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Abstract Magnetic and mechanical behaviour are strongly coupled: an applied stress modifies the magnetic
behaviour, and on the other hand, magnetic materials undergo a magnetisation-induced strain known as the
magnetostriction strain. These coupling effects play a significant role on the overall performance of elec-
tromagnetic devices such as magnetostrictive transducers or high-performance electric machines. In order
to provide engineers with accurate design tools, magneto-elastic effects must be included into constitutive
laws for magnetic materials. The origin of the magneto-elastic coupling lies in the competitive contributions
of stress and magnetic field to the definition of magnetic domain configurations in magnetic materials. The
magnetic domain scale is then suitable to describe magneto-elastic interactions, and this is the reason why
multiscale approaches based on a micro-mechanical description of magnetic domain structures have been
developed in the last decades. We propose in this paper an extension of a previous anhysteretic multiscale
model in order to consider hysteresis effects. This new irreversible model is fully multiaxial and allows the
description of typical hysteresis and butterfly loops and the calculation of magnetic losses as a function of
external magneto-mechanical loadings. It is notably shown that the use of a configuration demagnetising effect
related to the initial domain configuration enables to capture the non-monotony of the effect of stress on the
magnetic susceptibility. This configuration demagnetising effect is also relevant to describe the effects of stress
on hysteresis losses and coercive field.

Keywords Magneto-mechanical couplings · Magnetostriction · Constitutive laws · Micro-mechanical
modelling · Hysteresis loops

1 Introduction

Ferro- and ferrimagnetic materials are widely used as a basic constituent of electromagnetic devices and
transducers. The performance requirements of these devices are strongly increasing with miniaturisation and
lightening constraints. As a consequence of these constraints, the magneto-mechanical loadings experienced
by magnetic materials are reaching higher intensities (e.g. centrifugal forces in high-speed rotating electrical
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Fig. 1 Experimental illustration of magneto-elastic coupling effects on a non-oriented Iron-Silicon steel: effect of a uniaxial
compressive stress on magnetisation at f =1 Hz (left) and effect of a uniaxial stress on the losses per cycle at different frequencies
(right)

machines [1]). The search for materials tailored to specific applications requires the use of advanced constitu-
tive models, able to account for coupled magneto-mechanical phenomena. The magneto-mechanical coupling
[2,3] is characterised by the influence of stress on the magnetic susceptibility—explaining the strong effect
of stress on the general performance of electromagnetic devices—and by the magnetisation-induced strain,
the magnetostriction—exploited in magnetostrictive transducers. Figure 1 illustrates the effect of stress on
the magnetic behaviour of a standard non-oriented Iron–Silicon steel (Fe-3%Si). The left picture shows mag-
netisation curves under several uniaxial compressive stress (applied in the direction parallel to the magnetic
field). It can be seen that stress significantly deteriorates the magnetic permeability and modifies the shape
of the hysteresis loop. Hysteresis losses, proportional to the area of hysteresis loops, are also known to be
significantly modified by stress [4]. This effect is shown on the right picture where the energy losses per cycle
are plotted as a function of stress for several excitation frequencies. It can notably be noticed that the evolution
of this energy is non-monotonic with stress intensity. It is recalled that the profile of the losses are highly
dependent on the waveform of the excitation field. For the data plotted in Fig. 1, the waveform is triangular
with a fixed maximum value for the magnetic field. The results are then expected to be different from standard
sinus induction measurements.

The modelling of magneto-mechanical behaviour has been the object of a constant interest over the last
century [5]. The theoretical foundations of continuum models for magneto-elasticity have notably been set
down by Maugin and Eringen [6–8]. In the last decades, multiscale approaches based on a micro-mechanical
description of magnetic domain structures have been developed [9–13] mostly inspired by the early works
of Néel [14]. These multiscale approaches seem relevant to establish macroscopic constitutive laws since
magneto-elastic coupling effects originates from the evolution of magnetic domain structures under magneto-
mechanical loading. We propose in this paper to extend such a multiscale scheme in order to describe hys-
teresis effects and their dependence to magneto-mechanical loadings. In a first part the anhysteretic magneto-
elastic model [12,13] used as a basis in this paper will be detailed. The introduction of hysteresis effects
will then be explained. After a summary of the modelling approach, numerical results will be discussed and
compared to experimental results obtained on an industrial non-oriented Iron–Silicon steel [15]. The dis-
cussion will address magnetisation hysteresis loops, magnetostriction butterfly loops and hysteresis losses
prediction.

2 An anhysteretic approach for magneto-elastic couplings

The model proposed in this paper is derived from a micro-mechanical description of reversible magneto-elastic
behaviour [12,13] recalled hereafter. This description relies on the definition of the material free energy at the
domain scale and on the use of domains volume fractions as internal variables [9,10,16]. It then makes use of
scale transition rules to define the behaviour of a polycrystalline representative volume element.
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2.1 Single-crystal model

We consider a single crystal g. We denote as domain family α the set of domains with magnetisation Mα and
magnetostriction strain ε

μ
α .

Mα = Ms α = Ms
t [α1 α2 α3] , (1)

where αi are the direction cosines of the magnetisation Mα and α. Ms denotes the saturation magnetisation.
In the case of a material with cubic crystallographic symmetry:

εμ
α = 3

2
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2
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⎞
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where λ100 and λ111 are the magnetostriction constants of the material [17]. The free energy Wα of a domain
α is assumed to be uniform and is the sum of four contributions:

Wα = W mag
α + W an

α + W σ
α + W con f

α . (3)

W mag
α is the magneto-static energy, tending to align the magnetisation Mα along the magnetic field Hg

applied to the single crystal g (Eq. (4)). This equation assumes that the average field over a grain is sufficient to
describe the magneto-static contribution (the effect of magnetic field fluctuations within a grain are neglected).
μ0 is the vacuum permeability.

W mag
α = −μ0 Hg.Mα. (4)

W an
α is the magneto-crystalline anisotropy energy tending to align the magnetisation along the easy axes. This

energetic term explains1 the existence of domains microstructure. It is given by Eq.(5) in the case of a cubic
system. K1 and K2 denote the anisotropy constants of the material.

W an
α = K1(α

2
1α2

2 + α2
2α2

3 + α2
3α2

1) + K2(α
2
1α2

2α2
3). (5)

W σ
α is the elastic energy. Assuming uniform strain within a grain, it can be written as a function of the

magnetostriction strain ε
μ
α and of the average stress tensor σ g in the single crystal g [12]:

W σ
α = −σ g : εμ

α . (6)

W con f
α is a configuration term to account for the possible non-randomness of the initial domain configura-

tion (in the absence of applied magneto-mechanical loading) due for instance to plastic deformation [18] or
to significant surface effects [19]. This configuration energy can be chosen equivalent to the effect of a—
fictitious—residual �c stress uniform within the material2. In this paper, the configuration residual stress is
taken as a uniaxial compressive stress of amplitude �c along the rolling direction RD.

W con f
α = −�c : εμ

α . (7)

Another significant configuration effect is due to the modification of the initial domain structure when an
external stress is applied to the material. Indeed, for some composition of magnetic steels, it has been noticed
that the effect of tensile stress on magnetic susceptibility is non-monotonic with increasing stress intensity.
This is presumably due to the effect of stress on the initial domain configuration. This effect can be introduced
in the configuration term (7), but it is more convenient to consider this stress effect as a configuration—
fictitious—demagnetising effect. Let’s consider the example of a material with positive magnetostriction.
Under tensile stress, the number of domains is higher, and they are mostly oriented in a direction close to the
tensile direction. Similarly under compression, the number of domains is lower, and they are mostly oriented
in a direction perpendicular to the tensile direction. This change in the domain configuration can be translated

1 together with the exchange energy, neglected here because it is uniformly null within any domain family α.
2 This configuration effect was modelled thanks to a surface demagnetisation tensor by Hubert and Daniel [19], but it can be

shown that the two formulations are equivalent (see Appendix A:).
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in terms of demagnetising effect. We then suggest to correct the applied field Hg by a fictitious configuration

field Hcon f
g depending on the stress state. We propose the following definition for Hcon f

g :

Hcon f
g = η

(
Ng − 1

3

)
Mg , (8)

where η is a material parameter, Mg and Ng defines the “stress-demagnetisation” effect (Eq.(9)). Its value
belongs to the interval [0 1] and is 1/3 when no stress is applied:

Ng = 1

1 + 2 exp
(− K σ

eq
g

) , (9)

where K is a material parameter3, σ
eq
g is the equivalent stress for σ g as defined by Daniel and Hubert [20]

(namely the projection along the magnetic field direction of the deviatoric part of σ g). h (unit vector) is the
direction of the magnetic field Hg .

σ
eq
g = 3

2
h.

(
σ g − 1

3
tr(σ g) I

)
. h. (10)

This stress-magnetisation effect was not included in the original magneto-elastic modelling [12]. It is
necessary to describe the non-monotonic stress effect on the magnetic susceptibility. The choices made for
Hcon f

g and Ng are more explicitly explained in Appendix B:.
Once the free energy Wα is known for a given domain family α, the volume fractions fα of domain families α

are introduced as internal variables, as already proposed in the literature [9,10,14,16]. These internal variables
are calculated according to an explicit Boltzmann-type relation [10,12,13]:

fα = exp(−As .Wα)∫

α

exp(−As .Wα) dα

, (11)

where As is an adjustable material parameter4. The integration in Eq. (11) is defined over all the possible
directions of space for the unit vector α. From a practical point of view, it is performed using a discrete mesh
of the unit sphere counting 10242 directions [13].

An alternative is the use of Eq. (12) introducing two adjustable parameters As and Bs [21]. It allows to
adjust separately the effect of stress and magnetic field on the magnetisation. This separation should not be
required if the free energy Wα is rigorously written, but the assumptions made—particularly for the elastic
energy (see [12])—can lead to significant uncertainties.

fα = exp(−As .Wα) + exp(−As .W−α)∫

α

exp(−As .Wα) dα

exp(−Bs .Wα)

exp(−Bs .Wα) + exp(−Bs .W−α)

. (12)

W−α is the free energy of the domain with magnetisation along -α. By choosing As=Bs , Eq. (12) reduces
to Eq. (11). In the case of Iron–Silicon steels, the use of Eq. (11) is sufficient to describe the magneto-elastic
behaviour with satisfactory accuracy; it will thus be retained in the following.

Once the volume fraction is known for any direction α of the magnetisation Mα , the magnetisation Mg and
the magnetostriction strain ε

μ
g at the single-crystal scale are obtained with a volume average over the single

crystal.

Mg = 〈Mα〉g =
∫

α

fα Mα dα. (13)

εμ
g = 〈εμ

α 〉g =
∫

α

fα εμ
α dα. (14)

3 K can actually be defined as a function of two other modelling parameters, As and λ100: K ≈ 3
5 As λ100, see Appendix B:.

4 As has been shown to be proportional to the initial slope χo of the unstressed anhysteretic magnetisation curve [12]:
As = 3χo/μ0 M2

s .
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2.2 Polycrystal model

In order to define the behaviour of a polycrystalline representative volume element, the single crystal is
incorporated into a self-consistent polycrystalline scheme. This self-consistent approach has been previously
detailed [12] and is only briefly recalled hereafter. The local magneto-mechanical loading—local stress σ g
and magnetic field Hg—is derived from the macroscopic magneto-mechanical loading—macroscopic stress
σm and magnetic field Hm—using the localisation Eqs. (15) and (16).

σ g = Bσ
g : σm + Lσ

g : (εμ
m − εμ

g ). (15)

Hg = AH
g . Hm + MH

g . (Mm − Mg). (16)

Bσ
g and AH

g are the elastic and magnetic localisation operators and Lσ
g and MH

g are the elastic and
magnetic incompatibility tensors defining the incompatibilities raised by the difference of behaviour between
an individual grain and the surrounding medium. These tensors depend on the crystallographic orientation of
the considered grain so that texture effects can be included in the modelling (see for instance [19]). The practical
calculation of the localisation operators is detailed in ref. [12] and [22] and is recalled in Appendix C:. They
notably depend on the elastic stiffness coefficients Cij of the single crystal. Equation (15) and (16) make use of
the macroscopic magnetostriction strain ε

μ
m and magnetisation Mm so that the scheme is self-consistent. Once

the local magneto-mechanical loading (σ g , Hg) is known, the single-crystal model is applied to obtain the
strain and magnetisation at the single-crystal scale. The macroscopic magnetisation Mm and magnetostriction
strain ε

μ
m are then obtained with a volume average over the polycrystal.

Mm = 〈tAH
g . Mg〉m . (17)

εμ
m = 〈tBσ

g : εμ
g 〉m . (18)

The macroscopic elastic strain εel
m (obtained using the standard macroscopic Hooke law) can be added to

the magnetostriction strain to obtain the total macroscopic strain εm .

3 Hysteresis effects

The proposed multiscale approach is anhysteretic so far—it is restricted to the reversible part of magneto-
elastic behaviour. Although it captures the complex coupling between elastic and magnetic effects, it does not
include dissipation phenomena that are key to the understanding of electromagnetic devices. In the following,
we propose to introduce hysteresis effects in the multiscale model. The dissipation is introduced in the single-
crystal model by adding an irreversible contribution Hirr

g to the anhysteretic magnetic field. The definition of
Hirr

g is based on the works by Hauser [23], extended to magneto-mechanical loadings:

||Hirr
g || = δ

(
kr

μ0 Ms
+ cr ||Hg||

) [
1 − κg exp

(
− ka

κg
||Mg − Mreb

g ||
)]

. (19)

Hirr
g is assumed to be parallel to Hg . δ is equal to ±1, depending on whether the material is being loaded or

unloaded. The sign of δ starts as positive and is then changed each time there is an inversion in the loading
direction. kr , cr , ka and κg are material parameters. The value of κg changes each time there is an inversion in
the loading direction. The new value κg is calculated from the previous value κo

g according to Eq. (20). The
initial value κ ini

g of κg is a material constant. Mreb
g is the value of Mg at the previous inversion of the loading

direction.

κg = 2 − κo
g exp

(
− ka

κo
g

||Mg − Mreb
g ||

)
. (20)

In the case of a purely magnetic loading, an inversion of loading direction is defined as a change of sign for
the time derivative of the applied magnetic field. From a practical point of view, this inversion is detected at
instant t when 
Ht

m .
Ht−1
m < 0. In the case of a purely mechanical loading, an inversion of loading direction

is defined as a change of sign for the time derivative of the applied stress. From a practical point of view,
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Fig. 2 Calculation principle

this inversion is detected at instant t when 
σ t
m : 
σ t−1

m < 0. More generally, an inversion of magneto-
mechanical loading direction in a grain g can be defined at instant t using the average free energy Wg of grain
g (Wg = 〈Wα〉g):


W t
g. 
W t−1

g < 0. (21)

In order to account for the dependence of the coercive field to the applied stress, the parameter kr —defining the
coercive field—is assumed to show a dependence to stress similar to the stress configuration effect introduced
in section 2.1, k0

r being a material constant:

kr = k0
r

(
4

3
− Ng

)
. (22)

4 Modelling summary

The modelling process can be summarised as presented in Fig.2.
The input data are the material parameters (including the crystallographic texture) and the applied macro-

scopic loading in terms of stress σm and magnetic field Hm . An initial guess for the solution (macroscopic
magnetisation Mm and magnetostriction strain ε

μ
m) is also needed to start the process. The use of the solution

under uniform stress and uniform magnetic field assumptions is usually convenient for this initial guess. For
each element of the orientation distribution function, the localisation rules (15) and (16) are applied to define
the local stress σ g and magnetic field Hg . The local anhysteretic constitutive law is then applied according to
the model presented in section 2.1 to obtain the local magnetisation Mg and magnetostriction strain ε

μ
g . These

local responses are then averaged over the crystallographic orientations to obtain the macroscopic magnetisa-
tion Mm and magnetostriction ε

μ
m (Eqs. (17) and (18)). This solution replaces the initial guess, and the process

is repeated until convergence. In order to ensure the convergence, a relaxation method can be used just after
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Table 1 Material parameters: reversible model

Parameter Ms (K1, K2) (λ100, λ111) (C11, C12, C44) As �c η

Value 1.61 106 (38, 0) (23, −4.5) (202, 122, 229) 3 10−3 20 2 10−4

Unit A/m kJ/m3 10−6 GPa m3/J MPa –

Table 2 Material parameters: local effective field

Parameter k0
r cr ka κ ini

g

Value 150 0.1 15 10−6 1
Unit J/m3 – m/A –

the homogenisation step. This process, noted by the symbol r© in Fig. 2, consists in defining the new value of
Mm and ε

μ
m at step k as a weighted average between the result of the homogenisation step and the previous

result at step k − 1. The weighting coefficient has been set to 0.5 for the computations presented in this paper.
When convergence is reached, the local magnetic field Hg for each crystallographic orientation is corrected by

Hcon f
g (Eq. (8)) and Hirr

g (Eq. (19)) to obtain the local effective field H̃g accounting for the stress configuration
effect and the hysteresis losses:

H̃g = Hg + Hcon f
g + Hirr

g . (23)

The final solution is given by the macroscopic magnetisation Mm , the macroscopic magnetostriction strain ε
μ
m

and the average magnetic field H̃m :

H̃m = 〈H̃g〉m . (24)

5 Modelling results and comparison to experiments (1D)

The proposed multiscale approach has been applied to model the behaviour of a commercial non-oriented
3%Si–Fe steel from Arcelormittal delivered in 0.5-mm thick sheets. It is a standard material for rotating
machines. A comprehensive experimental characterisation for this material can be found in Rekik et al. [15].

5.1 Material parameters

The material parameters used for the modelling are given in Table 1 for the anhysteretic part of the behaviour
and in Table 2 for the dissipative part. A brief guide to the identification of these parameters is given in
Appendix D:.

The crystallographic texture data consists in a set of 396 crystallographic orientations representative for
this material and obtained using electron back scattered diffraction (EBSD). The corresponding discrete pole
figures are plotted in Fig. 3.

5.2 Anhysteretic behaviour

The application of the anhysteretic constitutive model is presented in Figs. 4, 5, 6, 7 and 8 in the case of a non-
oriented 3%Iron–Silicon alloy. Figures 4 and 5 describe the anisotropy of the magneto-elastic behaviour of the
material in the absence of applied stress. RD, TD and 45◦ denote the rolling direction, the transverse direction
and a direction at 45◦, respectively. The experimental results are consistent with earlier measurements [24]. In
the modelling, anisotropy effects are introduced through the measured crystallographic texture and with the
parameter �c (Eq. (7)). The latter is chosen so that the magnetostrictive anisotropy is correctly described at
saturation (Fig. 5).

As already noticed by Daniel et al. [12], the model tends to overestimate the magnetic susceptibility
(Fig. 4). This is attributed to the approximations in the definition of the free energy and particularly the fact
that intragranular heterogeneities and local demagnetising effects are insufficiently taken into account. The



1314 L. Daniel et al.

Fig. 3 Discrete pole figures (396 orientations) for a non-oriented 3 %Fe-Si alloy

Fig. 4 Anisotropy of the anhysteretic magnetic behaviour of a non-oriented Iron-Silicon steel: magnetisation curves along rolling,
transverse and 45◦ directions. Experimental measurements (left) and modelling results (right)

Fig. 5 Anisotropy of the anhysteretic magnetostrictive behaviour of a non-oriented Iron-Silicon steel: magnetostriction curves
along rolling, transverse and 45◦ directions. Experimental measurements (left) and modelling results (right)
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Fig. 6 Anhysteretic magneto-elastic behaviour of a non-oriented Iron-Silicon steel along the rolling direction: effect of a uniaxial
stress on magnetisation. Experimental measurements (left) and modelling results (right)

Fig. 7 Anhysteretic secant magnetic susceptibility a non-oriented Iron-Silicon steel along the rolling direction: effect of a uniaxial
stress. Experimental measurements (left) and modelling results (right)

general trends, however, and the anisotropy effects are correctly rendered by the model. The description of the
magnetostriction strain is very satisfactory (Fig. 5), notably due to the use of the parameter �c, although the
longitudinal strain when the magnetic field is applied at 45◦ from the rolling direction is slightly overestimated.

Figure 6 shows the magnetic behaviour of the material submitted to a uniaxial stress applied along the
rolling direction (RD). The magnetic field is also applied along RD. The overestimation of the magnetisation
for a given magnetic field can still be noticed, but the effect of stress on the behaviour is satisfactorily described.
A compression leads to a very significant drop in the magnetic susceptibility, whereas a tension has a much
slighter effect.

Another way of describing the effect of stress on the magnetic behaviour is to plot the secant magnetic
susceptibility as a function of the uniaxial stress intensity. The secant magnetic susceptibility is defined here
as the ratio between the magnetisation—measured by its projection along the applied field direction—and
the norm of the applied field. The result is shown in Fig. 7. Again the magnetic susceptibility tends to be
overestimated but the effect of stress on the magnetic behaviour is appropriately described. Compression is
associated to a strong degradation, and tension first increases the magnetic susceptibility but then decreases it.
This non-monotonic dependence of the magnetic susceptibility to the applied uniaxial stress is described by
the model through the use of the configuration field Hcon f

g (Eq. (8)).
The magnetostrictive behaviour under uniaxial stress is shown in Fig. 8. A tensile stress tends to decrease

the magnetostriction strain amplitude, whereas a compression tends to increase it. The figures have been plotted
so that all the curves start from zero. The 
E effect—associated to the stress-induced magnetostriction strain
in the absence of magnetic field [25]—is then not explicitly shown in Fig. 8. The proposed model gives a very
satisfactory description of the magnetostrictive behaviour under stress.
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Fig. 8 Anhysteretic magneto-elastic behaviour of a non-oriented Iron-Silicon steel along the rolling direction: effect of a uniaxial
stress on magnetostriction strain. Experimental measurements (left) and modelling results (right)

Fig. 9 Magnetisation (left) and magnetostriction (right) loops under uniaxial stress for a non-oriented Iron-Silicon steel loaded
along the rolling direction

5.3 Dissipative behaviour

The description of hysteresis effects described in section 3 allows calculating the dissipative behaviour of the
material under the same magneto-mechanical conditions. Figure 9 shows the predicted hysteresis magnetisation
loops under uniaxial stress. These loops very satisfactorily compare to the measured curves presented in Fig.
1(left). Figure 9 shows the corresponding predicted magnetostriction butterfly loops. Due to the very small
amplitude of the strains, dynamic measurements could not be performed on this material to compare with these
results—only anhysteretic magnetostriction measurements could be carried out [15]. It can be noticed that, for
a fixed magnetic field value, the evolution of the magnetostriction strain with respect to stress is not monotonic.

The calculation of the surface of the magnetisation hysteresis loops gives an insight into the effect of stress
on magnetic losses. The results are presented in Fig. 10. They are in good agreement with the experimental
measurements at low frequency shown in Fig. 1. Both compression and tension tend to decrease the hysteresis
losses before a saturation point is reached. It is recalled that this calculation has been performed for a fixed
maximum value of the magnetic field. These results cannot be straightforwardly compared to measurements
under sinusoidal magnetic inductions.

6 Conclusion

A micro-mechanical framework for the description of the magneto-elastic behaviour of polycrystalline mag-
netic materials has been presented. This multiscale approach is based on an energy description of magneto-
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Fig. 10 Prediction of hysteresis losses as a function of the applied uniaxial stress for a non-oriented Iron-Silicon steel

elastic couplings at the magnetic domain scale. It is combined with scale transition rules to describe the
macroscopic response of polycrystalline media. Its fully multiaxial definition allows the application of the
model in any magneto-mechanical loading configuration, whatever the form of the stress tensor or the relative
orientation between stress and magnetic field. It has been used to describe the magnetostriction and magneti-
sation curves of a magnetic material subjected to uniaxial magneto-mechanical loadings, but it can also be
applied to predict piezomagnetic behaviour [26] or 
E effect [16,25]. The model accounts for the anisotropy
effects at the grain scale—through single-crystal elastic, magnetic and magnetostrictive anisotropy—and at the
macroscopic scale—through crystallographic texture. It also accounts for additional anisotropy effects such
as surface effects arising when the grain size is large compared to a sample dimension (typically the width
of electrical steel sheets). Moreover, the proposed extension to hysteretic behaviour enables to monitor the
effect of stress on coercive field and hysteresis losses. The approach is predictive in the sense that it can be
applied to a large variety of magneto-mechanical configurations, while the parameters are identified only from
a limited number of experimental measurements. The validation results have been limited to uniaxial loading
configurations in this paper. However the formulation of the model is fully multiaxial and the confrontation of
the predicted behaviour to experimental data obtained under multiaxial loadings will be the object of further
communication. The extension of the model for magnetic loadings at higher frequency will also be investigated.

This modelling approach is a promising tool for material design. It can be used to find optimal microstructure
(e.g. crystallographic texture, crystal properties) for a given application. This optimisation can be performed on
uncoupled mechanical or magnetic properties—as usually done—but can also include magneto-elastic effects.
The latter are key for instance to the design of high-speed rotating machines or magnetostrictive actuators.
The model can also be used to define appropriate initial domain configurations for specific applications and
help to act on external or internal stresses—for instance through assembling, packaging or manufacturing
constraints—in order to enhance the performance of existing devices.
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Appendix A: Correspondance between demagnetising surface effect and initial stress configuration term

This appendix aims at proving the equivalence between the formulation of “surface effect” proposed by Hubert
and Daniel [19] and the “configuration term” used in this paper to describe the initial domain configuration in
magnetic materials in the absence of applied loading.

In the proposed multiscale modelling, the configuration term (7) has been included in the description of
the domains energy balance in order to account for phenomena such as the strong differences between magne-
tostriction amplitude along the rolling and transverse direction of electrical sheets. The configuration energy is
reminded in Eq. (25) where �c is the fictitious configuration stress tensor. In the following, �c is assumed to
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be diagonal. A similar approach was already proposed for the modelling of grain-oriented (GO) Iron–Silicon
steels [19]. The configuration effect was introduced as a surface energy related to the large ratio between grain
size and thickness of the sheets (Eq. (26)). C is a material parameter, α is the direction of the magnetisation
(unit vector) and N S is a diagonal second-order tensor introducing the ratio between the average grain size
and the dimensions of the specimen (see [19] for details). The grounds for this latter definition is acceptable
for GO steel sheets but may not be appropriate for non-oriented Iron–Silicon steels or other materials with
small grain size compared to the sheet thickness.

W con f
α = −�c : εμ

α . (25)

W S
α = C α.N S .α. (26)

The object of this appendix is to demonstrate that the two formulations (25) and (26) are equivalent. For
that purpose, we seek a configuration stress �c such that the configuration energy (25) is equal to the surface
energy (26) except for a constant C0:

− �c : εμ
α = C α.N S.α + C0. (27)

If we assume no magnetisation rotation inside the domains, the magnetostriction strain tensor only depends
on λ100 and can be written:

εμ
α = 3

2
λ100

(
α ⊗ α − 1

3
I
)

. (28)

The configuration energy (25) is then given by:

W con f
α = −3

2
λ100

(
�c

11(α
2
1 − 1/3) + �c

22(α
2
2 − 1/3) + �c

33(α
2
3 − 1/3)

)
. (29)

On the other hand, the surface energy (27) is given by:

W S
α = C

(
N S

11α
2
1 + N S

22α
2
2 + N S

33α
2
3

)
. (30)

In order to fulfil Eq. (27), the configuration stress �c can be chosen as:

�c = − 2C

3λ100
N S . (31)

Besides, the constant C0 is defined by:

C0 = λ100

2
tr(�c). (32)

C0, however, is not used in practice since the free energy (3) is defined except for a constant.
Hence, it is shown that, given this relationship (31) between �c and N S , the two formulations (25) and

(26) are equivalent and can be used indifferently.

Appendix B: Stress configuration effect

The effect of a tensile stress (parallel to the applied magnetic field) on the magnetic susceptibility is non-
monotonic with stress intensity. This experimental observation is in contradiction with the classical magneto-
elastic effect described by the magneto-elastic term (6). A complementary effect is then required. It has been
introduced in the multiscale modelling through a configuration term (9). The origin of this term is explained
in this appendix.

The configuration demagnetising field (8) is defined after the simplified description of the modification of
domain structures when an external stress is applied. Let’s consider a material with positive magnetostriction
coefficient λ100. The magnetisation rotation mechanism is neglected so that λ111 is not considered. Under
uniaxial tension, the volume fraction of domains oriented along the direction of the applied stress increases.
This leads to a higher local demagnetising field that explains the refinement of the domain structure. Under
uniaxial compression, the effect is opposite, leading to a decrease of the local demagnetising effect and hence
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to a growth of domain size. Figure 1 gives an illustration for a very schematic domain distribution inside a
single crystal. Figure 12 gives a similar illustration for a biaxial stress configuration. The narrowing and growth
of domain size occur as well, but for a higher proportion of domains. Demagnetising fields are expected to be
reduced compared to the uniaxial configuration since closure paths remain in large proportion. The interpre-
tation of a configuration with a uniaxial loading rotated at 45◦ with respect to the main axes (Fig. 13) leads to
the same type of distribution, underlining the fact that shear stress has a minor role on the domain distribution
and consequently on the configuration demagnetising field.

These schematic illustrations show that there is a strong correlation between domain fractions and demag-
netising fields. The demagnetising field is the same for domains with opposite magnetisation. In order to estab-
lish an expression for the configuration demagnetising field Hcon f

g , the following assumptions are considered:

– the magnetisation rotation due to stress is negligible,
– the demagnetising configuration field Hcon f

g can be defined at the grain scale and depends on a demagnetis-
ing tensor Nd , diagonal in the coordinate system corresponding to the local magnetic field Hg . It is written:

Hcon f
g = Nd(σ g).Mg , (33)

– the demagnetising configuration field Hcon f
g is supposed to be aligned with the local magnetic field Hg ,

– for the definition of the configuration field Hcon f
g , only the magneto-elastic energy W σ

α (6) is considered
in the definition of the volume fractions f ′

α:

f ′
α = exp(−As W σ

α )∫
α

exp(−As W σ
α ) dα

, (34)

– the stress demagnetising tensor Nd is null in the absence of applied stress:

Nd(σ g = 0) = 0. (35)

Considering the previous domain structure (Figs. 11, 12 and 13) under these assumptions, the magneto-
elastic energy for the six domain families is simplified into:

W σ
1 = W σ

2 = −λ100σxx + λ100
2 (σyy + σzz)

W σ
3 = W σ

4 = −λ100σyy + λ100
2 (σxx + σzz)

W σ
5 = W σ

6 = −λ100σzz + λ100
2 (σxx + σyy)

(36)

Fig. 11 Evolution of the domain distribution inside a single crystal under uniaxial stress σxx

Fig. 12 Evolution of the domain distribution inside a single crystal under equibiaxial stress (σxx, σyy)



1320 L. Daniel et al.

Fig. 13 Evolution of the domain distribution inside a single crystal under uniaxial stress σ45

The following definition for Nd is proposed:

Nd =
⎛
⎝

2 f ′
1 − 1/3 0 0

0 2 f ′
3 − 1/3 0

0 0 2 f ′
5 − 1/3

⎞
⎠

xyz

. (37)

It is easily verified that Nd is null when no stress is applied. Considering a magnetic field Hg along x, only
the component N d

xx of Nd is needed. Using the definition (34) of f ′
1, noting K = 3

2 Asλ100 and after a few
calculations, the demagnetising factor is obtained:

N d
xx = exp

(
K x.sg.x

)

exp
(
K x.sg.x

) + exp
(
K y.sg.y

) + exp
(
K z.sg.z

) − 1

3
, (38)

with sg , the deviatoric stress tensor (sg = σ g − tr(σ g)I/3). Let’s consider more closely the term Ng = N d
xx +1/3

in order to simplify its expression. In the case of a uniaxial stress of amplitude σ applied in the direction parallel
to the magnetic field Hg , Ng reduces to:

Ng = 1

1 + 2 exp (−K σ)
. (39)

Following the principles of magneto-elastic equivalent stresses [27], we try to express Ng , in the general
multiaxial case, as a function of a scalar value depending on stress. This scalar value (the equivalent stress
σ

eq
g ) is the uniaxial stress that, applied in the direction parallel to the magnetic field, would lead to the same

configuration effect. The equation to solve is:

1

1 + 2 exp(−K σ
eq
g )

= exp(K x.sg.x)

exp(K x.sg.x) + exp(K y.sg.y) + exp(K z.sg.z)
. (40)

A few calculations lead to the following expression of σ
eq
g :

σ
eq
g = 2

3 As λ100
ln

(
2 exp

(
K x.sg.x

)

exp
(
K y.sg.y

) + exp
(
K z.sg.z

)
)

. (41)

Assuming that the quantity K u.sg.u is small compared to 1 (for all u), and using a first-order Taylor
development of the exponential function, we write:

exp
(
K y.sg.y

) + exp
(
K z.sg.z

) ≈ 2 + K y.sg.y + K z.sg.z
≈ 2 − K x.sg.x (because tr(sg)=0)
≈ 2 exp

(− 1
2 K x.sg.x

)
.

(42)

The expression of σ
eq
g then reduces to:

σ
eq
g = 3

2
x.sg.x. (43)

This expression was already obtained using another approach [20], and was named the deviatoric equivalent
stress [27].
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The expression of Ng is finally given by:

Ng = 1

1 + 2 exp
(− K σ

eq
g

) . (44)

K is a material parameter defined by K = 3
2 As λ100 in the simplified single-crystal case detailed above. It was

shown in [25] that in the case of a polycrystal, λ100 should be replaced by λm the maximum magnetostriction
strain in the absence of magnetisation rotation. As a first approximation, assuming uniform stress within the
material, λm can be taken as 2

5λ100 [12]:

K = 3

2
As λm ≈ 3

5
As λ100. (45)

σ
eq
g is the scalar equivalent stress defined in [20] in order to account for the possible multiaxiality of stress

(h being the direction of the magnetic field Hg):

σ
eq
g = 3

2
h.sg.h. (46)

The configuration field Hcon f
g is then defined as a function of Ng , with η a material parameter:

Hcon f
g = η

(
Ng − 1

3

)
Mg. (47)

The coercive field is assumed to show the same dependence to the applied stress, through the parameter kr
(defining the coercive field in Hauser’s formulation). Indeed, the coercive field is linked to the configuration
effect because the probability of encountering pinning centres depends on the space between domain walls.
This configuration effect can then rely as well on the schematic illustrations of Figs. 11, 12 and 13. This is the
reason why the following expression has been proposed for kr :

kr = k0
r

(
1 − (Ng − 1

3
)

)
. (48)

Appendix C: Localisation operators

Scale transition rules are required to express local loadings (e.g. at the single-crystal scale) as a function of
macroscopic loadings (e.g. at the polycrystal scale). The definition of this scale transition is non-trivial and
relies on localisation operators. This appendix details the calculation procedure for the localisation operators
used in Eqs. (15) and (16).

Appendix C:.1 Mechanical localisation

The calculation of the localisation tensor Bσ
g requires several intermediate steps. An inclusion problem is

considered first. The Eshelby tensor Ng corresponding to this inclusion problem is calculated [28]. It depends
on the shape of the inclusion and on the elastic properties of the infinite medium. The shape of the inclusion
is representative for the phase distribution [29]. If the grain distribution is isotropic, a spherical inclusion is
chosen. In the case of a self-consistent calculation, the elastic stiffness tensor of the infinite medium is the
self-consistent estimate C̃m . The monograph by Mura [30] provides the guidelines for the practical calculation
of the Eshelby tensor. The Hill constraint tensor C∗

g is then defined (Eq. (49)), from which the strain localisa-
tion tensor Aσ

g (Eq. (50)) and the stress concentration tensor Bσ
g are deduced (Eq. (51)). I is the fourth-order

identity tensor. The incompatibility tensor Lσ
g is finally deduced (Eq. (52)).

C∗
g = C̃m : (Ng

−1 − I)
. (49)

Aσ
g =

(
Cg + C∗

g

)−1 :
(
C̃m + C∗

g

)
. (50)

Bσ
g = Cg : Aσ

g : C̃−1
m . (51)

Lσ
g =

(
C−1

g + C∗
g
−1

)−1
. (52)
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Appendix C:.2 Magnetic localisation

The same approach applies for the magnetic field localisation. The depolarising tensor Ng is calculated (see
for instance [31] or [32]). The self-consistent estimate χ̃m for the magnetic susceptibility is also used. The
intermediate tensor χ∗

g , and localisation operators AH
g and BH

g are then calculated. I is the second-order identity
tensor. The incompatibility tensor MH

g is finally deduced (Eq. (56)).

χ∗
g = χ̃m .

(
Ng

−1 − I
)
. (53)

AH
g =

(
χ g + χ∗

g

)−1
.
(
χ̃m + χ∗

g

)
. (54)

BH
g = χ g. AH

g . χ̃−1
m . (55)

MH
g =

(
χ g + χ∗

g

)−1
. (56)

In the context of this paper, the assumptions used in [12] have been used. The local magnetic behaviour
is assumed isotropic for the definition of the localisation rules, so that AH

g reduces to 1 and MH
g to 1/(3+2χ̃m)

where χ̃m is then a scalar. A detailed explanation for the definition of scale transition rules in the generic case
of coupled behaviour can be found in [22].

Appendix D: Guidelines for the identification of material parameters

The proposed modelling approach makes use of fifteen material parameters to predict the multiaxial dissipative
magneto-elastic behaviour of polycrystalline ferro- or ferrimagnetic materials. These parameters are comple-
mented by the crystallographic texture of the material. This appendix aims at providing some guidelines to
identify these parameters.

The crystallographic texture is used in the form of a discrete orientation distribution function. It can be
directly obtained from EBSD measurements. It can also be extracted from X-ray diffraction patterns.

The parameters describing the single-crystal behaviour are the saturation magnetisation Ms , the magneto-
crystalline anisotropy constants K1 and K2, the magnetostriction coefficients λ100 and λ111 and the elastic
coefficients C11, C12 and C44. These are standard physical constants, their definition is unambiguous and their
values can usually be found in Physics textbooks.

The parameter As has been shown to be proportional to the initial slope of the unstressed anhysteretic
magnetisation curve [12]: As = 3χo

μ0 M2
s

. It can then be identified from a low-field anhysteretic measurement

under no applied stress.
The parameter �c controls—together with the crystallographic texture—the macroscopic anisotropy of

the material. It can be identified so as to adjust the difference between the maximum magnetostriction of the
rolling and transverse directions (see Fig. 5). It can then be identified from two magnetostriction measurements
(one along RD, one along TD) at high magnetic field under no applied stress.

η allows describing the non-monotonic effect of stress on the magnetic behaviour. It can be identified from
a susceptibility measurement under stress (see Fig. 7). The sensitivity to stress is much higher at low field. It
is then suggested to perform the identification of η from low-field anhysteretic measurements under uniaxial
stress. Tension configurations should usually be sufficient for the purpose of this identification.

The last four parameters k0
r , cr , ka and κ ini

g control the dissipative behaviour according to Hauser’s approach
[23]. They can be identified so as to adjust the description of a major magnetisation loop under no applied
stress starting from a demagnetised state. k0

r controls the coercive field amplitude, cr the first magnetisation
behaviour and ka and κ ini

g the width and inclination of the hysteresis cycle.
As a summary, the material parameters can be identified from anhysteretic measurements at low field under

uniaxial stress (tension), from a magnetostriction measurement at high field for two perpendicular directions
and from a major hysteresis loop under no applied stress. The model can then be used to predict the material
response under any magneto-elastic loading, including multiaxial configurations.
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