, which could be attributed to the loss of total N
and the heterocyclization of N during pyrolysis (Zheng et al.

2013). Contrasted to total N content in biochars, total P con-
tent significantly increased from 0.12 to 0.17 % with the in-
crease of temperature from 300 to 600 °C (Zheng et al. 2013),
which was attributed to the loss of carbon and relatively stable
P in plant biomass in response to heating (Page et al. 1982).
However, the available P in the biochars produced at lower
temperature was much higher than the high-temperature bio-
chars. Actually, the reasons could be explained that biochar
contained less crystallized P-associatedminerals in lower tem-
perature biochars. Additionally, the total K content increased
from 3.7 % at 300 °C to 5.02 % at 600 °C, while the available
K (water-soluble) content increased with the increase of py-
rolysis temperature (37 % at 300 °C and 47 % at 600 °C)
(Zheng et al. 2013).

Additionally, biochars produced from different feedstocks
present various nutrient elements composition. For instance,
swine manure biochar produced at 400 °C contained large
amounts of N (3.2 %) and P (6.1 %) (Tsai et al. 2012), while
Arundo donax biochar produced at 400 °C had little N
(0.69 %) and P (0.13 %) constituents (Zheng et al. 2013).
Moreover, the ash content in the biochars made at 350 °C of
poultry litter (30.7 %) (Cantrell et al. 2012) was much higher
than that produced from pine wood chip at 350 °C (1.5 %)
(Spokas et al. 2011).

The pH of the soil is an important factor affecting nutri-
ent availability of biochar (Silber et al. 2010). The release
of PO4

3− and NH4
+ were pH-dependent while the release

of K+ and NO3
− was not (Zheng et al. 2013). Furthermore,

at pH 2–7, the content of PO4
3− and NH4

+ released from
the biochars would be decreased with the increase of pH
values, whereas that of K+ remained relatively stable
(Zheng et al. 2013). Similarly, the initial Ca and Mg release
from corn straw biochar was also pH-dependent, exhibiting
an increase in released quantities as pH decreased from 8.9
to 4.5 (Silber et al. 2010).

The influence of application time on nutrient release from
biochars should be considered. Zheng et al. (2013) set a series
of time gradient to explore the relationship between time and
water-soluble nutrients release by determining the concentra-
tion of NH4

+, PO4
3−, and K+. They found that the NH4

+ re-
lease from biochars produced from A. donax (giant reed) at
300 to 600 °C mainly occurred within 120 h, indicating that
these biochars contain slow-release NH4

+, whereas the PO4
3−

and K+ release mainly occurred within 24 h, indicating that
these biochars contained fast-release PO4

3− and K+. Besides,
high C mineralization and N immobilization of volatile
matter in biochar by microorganisms could decrease the
release of nutrients (Zimmerman 2010; Deenik et al.
2010). In practice, these influencing factors could be
co-existence when biochar application into soil.
Relatively, lower pyrolysis temperature and pH may in-
crease the availability of N and P, while higher pyroly-
sis temperature may increase the availability of K.
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3 The influence of biochar on properties of soils

Currently, some studies have focused on the amendment of
biochar on physical and chemical properties of various soils
(Table 3). Biochar could possibly be part of a long-term adap-
tation strategy, as it could improve soil physical properties
including the increase of porosity and water storage capacity,
as well as the decrease of bulk density (Lu et al. 2014;
Nelissen et al. 2015). Biochar may also be used as a sustain-
able amendment to enhance soil chemical properties
(Lehmann et al. 2011; Glaser et al. 2002). For example, the
content of ash in biochars ranged from 0.35 to 59.05 %, which
were rich in available nutrients, especially cationic elements,
such as K (0–560 mmol kg−1), Ca (3–1210 mmol kg−1), Mg
(0–325 mmol kg−1), and Na (0–413 mmol kg−1) (Rajkovich
et al. 2012). Similarly, Yuan et al. (2011) reported that the
content of soluble base cations (K+, Ca2+, Mg2+, and Na+)
ranged from 48 to 330 cmol kg−1. Moreover, ash content
could increase soil pH which may determine cation exchange
capacity of various charged soils (Sollins et al. 1988) and
nutrient availability (Mengel and Kirkby 2001). Actually, be-
sides the direct amendment of biochar on soil’s properties,
biochar can also alter microbial and nutritional status of the
soil within the plant rooting zone through changing soil phys-
ical properties (e.g., bulk density, porosity, and particle size
distribution). Overall, the improvement of soil properties is
highly contributed to the increased of both nutrient and water
use efficiency and crop productivity.

3.1 The effect of biochar on physical and chemical
properties of soils

The physical and chemical properties of biochar are keys to
understand performances and mechanisms of biochar in the
improvement of soil’s fertility. A possible main mechanism
for yield improvement may be the increase of soil water hold-
ing capacity after biochar treatment (Jeffery et al. 2011).
Biochar has high total porosity, and it could both retain water
in small pores and thus increase water holding capacity and
assist water to infiltrate from the ground surface to the topsoil
through the larger pores after heavy rain (Asai et al. 2009).
Peake et al. (2014) indicated that biochar application could
increase available water capacity by over 22 %. Nelissen
et al. (2015) demonstrated that biochar application could in-
crease available water capacity from 0.12 to 0.13 m3 m−3.
Moreover, the formation and stability of soil aggregates could
increase the crop production and the prevention of soil degra-
dation (Amezketa 1999). The capacity of soil aggregation
increased ranging from 8 to 36 % after the application of rice
husk biochar (Lu et al. 2014). They also reported that the
application of rice husk biochar application could increase soil
pore structure parameters by 20 % and shear strength, as well
as decrease soil swelling by 11.1 % (Lu et al. 2014). InT
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addition, biochar could ameliorate compaction by over 10 %
(Peake et al. 2014), decrease bulk density from 1.47 to
1.44 mg m−3, and increase porosity from 0.43 to
0.44 m3 m−3 (Nelissen et al. 2015). Overall, the improved
physical properties of soil, such as bulk density, water holding
capacity, and aggregation ability, may increase the retention of
both water and nutrients, which benefit to soil fertility directly.

The application of biochar could increase soil pH value.
Wang et al. (2014) reported that rice husk biochar increased
the tea garden soil (acid soil) pH from 3.33 to 3.63. The agri-
cultural soil pH increased by almost 1 pH unit for biochar
treatment which produced from mixed hardwood (Quercus
spp. and Carya spp.) (Laird et al. 2010). The increase of soil
pH could change the form of nutrients and facilitate some
elements adsorption of the root. Cation exchange capacity is
indirect measures of the capacity of soils to retain water and
nutrients. Laird et al. (2010) indicated that the biochar treat-
ments significantly increased cation exchange capacity by 4 to
30 % and relative to the controls. Similarly, cation exchange
capacity of the highly weathered soil was increased from 7.41
to 10.8 cmol kg−1 after biochar treatment, which produced
from Leucaena leucocephala (Jien and Wang 2013).
Moreover, the increase in the amount of exchangeable cations
in the amended soils suggested an improvement in soil fertility
and nutrient retention, which may be attributed to the high
specific surface area and a number of carboxylic groups of
the biochar (Cheng et al. 2006). The amounts of the extract-
able nutrient elements (e.g., Na, K, Ca, and Mg) could be
increased after biochar application. Wang et al. (2014) indi-
cated that the amounts of the extractable K, Ca, Na, and Mg
approximately increased by ranging from 60 to 670 % after
biochar addition. For example, the K content of soil increased
from 42 to 324 mg kg−1 (Wang et al. 2014). In addition,
biochar treatment could increase base saturation percentage
from 6.4 to 26 % and saturated hydraulic conductivity from
16.7 to 33.1 cm h−1, decrease soil erosion rate from 1458 to
532 g m−2 h−1 (Jien and Wang 2013), and increase total C
from 2.27 to 2.78 % and total N from 0.24 to 0.25 % and
available P from 15.7 to 15.8 mg kg−1 (Jones et al. 2012).
These improvements in soil chemical properties could in-
crease soil fertility by increasing the nutrient contents and
availability.

However, changes of soil physical or chemical prop-
erties were not always detected. For instance, Jones
et al. (2012) indicated that soil electrical conductivity
(from 46 to 43 μS cm−1) and bulk density (from 1.04
to 1.08 g cm−1) were not significantly influenced after
3 years of biochar addition in a UK field trial. Even the
same experiment, in the first year application of biochar,
it seems to ameliorate soil physical quality to some
extent, including increasing porosity, decreasing soil
bulk density, and improving soil aggregation (Nelissen
et al. 2015). However, Nelissen et al. (2015) did not

observe the difference between hydraulic conductivity
and plant available water capacity in the second year
after biochar application. Additionally, over 2 years,
biochar application did not have a significant impact
on soil chemical properties, except for organic carbon
content and C: N ratios (Nelissen et al. 2015). These
results suggested that the influences of biochar on soil
physical and chemical properties are varied with differ-
ent application conditions. Long-term field trials need to
be conducted to test whether soil properties can be in-
fluenced permanently through biochar application.
Overall, the improvements of soil properties could di-
rectly or indirectly increase nutrient contents and avail-
ability and decrease nutrient leaching, which are known
as mechanisms for the increase of soil fertility.

3.2 Influencing factors of biochar function

Some factors are needed to be considered for the application
of biochar into the soil. The improvement of nutrient avail-
ability is dependent on the increase of soil pH caused by
biochar addition, especially P and K (Atkinson et al. 2010).
Deenik et al. (2010) and Spokas et al. (2011) indicated that
biochar with high volatile matter content, which produced at
higher temperature, contributed to N immobilization and mi-
crobial activity reduction which could inhibit plant growth. It
is possible that the effects of biochar amendment depend on
soil properties, especially soil texture and mineralogy.
Moreover, (Peake et al. 2014) reported that the effect of bio-
char on field capacity and available water capacity varied
across different soil types, and these effects were modified
slightly but significantly in relation to specific soil properties.
Furthermore, different biochar application rates were recom-
mended for various texture soils because of the difference of
soils’ buffering capacity (Butnan et al. 2015). They indicated
that the low application rate (1 %) of Thai traditional kiln
biochar made from Eucalyptus camaldulensiswas appropriate
for the coarse-textured soil, which had low buffering capacity.
However, the higher rate (2 %) of biochar was recom-
mended for fine textured soil, which had higher buffer-
ing capacity compared to coarse-textured soil. Besides,
Jones et al. (2012) demonstrated that biochar had no
effect on the growth of maize but did enhance the
growth and nutritional quality of the subsequent grass
crop. The possible reason may be the differences in
rooting depth. These aspects indicated that biochar func-
tion was highly related to pyrolysis temperatures, soil
and plant types, and application rates. It is crucial to
understand the underlying influencing factors of biochar
function for choosing the optimum biochar for each
particular soil, both maximizing soil productivity and
minimizing deleterious environmental effects.
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4 Adsorption and release of nutrients from biochar

4.1 Adsorption of nutrients and application as slow-release
fertilizer

Many studies showed that biochar had the potential to sorb
nutrients. Nitrate adsorption capacity of biochar produced
from bamboo at 900 °C was approximately 1.2 mg g−1, which
was relatively higher than that of activated carbon (about
0.9 mg g−1) (Mizuta et al. 2004). Yao et al. (2012) indicated
that biochars could effectively sorb nitrate by 3.7 %, ammo-
nium by 15.7 %, and phosphate by 3.1 %. However, the ad-
sorption capacity of nutrient may be greatly influenced by
biochar’s properties, including pH, surface acidic groups,
and ion exchange capacity (Yao et al. 2012; Morales et al.
2013). Therefore, it is crucial to understand the underlying
mechanisms of nutrient sorption. The mechanisms describing
the adsorption capacity of polar and apolar compounds are
attributed to chemisorption, including hydrophobic bonding
(Zhang et al. 2013), π-π electron donor-acceptor interactions
resulting from fused aromatic carbon structures (Swiatkowski
et al. 2004), and weak unconventional H-bonds (Conte et al.
2013). For example, the mechanisms attributed to adsorption
of NH4

+ onto biochar surfaces include physical adsorption
(van der Waals adsorption) (Zhang et al. 2015), NH4

+ attrac-
tion to negatively charged surfaces (Zheng et al. 2013), NH4

+

reacting with acidic functional groups to form amides and
amines (Spokas et al. 2012), NH4

+ binding to cationic species
sites on the surface of biochars (Hale et al. 2013), and π-π
electron donor-acceptor interactions (Zhu and Pignatello
2005). Dissimilarly, biochar could not independently sorb
the added P. Biochar affected P availability by interaction with
other organic and inorganic components in the soil, including
organic matter or other base cations in the soil (Xu et al. 2014).

Though there were little field trials focused on the study of
biochar as slow-release fertilizer, many laboratory studies inves-
tigated the nutrients availabilitywith biochar application.A clear-
er understanding of not only sorption but also desorption is in-
dispensable because they are the processes that along with nutri-
ents mineralization, controlling soil solution nutrients concentra-
tion, enhancing nutrients bioavailability. The influencing factors,
which affect nutrients desorption, such as soil types, feedstocks,
pyrolysis conditions, and biochar application rates, are needed to
be considered. In the black soil, the average percentage of
desorbed P were 36, 37, 39, and 41 % for the 0, 1, 5, and
10 % biochar application rates, respectively (Xu et al. 2014).
Moreover, differences of P desorption were presented among
black soil (24.6 mg kg−1), brown soil (82.5 mg kg−1), and
fluvo-aquic soil (27.7 mg kg−1) when the biochar application
rates and P loading were 10 % and 240 mg L−1 (Xu et al.
2014). Ingá biochar made by slow pyrolysis at 400, 500, and
600 °C could release P by 32, 28, and 69 mg kg−1, respectively.
Moreover, they indicated that Ingá biochar could desorb P by

75mg kg−1 in the first step, whileEmbaúba biochar could desorb
P by 310 mg kg−1 and Lacre biochar could desorb P by
258 mg kg−1 (Morales et al. 2013). In addition, Zhang et al.
(2015) demonstrated that desorption of NH4

+ in biochars was
greater than activated biochars which ranged from 18 % for
biochar (made at 600 °C) at 2.7 mg L−1 to 31 % for biochar
(made at 450 °C) at 5.1 mg L−1. Desorption of NO3

− in activated
biochar treatment (4–5 mg L−1) was higher than that of biochars
(0–4 mg L−1) (Zhang et al. 2015). These phenomena may be
induced by the differences of the soil pH and the activity or
availability of cations (Al3+, Fe3+, and Ca2+) that interact with
nutrients in biochars. Therefore, biochar has great potential as
slow-release fertilizer. In order to better manage soil nutrients
for maximum bioavailability, further investigation should focus
on the methods which can measure nutrients availability of
desorbed nutrients from biochar or soil, such as isotope analysis.

4.2 The retention of soil nutrients by biochar

Some researches indicated that incorporation of biochar into
soil effectively reduced N2O emission from different soils. For
instance, Rondon et al. (2005) reported that 50 % reduction of
N2O emissions was found under soybean systems while 80 %
decrease of N2O emissions was found for grass systems.
Similarly, biochars treatment could decrease N2O emissions
from 1768 to 45–699 μg N2O-N m−2 h−1 (Wang et al. 2013)
and suppress N2O emissions between 21.3 and 91.6 %
(Stewart et al. 2012). However, there were several studies
reported that no effect (Cheng et al. 2012) or even increase
(Clough et al. 2010) was detected on N2O emissions after the
application of biochar. The retention of nutrients by biochar
could be dependent on biochar pyrolysis temperature, soil
types, fertilizer doses, and soil water contents.

Biochar’s chemical and physical properties are greatly de-
pendent on pyrolytic temperatures, and then the adsorption of
nutrients would be influenced by biochar application. The
reduced N2O emissions is attributed to the content of polycy-
clic aromatic hydrocarbons in the low-temperature biochars
(300–400 °C), but not in the high-temperature biochars
(>500 °C), while biochars produced at 200 °C contained a
relatively large amount of phenolic compounds and markedly
reduced N2O emission (Wang et al. 2013). The potential ex-
planations for the effects of pyrolysis temperature on nutri-
ents’ immobilization have mainly focused on dissimilarities
of biochar’s volatile compounds, surface area, and porosity
(Azargohar and Dalai 2008).

Feedstocks, biochar application rates, fertilizer, and soil types
should also be considered as noticeable factors for changing
stabilization of nutrients. Nelissen et al. (2014) reported that
N2O emission approximately decreased by ranging from 60 to
90 % and NO emission approximately decreased by ranging
from 30 to 90 % after biochars treatment, which were produced
from willow, pine, and maize. Moreover, the cumulative N2O-N
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emissions could be decreased by ranging from 53.9 to 83.5% for
the biochars applications ranging from 1 to 20 %, respectively
(Stewart et al. 2012). Besides, when urea and fertilizers were
applied, N2O emissions were decreased in all biochar treatments
compared to the control with an average of 53 % (from 618 to
295 μg N kg−1) and 84 % (from 3356 to 529 μg N kg−1), re-
spectively (Nelissen et al. 2014). These results demonstrated that
the influence of fertilizer types on nutrients’ fixing cannot be
neglected. Soil types should be considered as another influencing
factor on immobilization of nutrients. For instance, (Rondon
et al. 2005) reported that biochar decreased N2O emissions by
50 and 80 % under soybean and grass systems, respectively.
Nevertheless, the application of biochar was not absolute to
reduce the loss of nutrients. For example, Scheer et al. (2011)
reported that the cattle feedlot waste biochar had no significant
effect on N2O emission from red Ferrosol. Similarly, Clough
et al. (2010) also documented that fluxes of N2O from the bio-
char plus urine treatment were higher, compared to urine alone
during the first 30 days, but there was no significant difference
after 50 days. Consequently, in order to choose suitable biochar
types for various soil types, it is significant to clear the potential
mechanisms which should be responsible for the immobilization
of nutrients.

Recently, abiotic interactions in the biochar-amended soils
is ascribed to the potential explanations or mechanisms for the
N2O mitigation, including changes of pH, water penetration
and decrease of bulk density, improvement of nutrients avail-
ability and soil structure, and increase of sorption capacity
(Spokas et al. 2009; Singh et al. 2010; Taghizadeh-Toosi
et al. 2011, 2012). Nelissen et al. (2014) hypothesized that
the most likely mechanisms reducing NO emissions included
the following parts: (i) stimulated NH3 volatilization, (ii) bi-
otic N immobilization, and (iii) non-electrostatic sorption of
NH4

+. The underlying mechanism that ammonia could be
used as nutrient is likely the reversibility of ammonia trapping
through the formation of ammonium salts (Taghizadeh-Toosi
et al. 2011). Therefore, biochar may store nutrients and be
used as slow-release fertilizer. However, the main mecha-
nisms underlying the enhancement of nutrients availability
with biochar application deserve further determination in or-
der to improve the qualities of agriculture soils.

5 Biochar, microorganisms, and fertility

Biochar has been shown not only to improve soil physico-
chemical properties but also to change soil biological proper-
ties (Pietikäinen et al. 2000; Lehmann et al. 2006; Kim et al.
2007; O’neill et al. 2009; Grossman et al. 2010; Liang et al.
2010). These changes could ameliorate soil structure, contain-
ing increasing organic/mineral complexes (aggregates) and
pore spaces (Rillig and Mummey 2006), enhance nutrient cy-
cles, which include the increase of nutrient retention and

immobilization, as well as the decrease of nutrient leaching
(Steiner et al. 2008b), thus promote plant growth (Warnock
et al. 2007). Besides, microorganisms, such as rhizosphere
bacteria and fungi, may facilitate plant growth directly
(Schwartz et al. 2006; Compant et al. 2010). In summary,
changes in microbial community composition or activity in-
duced by biochar may affect nutrient cycles and plant growth,
as well as the cycling of soil organic matter (Wardle et al.
2008; Kuzyakov et al. 2009; Liang et al. 2010). This section
gives an overview of the influence of biochar properties, such
as organic and inorganic composition or surface properties, on
microbial community.

5.1 Influence of biochar on microorganisms community

There are growing interests in the application of biochar as a
means to manage soil biota, and small changes of soil biota
induced by biochar application are of equally strong concern.
Some mechanisms may explain how biochar could affect mi-
croorganisms in soils: (1) changes in nutrient availability; (2)
changes in other microbial communities; (3) alterations in
plant-microbe signaling; and (4) habitat formation and
refuge from hyphal grazers. Microbial properties are largely
affected by the soil food web. Furthermore, the trophic
structure of the soil food web highly depended on the
quantity, quality, and distribution of organic matter. Despite
the slow rates of production of soil organic matter compared
with other flows in the carbon cycles, its relative stability for
microbial decomposition facilitates soil organic matter
accumulation.

5.1.1 Influence of biochar on microbial abundance

Domene et al. (2014) indicated that microbial abundance
could increase from 366.1 (control) to 730.5 μg C g−1 after
an addition of 30 t ha−1 biochar. Similarly, microbial abun-
dance increased by 5–56 % with the increase of corn stover
biochar rates (from 0 to 14 %) for the different preincubation
times (2–61 days) (Domene et al. 2015). Some possible rea-
sons may be responsible for the increase of microbial abun-
dance, such as higher availability of nutrients or labile organic
matter on biochar surface (Pietikäinen et al. 2000; Bruun et al.
2012), less competition (Lehmann et al. 2011), the enhanced
habitat suitability and refuge (Pietikäinen et al. 2000;Warnock
et al. 2007), the increased water retention and aeration (Wardle
et al. 1999; Schimel et al. 2007), or positive priming
(Zimmerman et al. 2011).

Furthermore, nutrient and carbon availability can affect mi-
crobial abundance. This influence was greatly varied with the
different types of biochar and the special microorganisms
group. It can be considered that symbiotic relationships with
biota through changing nutrient supplies were formed from
the different demands of the plant. Similar explanations may
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hold for the effect of C supply increasing by exudation or root
turnover in the rhizosphere and C as energy sources for het-
erotrophic microorganisms (Lehmann et al. 2011).
Consequently, the influence on microbial abundance was dis-
similar with the different sphere of biochar additions, includ-
ing rhizosphere and bulk soil. On the other hand, under
nutrient-limiting conditions, microbial abundance may be in-
creased due to the greater nutrient availability after biochar
application (Taylor 1951). The possible reasons were
biochar-driven improvements in nutrient retention or the re-
lease of nutrient by the biochar (Lehmann et al. 2011). Some
recent researches seem to demonstrate that the following as-
pects can dominate the influence of nutrient and C availability
on microbial biomass, (i) the existing nutrient and C availabil-
ity in soil; (ii) the additive amount of nutrient and C; and (iii)
the properties of microorganisms.

The pH of soils may change, after biochar additions, be-
cause of the acidity or basicity of biochar. Different living
conditions will be formed for microorganisms with different
pH of biochar. For example, Aciego Pietry and Brookes
(2008) indicated that microbial biomass C increased from
about 20 to 180 μg biomass C g−1 soil and microbial biomass
ninhydrin-N increased from about 0.5 to 4.5 μg ninhydrin-
N g−1 soil with rising pH values from 3.7 to 8.3 under other-
wise identical environmental conditions, which demonstrated
that the rising soil pH could increase microbial biomass.
Moreover, there are different influences on different microbial
abundance if pH values are changed. With the increase of pH
up to values around 7, bacterial populations were possible to
increase, whereas, no change in fungi abundance was ob-
served (Rousk et al. 2010). Similar to nutrient and C changes,
the pre-existing soil pH, the direction, and magnitude of
change will also largely affect the level of pH changes.

Microbial abundance could be increased after microorgan-
isms sorb to biochar surfaces, which render them less suscep-
tible to leaching in soil. Hydrophobic attraction, electrostatic
forces, and precipitates forming are involved in the main pro-
cesses of adsorption to biochar (George and Davies 1988).
Moreover, biochar, containing a well-developed pore struc-
ture, may provide living environment for microorganisms.
Both bacteria and fungi are hypothesized to be better protected
against predators or competitors by exploring pore habitats in
biochar (Ezawa et al. 2002; Saito and Marumoto 2002; Thies
and Rillig 2009).

Biochar could be used to sorb toxins and chemical signals
which would hinder microbial growth. Pollock (1947) indicat-
ed that biochar could arrest the growth-inhibiting substances.
Furthermore, high-temperature biochars have been found to
have a stronger adsorption on compounds that are toxic to
microorganisms (Chen et al. 2009; Kasozi et al. 2010).
Additionally, the humidity may influence largely on microbial
abundance. Microorganisms would be stressful in soil of pe-
riodic drying which may induce the dormant or even dead

(Schimel et al. 2007). Biochar has great water holding capac-
ity because of the large surface area, which could promote the
growth of microorganisms. However, further conclusions can-
not be obtained only from the original materials and properties
of biochar. There is a speculation that bacterial cells or
growth-regulating compounds may play an important role in
sorption.

5.1.2 Influence of biochar on microbial composition
and structure

Addition of biochar may cause some changes in microbial
community composition and structure; thus, trophic relation-
ships are likely to be changed. Prayogo et al. (2014) used
canonical variate analysis to examine the effect of treatment
on the structure of microbial community. They indicated that
the first canonical variate analysis axis accounting for 75.5 %
of the variance and the second axis representing 24.6 % of the
variation, which suggested a significant changes in microbial
community structure after biochar application. Biochar would
be expected to cause a shift in the fungus: bacteria ratio, since
fungi could be better placed to degrade lignin contained within
biochar. Furthermore, changes in microbial community com-
positionmay be associated in some shifts in pH induced by the
application of biochar (Prayogo et al. 2014). Nevertheless,
few researches have focused on the biological significance
of the shift in pH induced by biochar. Besides, the diversity
of microorganisms could be increased or decrease after addi-
tion of biochar to soil. For instance, bacterial diversity was
increased by as much as 25 % in biochar-rich Terra preta soils
compared to unmodified soils in both culture-independent
(Kim et al. 2007) and culture-dependent (O’Neill et al.
2009) studies. However, compared to the unmodified soils,
lower diversity of archaea (Taketani and Tsai 2010) and fungi
(Jin 2010) were found in Terra preta and a biochar-amended
temperate soil, respectively. This information indicates that
different microbial groups respond in different ways after bio-
char application into soil.

5.2 Influence of biochar on microbial activity

In agroecosystems, decomposer microorganisms could en-
hance nutrient release from soil organic matter to the rhizo-
sphere of crop, which are essential for the inputs of nutrients
and the sustainable crop production (Bardgett 2005). There
are some indexes, such as different enzymes and metabolism
rates, which can be used as means to assess the soil biological
activity. With the increase of biological activities and commu-
nity shifts, the retention of N and P were enhanced
(Pietikäinen et al. 2000; Thies and Rillig 2009; Lehmann
et al. 2011); thus, these processes may increase plant nutrient
availability in nutrient-limited agroecosystems (Major et al.
2010). With application of chicken manure biochar from 0
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to 15 %, soil dehydrogenase activity increased from 2.75 to
8.96 mg TPF kg−1 24 h−1 (Park et al. 2011). Paz-Ferreiro et al.
(2012) indicated that, compared to the control, phosphomono-
esterase increased by 70.8 % after the treatment of sewage
sludge biochar at a rate of 4 %. Possibly, the increases of
organic N- and P-mineralizing enzymes are attributed to the
plant uptake of N and P and growth of fine roots as well as
hairs into biochar pores. However, Domene et al. (2014)
found that no significant changes in microbial activity, when
measured as basal respiration and feeding rates, indicated that
net microbial processing of organic C did not change with
application of biochar but rather with differences in soil tex-
ture. This result was in agreement with other long-term studies
under field conditions were no change or even lower respira-
tion rates (Woolf and Lehmann 2012). Therefore, it is possible
that the increased microbial activity highly rely on the easily
mineralizable organic content of fresh biochars.

5.3 Impact of biochar on functional ecology
of microorganisms

Additions of biochar may either increase or decrease many
soil processes, such as C mineralization (Kuzyakov et al.
2009; Liang et al. 2010), denitrification and methane oxida-
tion (Yanai et al. 2007; Van Zwieten et al. 2009), and nutrient
transformations (Deluca et al. 2009). Numerous reasons may
be responsible for these effects, such as altered C sources or
nutrient availability and sorption of inorganic and organic
compound. Moreover, various enzymes activity, different wa-
ter retention and infiltration properties or changes in pore ar-
chitecture may have effects on microbial functional ecology.
In other words, alterations of soil processes could be consid-
ered as a result of the changes of microbial community struc-
ture, abundance, activity, and metabolism.

The mineralization or oxidation of biochar itself will be
influenced by the changes of microbial properties. However,
these soil processes depend on some aspects, including the
amounts of available C sources, the sorption of organic C of
easy degradation, the existing of stable biochar, or the effect of
pH and phenolic materials on microbial community. For in-
stance, non-pyrolyzed C rather than labile C additions could
enhance the mineralization of biochar (Liang et al. 2010).
What is more, changes in microbial community caused by
biochar additions may also increase mineralization of other
soil C. Wardle et al. (2008) found that a greater decomposition
of soil C was generated by greater microbial biomass in the
presence of biochar. However, this has generally not been
observed beyond an initial greater mineralization after fresh
biochar additions (Hamer et al. 2004; Wardle et al. 2008;
Zimmerman et al. 2011), indicating that various reasons of C
loss could be converted into physical export of C, changes in
pH or nutrient contents (Lehmann and Sohi 2008). Therefore,

biochar mineralization may depend on the proportion of labile
C and the nutrient contents in the biochar.

Additionally, biochar may facilitate the microbially medi-
ated transformation of nutrients in soil. Ball et al. (2010) re-
ported that nitrification was increased by biochar additions to
forest soil and explained by sorption of phenolics that would
otherwise inhibit nitrification and an increase in ammonia-
oxidizing bacteria (Deluca et al. 2006). Additionally, Bailey
et al. (2010) found that activity of alkaline phosphatase, ami-
nopeptidase, and N-acetylglucosaminidase increased with
biochar application. The possible reason was that plant uptake
of N and P, and growth of fine roots and root hairs into biochar
pores stimulated the production of organic N- and P-
mineralizing enzymes. The families of Bradyrhizobiaceae
(Rhodoblastus, Rhodopseudomonas, Bradyrhizobium, and
Nitrobacter) and Hyphomicrobiaceae (Rhodoplanes,
Starkeya), which can utilize N2, NO3

−, or NH3 through N2

fixing or denitrification, increased after biochar addition and
were intimately involved in C and N cycling (Anderson et al.
2011). Moreover, microorganisms could generate ethylene in
fresh biochar, which may be linked to the decreases of N2O
and CO2 emissions (Spokas et al. 2010). Therefore, after bio-
char treatment, the improvements of microbial functional pro-
cesses could decrease the emissions of gaseous nutrients, in-
crease the retention of nutrients, and facilitate nutrients
cycling.

6 Negative effects of biochar on soil biota

Negative, null, or positive effects of biochar on soil microbial
community may depend on the biochar and soil type. Organic
pyrolytic products, such as phenolics and polyphenolics, may
be present in biochar and are harmful for soil microorganisms.
Warnock et al. (2007) indicated that mycorrhizae and total
microbial biomass decreased after biochar application. Gell
et al. (2011) and Ennis et al. (2012) reported that the decrease
in microbial abundance and activities might be also expected
with an enhanced retention of toxic substances, such as heavy
metals and pesticides, and the release of pollutants from bio-
char, such as bio-oil and polycyclic aromatic hydrocarbons. It
is not valid to conclude that a special biochar which has pos-
itive effects on one soil biota would also have similar effects
on others. For example, Rillig et al. (2010) reported that
hydrochar could be beneficial to arbuscular mycorrhizae but
may hinder plant growth. Several factors are likely to be re-
sponsible for the negative effects of biochar on soil biota,
including the volatile matters, properties of biochar as well
as salts, such as Cl or Na. Turner (1955) reported withering
of the petioles and discoloration of the leaves of clover plants
after using biochar without washing procedures to remove
organic and inorganic matters. Moreover, some biochars
might pose a direct risk to soil biota and their functions
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(Liesch et al. 2010) and may explain some of the decreased
crop yields reported in literatures. These may be short-term
effects that need to be taken seriously in consideration and be
evaluated for their suitability as a soil amendment.

7 Discussions

The performances and mechanisms of biochar in the improve-
ment of soil fertility could be divided into four parts. Firstly,
biochar could be used as a source of nutrients to increase soil
fertility, due to the initial addition of soluble nutrients
contained in the biochar and the mineralization of the labile
fraction of biochar which contain organically bound nutrients.
Moreover, the potential of biochar as nutrients source may
mainly depend on the feedstock and pyrolysis temperatures.
For instance, lower pyrolysis temperature may relatively in-
crease the availability of N and P, while higher pyrolysis tem-
perature may relatively increase the availability of K.
Therefore, it is possible that biochar could be designed for
specific end use. Secondly, biochar could improve soils’ phys-
ical and chemical properties. Though the long-term experi-
ments are still scarce, biochar could possibly be part of a
long-term adaptation strategy. The main reason is that biochar
could improve soils physical properties including the increase
of porosity and water storage capacity. Actually, the improve-
ments of soil properties (e.g., the increased aggregation capac-
ity, pH, and cation exchange capacity) could increase soil
fertility by increasing nutrient contents and availability and
decreasing nutrient leaching. Moreover, biochar properties,
application conditions, and soil properties determine biochar
function. Thirdly, biochar could store nutrients and be used as
slow-release fertilizer. Due to biochar’s specific properties
(e.g., pore structure and functional groups), the surplus nutri-
ents (e.g., nitrate, ammonium and phosphate) could be stored
onto biochar surface. Subsequently, biochar could slowly re-
lease nutrients because of biochar’s desorption properties,
which may reduce nutrients leaching and increase nutrient
contents. Moreover, biochar could increase soil fertility by
reducing the N2O and NO emissions. Relatively, the low-
temperature biochars could be more efficient for reducing
N2O emission. Fourthly, biochar could improve soil biological
properties, including microbial abundance, structure, and ac-
tivity. Biochar could improve microbial community by in-
creasing nutrient availability, providing suitable shelter, and
ameliorating living condition. The improved microbial com-
munity could facilitate nutrients cycling, which could de-
crease the emissions of gaseous nutrients and increase the
retention of nutrients. In addition, biochar may have negative
effects on microbial community, due to the harmful sub-
stances (e.g., phenolics and polyphenolics) contained in
biochar.

The possible improvements of soil’s properties and fertility
after biochar application were shown in Fig. 3. On the one
hand, the properties of soils, containing physical, chemical,
and biological properties, could be improved after biochar
treatment. Moreover, the improvement of soils properties is
highly related to the specific physicochemical properties of
biochar, such as high surface area, amount of functional
groups, and the content of liming. For example, soil’s cation
exchange capacity may increase with the increase of carbox-
ylic groups and surface area. The well-developed pore struc-
ture may not only enhance the capacity of water retention but

Fig. 3 The possible improvements of soil properties and fertility after
biochar application
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also provide a shelter for soil’s microorganisms, thus nutrient
retention and cycling could be improved. The content of lim-
ing contained in biochar may increase soil’s pH values. On the
other hand, biochar could increase plant nutrient availability in
soils by releasing nutrients, retaining nutrients, reducing nu-
trients leaching, and mitigating gaseous N losses. Therefore,
biochar has great potential in the improvement of soil fertility.

The influencing factors should be considered before bio-
char application into soils. These factors could be divided into
three aspects, including biochar properties, application condi-
tions, and soil properties. Biochar properties are mainly de-
pendent on the feedstocks and pyrolysis conditions especially
temperature. For example, as shown in Table 2, manure bio-
char may contain more P content than biochar produced from
other feedstocks. In general, the pH value may increase with
the increase of pyrolysis temperature. Effects of the applica-
tion conditions (e.g., application rate and time) on the soil
properties were presented in Table 3. Actually, most laborato-
ry and field studies were focused on the short-term effects of
biochars on soil properties. The long-term experiments and
studies are crucial for evaluating the benefits of biochar as a
sustainable material. Soil properties are highly related to the
soil type. For instance, highly weathered soils are typically
characterized by strong acidity, low clay activity, and poor
fertility and are considered to be degraded soils.
Dissimilarly, vertisol is a soil containing a large amount of
expansive clay minerals, and it has high swelling pressure,
exceptionally low hydraulic conductivity, poor soil structure,
and deep crack cutting when it is dry and stick when it is wet.
Therefore, the main influencing factors should be analyzed
and the maximum benefits should be evaluated before bio-
chars application into soils.

Many researches showed that the application of biochar
presents an ideal method to improve soils fertilizer.
However, some fundamental mechanisms and the utilization
of biochar in agro-ecosystem are poorly understood. These
knowledge gaps mainly include the following aspects:

(i) It is significant to understand the interactions between
biochar and soil microbial communities, which may crit-
ically affect the release of CH4 and N2O from soil, espe-
cially included nutrient biogeochemical cycles.

(ii) Understanding the dynamic mechanisms of biochar in-
corporation into soil. Biochar application is restricted by
many factors, such as biochar and soil type and applica-
tion rates. Thereby, to clear the role of each influencing
factor played on the applying of biochar is inevitable for
the process of field trials. In fact, the mechanisms and
influencing factors are usually co-existence when bio-
char application into soil. The following researches
should focus on the interactions between biochar, soil,
microbes, and plant roots after biochar application into
soil.

(iii) The exact service life of biochar is still rarely under-
stood. In other words, we should pay more attention to
the decomposition rate of biochars in soil. Thus, we can
choose biochar correctly and manage resources suitably.

(iv) The maximum adsorption and desorption capacity of
biochar are needed to be determined in further re-
searches. Biochars have indicated nonlinear adsorption
and desorption of nutrients. With that in mind, the avail-
ability of mineral substance to plants and potential
leaching of nutrient to the environment, which present
in different biochars, are still unclear.

(v) Further studies should be focused on the combined ap-
plication of several ‘designed biochars’ into soil.
According to the main influencing factors and mecha-
nisms, biochars could be produced purposefully. The
combined application of several ‘designed biochars’
may increase the utilization efficiency of nutrients and
manage soil specifically.

8 Conclusions

The application of biochar into soils has great potential for
improving soils fertility and promoting plant growth. The
choice of biochar managing various soils is flexible, because
diverse biomass materials could be used as feedstocks of bio-
chars and the feedstocks could be pyrolyzed at different tem-
peratures. Moreover, biochar has huge surface area, well-
developed pore structure, amounts of exchangeable cations
and nutrient elements, and plenty of liming. Because of these
properties, soil properties could be improved after biochar
treatment. For instance, the huge surface area and well-
developed pore structure may increase the water holding ca-
pacity and microbial abundance. The cation exchange capac-
ity and availability of nutrients could be increased due to the
amounts of exchangeable cations and nutrient elements. The
increased pH of soils should be attributed to the plenty of
liming contained in biochar. Therefore, improvements of soil
physical, chemical, and biological properties promote the pro-
ductivity of plant through increasing the amount of nutrient
elements, enhancing availability of nutrient elements, reduc-
ing nutrient leaching, and mitigating gaseous nutrients losses.

These results of characterization analyses, column experi-
ments and some field trials indicated that biochar could be
designed or may have the potential to manage specific soil
purposefully, through controlling the feedstock and pyrolysis
conditions. Biochar can be a novel and feasible fertilizer di-
rectly or indirectly. This is not only because of the biochars’
fertility but also their environmental and economic benefits.
Despite the interests of using biochars to manage soils is in-
creasing, some studies are also reported the negative effects
and a number of research gaps as well as uncertainties still
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exist as discussed above in this review. In order to clear these
knowledge gaps, further relevant investigations are inevitable
in the following research, especially long-term experiments.
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