Model reduction technique for faster simulation of drying of spherical solid foods - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Food Engineering Année : 2016

Model reduction technique for faster simulation of drying of spherical solid foods

Résumé

To simulate drying of foods, the classical calculation based on finite differences, elements or volumes are quite time consuming, which may be an issue in an optimisation procedure where hundreds or thousands of simulations are necessary. A model with coupled heat and mass transfers, based on diffusion and convection, with non-linear properties and boundaries makes an accurate but slow simulator for drying of foodstuffs. In this work, it was shown that the model with coupled heat and mass transfer can be replaced by a simple and much faster, yet as accurate, two- or three-compartment model. Equivalent predictions of mean product temperature and moisture content are obtained by linking exchange coefficients (in compartmental model) to transfer coefficients (in diffusion convection model) and fine tuning the compartment volume sizes. The resulting simulations are very close with calculation time nearly a hundred times faster.
Fichier non déposé

Dates et versions

hal-01531605 , version 1 (01-06-2017)

Identifiants

Citer

Hedi Romdhana, Charlène Lambert, Daniel Goujot, Francis F. Courtois. Model reduction technique for faster simulation of drying of spherical solid foods. Journal of Food Engineering, 2016, 170, pp.125-135. ⟨10.1016/j.jfoodeng.2015.09.021⟩. ⟨hal-01531605⟩
64 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More