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We introduce a structure on a Garside group that we call Dehornoy structure and
we show that an iteration of such a structure leads to a left­order on the group.
We define two conditions on a Garside group G and we show that, if G satisfies
these two conditions, then G has a Dehornoy structure. Then we show that the
Artin groups of type A and of type I2(m) , m ≥ 4, satisfy these conditions, and
therefore have Dehornoy structures. As indicated by the terminology, one of the
orders obtained by this method on the Artin groups of type A coincides with the
Dehornoy order.
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1 Introduction

A group G is said to be left­orderable if there exists a total order < on G invariant by
left­multiplication. Recall that a subset P of G is a subsemigroup if αβ ∈ P for all
α, β ∈ P . It is easily checked that a left­order < on G is determined by a subsemigroup
P such that G = P⊔P−1 ⊔{1}: we have α < β if and only if α−1β ∈ P . In this case
the subsemigroup P is called the positive cone of < .

The first explicit left­order on the braid group Bn was determined by Dehornoy [4].
The fact that Bn is left­orderable is important, but, furthermore, the Dehornoy order
is interesting by itself, and there is a extensive literature on it. We refer to Dehornoy–
Dynnikov–Rolfsen–Wiest [8] for a complete report on left­orders on braid groups and
on the Dehornoy order in particular. The definition of the Dehornoy order is based on
the following construction.

Let G be a group and let S = {s1, s2, . . . , sn} be a finite ordered generating set for G .
Let i ∈ {1, 2, . . . , n}. We say that α ∈ G is si ­positive (resp. si ­negative) if α is
written in the form α = α0siα1 · · · siαm (resp. α = α0s−1

i α1 · · · s−1
i αm ) with m ≥ 1
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and α0, α1, . . . , αm ∈ 〈si+1, . . . , sn〉. For each i ∈ {1, 2, . . . , n} we denote by P+
i

(resp. P−
i ) the set of si ­positive elements (resp. si ­negative elements) of G . The key

point in the definition of the Dehornoy order is the following.

Theorem 1.1 (Dehornoy [4]) Let G = Bn+1 be the braid group on n + 1 strands
and let S = {s1, s2, . . . , sn} be its standard generating set. For each i ∈ {1, 2, . . . , n}

we have the disjoint union 〈si, si+1, . . . , sn〉 = P+
i ⊔ P−

i ⊔ 〈si+1, . . . , sn〉.

Let G = Bn+1 be the braid group on n + 1 strands. Set PD = P+

1 ⊔ P+

2 ⊔ · · · ⊔ P+
n .

Then, by Theorem 1.1, PD is the positive cone for a left­order <D on G . This is the
Dehornoy order.

A careful reader will notice that Theorem 1.1 leads to more than one left­order on Bn+1 .
Indeed, if ǫ = (ǫ1, ǫ2, . . . , ǫn) ∈ {+,−}n , then Pǫ = P

ǫ1
1 ⊔ P

ǫ2
2 ⊔ · · · ⊔Pǫn

n is a positive
cone for a left­order on Bn+1 . The case ǫ = (+,−,+, . . . ) is particularly interesting
because, by Dubrovina–Dubrovin [11], in this case Pǫ determines an isolated left­order
in the space of left­orders on Bn+1 .

Our goal in the present paper is to extend the Dehornoy order to some Garside groups.

A first approach would consist on keeping the same definition, as follows. Let G be a
group and let S = {s1, s2, . . . , sn} be a finite ordered generating set for G . Again, we
denote by P+

i (resp. P−
i ) the set of si ­positive elements (resp. si ­negative elements)

of G . Then we say that S determines a Dehornoy structure (in Ito’s sense) if, for each
i ∈ {1, . . . , n}, we have the disjoint union 〈si, si+1, . . . , sn〉 = P+

i ⊔P−
i ⊔〈si+1, . . . , sn〉.

In this case, as for the braid group, for each ǫ ∈ {+,−}n the set Pǫ = P
ǫ1
1 ⊔P

ǫ2
2 ⊔· · ·⊔Pǫn

n

is the positive cone for a left­order on G . This approach was used by Ito [16] to construct
isolated left­orders in the space of left­orders of some groups.

In the present paper we will consider another approach of the Dehornoy order in terms
of Garside groups (see Dehornoy [6], Fromentin [13], Fromentin–Paris [14]), and our
definition of Dehornoy structure will be different from that in Ito’s sense given above.

In Section 2 we recall some basic and preliminary definitions and results on Garside
groups. We refer to Dehornoy et al. [7] for a full account on the theory. In Section
3 we give our (new) definition of Dehornoy structure and show how such a structure
leads to a left­order on the group (see Proposition 3.1). Then we define two conditions
on a Garside group, that we call Condition A and Condition B, and show that a Garside
group which satisfies these two conditions has a Dehornoy structure (see Theorem 3.2).

The aim of the rest of the paper is to apply Theorem 3.2 to the Artin groups of type
A, that is, the braid groups, and the Artin groups of dihedral type. In Section 4 we
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prove that a braid group with its standard Garside structure satisfies Condition A and
Condition B (see Theorem 4.1), and therefore has a Dehornoy structure in the sense of
the definition of Section 3 (see Corollary 4.2). We also prove that the left­orders on
the group induced by this structure are the same as the left­orders induced by Theorem
1.1 (see Proposition 4.4), as expected. Section 5 and Section 6 are dedicated to the
Artin groups of dihedral type. There is a difference between the even case, treated
in Section 5, and the odd case, treated in Section 6. The latter case requires much
more calculations. In both cases we show that such a group satisfies Condition A and
Condition B, and therefore admits a Dehornoy structure. Then we show that the left­
orders obtained from this Dehornoy structure can also be obtained via an embedding
of the group in a braid group defined by Crisp [3].

2 Preliminaries

Let G be a group and let M be a submonoid of G such that M ∩ M−1 = {1}. Then
we have two partial orders ≤R and ≤L on G defined by α ≤R β if βα−1 ∈ M , and
α ≤L β if α−1β ∈ M . For each a ∈ M we set DivR(a) = {b ∈ M | b ≤R a} and
DivL(a) = {b ∈ M | b ≤L a}. We say that a ∈ M is balanced if DivR(a) = DivL(a).
In that case we set Div(a) = DivR(a) = DivL(a). We say that M is Noetherian if
for each element a ∈ M there is an integer n ≥ 1 such that a cannot be written as a
product of more than n non­trivial elements.

Definition Let G be a group, let M be a submonoid of G such that M ∩M−1 = {1},
and let ∆ be a balanced element of M . We say that G is a Garside group with Garside

structure (G,M,∆) if:

(a) M is Noetherian;

(b) Div(∆) is finite, it generates M as a monoid, and it generates G as a group;

(c) (G,≤R) is a lattice.

Let (G,M,∆) be a Garside structure on G . Then ∆ is called the Garside element and
the elements of Div(∆) are called the simple elements (of the Garside structure). The
lattice operations of (G,≤R) are denoted by ∧R and ∨R . The ordered set (G,≤L) is
also a lattice and its lattice operations are denoted by ∧L and ∨L .

Now take a Garside group G with Garside structure (G,M,∆) and set S = Div(∆) \
{1}. The word length of an element α ∈ G with respect to S is denoted by lg(α) =
lgS(α). The right greedy normal form of an element a ∈ M is the unique expression
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a = up · · · u2u1 of a over S satisfying (up · · · ui)∧R ∆ = ui for all i ∈ {1, . . . , p}. We
define the left greedy normal form of an element of M in a similar way. The following
two theorems contain several key results of the theory of Garside groups.

Theorem 2.1 (Dehornoy–Paris [9], Dehornoy [5]) (1) Let a ∈ M and let a =

up · · · u2u1 be the greedy normal form of a. Then lg(a) = p.

(2) Let α ∈ G . There exists a unique pair (a, b) ∈ M × M such that α = ab−1 and
a ∧R b = 1. In that case we have lg(α) = lg(a) + lg(b).

The expression of α given in Theorem 2.1 (2) is called the (right) orthogonal form of
α . The left orthogonal form of an element of G is defined in a similar way.

We say that an element a ∈ M is unmovable if ∆ 6≤R a or, equivalently, if ∆ 6≤L a.

Theorem 2.2 (Dehornoy–Paris [9], Dehornoy [5]) Let α ∈ G . There exists a unique
pair (a, k) ∈ M × Z such that a is unmovable and α = a∆k .

The expression of α given above is called the (right) ∆­form of α . We define the left

∆­form of an element of G in a similar way.

Definition Let δ be a balanced element of M . Denote by Gδ (resp. Mδ ) the subgroup
of G (resp. the submonoid of M ) generated by Div(δ). We say that (Gδ,Mδ, δ) is
a parabolic substructure of (G,M,∆) if δ is balanced and Div(δ) = Div(∆) ∩ Mδ .
In that case Gδ is called a parabolic subgroup of G and Mδ is called a parabolic

submonoid of M .

Remark Let H be a parabolic subgroup of G . Then there exists a unique parabolic
substructure (Gδ,Mδ, δ) of (G,M,∆) such that H = Gδ . Indeed, the above element
δ should be the greatest element in H ∩ Div(∆) for the order relation ≤R , hence δ

is entirely determined by H . Similarly, if N is a parabolic submonoid of M , then
there exists a unique parabolic substructure (Gδ,Mδ, δ) such that N = Mδ , where δ

is the greatest element of Div(∆) ∩ N for the order relation ≤R . So, we can speak of
a parabolic subgroup or of a parabolic submonoid without necessarily specifying the
corresponding element δ or the triple (Gδ,Mδ, δ).

Theorem 2.3 (Godelle [15]) Let (H,N, δ) be a parabolic substructure of (G,M,∆).

(1) H is a Garside group with Garside structure (H,N, δ).
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(2) Let a ∈ N and let a = up · · · u2u1 be the greedy normal form of a with respect
to (G,M,∆). Then ui ∈ Div(δ) for all i ∈ {1, 2, . . . , p} and a = up · · · u2u1 is
the greedy normal form of a with respect to (H,N, δ).

(3) Let α, β ∈ H and γ ∈ G such that α ≤R γ ≤R β . Then γ ∈ H .

(4) Let α, β ∈ H . Then α ∧R β, α ∨R β ∈ H .

(5) Let α ∈ H and let α = ab−1 be the orthogonal form of α with respect to
(G,M,∆). Then a, b ∈ N and α = ab−1 is the orthogonal form of α with
respect to (H,N, δ).

Example Let S be a finite set. A Coxeter matrix over S is a square matrix M =

(ms,t)s,t∈S indexed by the elements of S with coefficients in N ∪ {∞} such that
ms,s = 1 for all s ∈ S and ms,t = mt,s ≥ 2 for all s, t ∈ S, s 6= t . If s, t are two letters
and m is an integer ≥ 2 we denote by Π(s, t,m) the word sts · · · of length m . In other
words Π(s, t,m) = (st)

m
2 if m is even and Π(s, t,m) = (st)

m−1
2 s if m is odd. The Artin

group associated with M is the group A = AM defined by the presentation

A = 〈S | Π(s, t,ms,t) = Π(t, s,ms,t) for s, t ∈ S, s 6= t and ms,t 6= ∞〉 .

The Coxeter group associated with M is the quotient W = WM of A by the relations
s2 = 1, s ∈ S. We say that A is of spherical type if W is finite. The braid groups are
the star examples of Artin groups of spherical type.

We denote by A+ the monoid having the following monoid presentation.

A+
= 〈S | Π(s, t,ms,t) = Π(t, s,ms,t) for s, t ∈ S, s 6= t and ms,t 6= ∞〉+ .

By Paris [17] the natural homomorphism A+ → A is injective. So, we can consider
A+ as a submonoid of A . It is easily checked that A+ ∩ (A+)−1 = {1}, hence we
can consider the order relations ≤R and ≤L on A . Suppose that A is of spherical
type. Then, by Brieskorn–Saito [1] and Deligne [10], for all α, β ∈ A the elements
α ∧R β and α ∨R β exist, and (A,A+,∆) is a Garside structure, where ∆ = ∨RS. Let
X be a subset of S and let AX be the subgroup of A generated by X . Then, again by
Brieskorn–Saito [1] and Deligne [10], AX is a parabolic subgroup of A and it is an
Artin group of spherical type.

The triple (G,M,∆) denotes again an arbitrary Garside structure on a group G . Besides
the greedy normal forms, we will use some other normal forms of the elements of M

defined from a pair (N2,N1) of parabolic submonoids of M . Their definition is based
on the following.
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Proposition 2.4 (Dehornoy [6]) Let N be a parabolic submonoid of M . For each
a ∈ M there exists a unique b ∈ N such that {c ∈ N | c ≤R a} = {c ∈ N | c ≤R b}.

The element b of Proposition 2.4 is called the (right) N ­tail of a and is denoted by
b = τN(a) = τN,R(a). We define in a similar way the left N ­tail of a, denoted by
τN,L(a).

Now, assume that N1 and N2 are two parabolic submonoids of M such that N2 ∪ N1

generates M . Then each nontrivial element a ∈ M is uniquely written in the form
a = ap · · · a2a1 where ap 6= 1, ai = τN1 (ap · · · ai) if i is odd, and ai = τN2(ap · · · ai)
if i is even. This expression is called the (right) alternating form of a with respect to
(N2,N1). Note that we may have a1 = 1, but ai 6= 1 for all i ∈ {2, . . . , p}. The number
p is called the (N2,N1)­breadth of a and is denoted by p = bh(a) = bhN2,N1(a). By
extension we set bh(1) = 1 so that a ∈ N1 ⇔ bh(a) = 1.

Now, consider the standard Garside structure (Bn+1,B
+

n+1,∆) on the braid group
Bn+1 . Let S = {s1, s2, . . . , sn} be the standard generating system of Bn+1 , N1 be the
submonoid of B+

n+1 generated by {s2, . . . , sn}, and N2 be the submonoid generated
by {s1, . . . , sn−1}. Then N1 and N2 are parabolic submonoids of B+

n+1 and they are
both isomorphic to B+

n . Observe that N1 ∪N2 generates B+

n+1 , hence we can consider
alternating forms with respect to (N2,N1). The definitions of the next section are
inspired by the following.

Theorem 2.5 (Fromentin–Paris [14]) Let a ∈ B+

n+1 and k ∈ Z . Then ∆−ka is
s1 ­negative if and only if k ≥ max{1, bh(a) − 1}.

3 Orders on Garside groups

We consider a Garside structure (G,M,∆) on a Garside group G and two parabolic
substructures (H,N,Λ) and (G1,M1,∆1). We assume that N 6= M , M1 6= M , N ∪M1

generates M , ∆ is central in G , and ∆1 is central in G1 . Note that the assumption “∆
is central in G” is not so restrictive since, by Dehornoy [5], if (G,M,∆) is a Garside
structure, then (G,M,∆k) is also a Garside structure for each k ≥ 1, and there exists
k ≥ 1 such that ∆k is central in G . We will consider alternating forms with respect to
(N,M1).

The depth of an element a ∈ M , denoted by dpt(a), is dpt(a) =
bh(a)−1

2 if bh(a)
is odd and is dpt(a) =

bh(a)
2 if bh(a) is even. In other words, if a = ap · · · a2a1 is

the alternating form of a, then dpt(a) is the number of indices i ∈ {1, . . . , p} such
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that ai 6∈ M1 (that is, the number of even indices). Note that a ∈ M1 if and only if
dpt(a) = 0.

Definition Let α ∈ G and let α = a∆−k be its ∆­form. We say that α is (H,G1)­

negative if k ≥ 1 and dpt(a) < dpt(∆k). We say that α is (H,G1)­positive if α−1 is
(H,G1)­negative. We denote by P = PH,G1 the set (H,G1)­positive elements and by
P−1 the set of (H,G1)­negative elements.

Definition We say that (H,G1) is a Dehornoy structure if P satisfies the following
conditions:

(a) PP ⊂ P ,

(b) G1PG1 ⊂ P ,

(c) we have the disjoint union G = P ⊔ P−1 ⊔ G1 .

Our goal in this section is to prove a criterion for (H,G1) to be a Dehornoy structure.
But, before, we show how the orders appear in this context.

Suppose given two sequences of parabolic subgroups G0 = G,G1, . . . ,Gn and H1, . . . ,

Hn such that Gi+1,Hi+1 ⊂ Gi and (Hi+1,Gi+1) is a Dehornoy structure on Gi for all
i ∈ {0, 1, . . . , n− 1} and Gn ≃ Z . For each i ∈ {0, 1, . . . , n− 1} we denote by Pi the
set of (Hi+1,Gi+1)­positive elements of Gi . On the other hand, we choose a generator
αn of Gn and we set Pn = {αk

n | k ≥ 1}. For each ǫ = (ǫ0, ǫ1, . . . , ǫn) ∈ {±1}n+1 we
set Pǫ = P

ǫ0
0 ⊔ P

ǫ1
1 ⊔ · · · ⊔ Pǫn

n .

Proposition 3.1 Under the above assumptions Pǫ is the positive cone for a left­order
on G .

Proof We must prove that we have a disjoint union G = Pǫ ⊔ (Pǫ)−1 ⊔ {1} and that
PǫPǫ ⊂ Pǫ . The fact that we have a disjoint union G = Pǫ ⊔ (Pǫ)−1 ⊔ {1} follows
directly from Condition (c) of the definition. Let α, β ∈ Pǫ . Let i, j ∈ {0, 1, . . . , n}

such that α ∈ Pǫi
i and β ∈ P

ǫj

j . If i < j, then, by Condition (b) of the definition,
αβ ∈ Pǫi

i ⊂ Pǫ . Similarly, if i > j, then αβ ∈ P
ǫj

j ⊂ Pǫ . If i = j, then, by Condition
(a) of the definition, αβ ∈ Pǫi

i ⊂ Pǫ .

Definition Let ζ ≥ 1 be an integer. We say that the pair (H,G1) satisfies Condition

A with constant ζ if dpt(∆k) = ζk + 1 for all k ≥ 1.

We set θ = ∆∆
−1
1 = ∆

−1
1 ∆ ∈ M . We say that an element a ∈ M is a theta element

if it is of the form a = θka0 with k ≥ 1 and a0 ∈ M1 . We denote by Θ the set of theta
elements of M and we set Θ̄ = Θ ∪ M1 .
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Definition Let ζ ≥ 1 be an integer. Let (a, b) ∈ (M × M) \ (Θ̄ × Θ̄) such that a, b

are both unmovable. Let ab = c∆t be the ∆­form of ab. We say that (a, b) satisfies
Condition B with constant ζ if there exists ε ∈ {0, 1} such that

(a) dpt(c) = dpt(a) + dpt(b) − ζt − ε,

(b) ε = 1 if either a ∈ Θ , or b ∈ Θ , or c ∈ M1 .

We say that (H,G1) satisfies Condition B with constant ζ if each pair (a, b) ∈ (M ×

M) \ (Θ̄ × Θ̄) as above satisfies Condition B with constant ζ .

Theorem 3.2 If there exists a constant ζ ≥ 1 such that (H,G1) satisfies Condition A
with constant ζ and Condition B with constant ζ , then (H,G1) is a Dehornoy structure.

Let ζ ≥ 1 be an integer. From here until the end of the section we assume that (H,G1)
satisfies Condition A with constant ζ and Condition B with constant ζ . Our goal is
then to prove that (H,G1) is a Dehornoy structure, that is, to prove Theorem 3.2.

Let a be an unmovable element of M and let p = lg(a). Then p is the smallest integer
≥ 0 such that a ≤R ∆p . Let com(a) ∈ M such that a com(a) = ∆p . Then, by
El­Rifai–Morton [12], com(a) is unmovable, lg(com(a)) = p, and a−1 = com(a)∆−p

is the ∆­form of a−1 . Note that a com(a) = com(a) a = ∆p since ∆ is central. In
particular, com(com(a)) = a.

Lemma 3.3 (1) Let a ∈ M1 . Then θ ∧R a = 1 and θ ∨R a = θa = aθ .

(2) Let a = θka0 be a theta element, where k ≥ 1 and a0 ∈ M1 . Then dpt(a) =

ζk + 1.

(3) Let a = θka0 be a theta element, where k ≥ 1 and a0 ∈ M1 . Then a

is unmovable if and only if a0 is unmovable in M1 (that is, if and only if
∆1 6≤R a0 ).

(4) Let a be an unmovable element of M . We have a ∈ Θ̄ if and only if com(a) ∈ Θ̄.

(5) Let α ∈ G1 \ M1 . Then α has a ∆­form of the form α = a∆−k where k ≥ 1
and a = θka0 ∈ Θ with a0 ∈ M1 .

(6) Let a ∈ Θ̄ and b ∈ M \ Θ̄. Then ab ∈ M \ Θ̄ and ba ∈ M \ Θ̄ .

Proof Part (1): Let a ∈ M1 . Let u = a ∧R θ . We have u ≤R θ , hence u∆1 ≤R

θ∆1 = ∆ , and therefore u∆1 ∈ Div(∆). On the other hand, since u ≤R a, we have
u ∈ M1 , hence u∆1 ∈ M1 . So, u∆1 ∈ Div(∆) ∩ M1 = Div(∆1), thus u = 1. Let
v = a ∨R θ . Since ∆ and ∆1 commute with a, we have θa = aθ . In particular,
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v ≤R aθ . Let x1 ∈ M such that v = x1θ . Then x1 ≤R a and, since M1 is a
parabolic submonoid, x1 ∈ M1 and there exists x2 ∈ M1 such that x2x1 = a. So,
a = x2x1 ≤R v = x1θ = θx1 , hence x2 ≤R θ , and therefore, since a∧R θ = 1, we have
x2 = 1. Thus x1 = a and v = aθ = θa.

Part (2): It is clear that dpt(a) = dpt(aa0) for all a ∈ M and all a0 ∈ M1 . Let a = θka0

be a theta element. Then dpt(a) = dpt(θk) = dpt(θk∆k
1) = dpt(∆k) = ζk + 1.

Part (3): Let a = θka0 be a theta element. Suppose that ∆1 ≤R a0 . Let a1 ∈ M1 such
that a0 = a1∆1 . Then a = θka1∆1 = θk−1a1θ∆1 = θk−1a1∆ , hence ∆ ≤R a. Now
suppose that ∆ ≤R a. By Part (1) we have τM1 (a) = a0 . Since ∆ ≤R a, we have
∆1 ≤R a, hence ∆1 ≤R τM1(a) = a0 .

Part (4): Let a be an unmovable element of M and let p = lg(a). Suppose that
a ∈ M1 . Let b ∈ M1 such that ab = ∆

p
1 . Then aθpb = θpab = θp∆

p
1 = ∆p , hence

com(a) = θpb ∈ Θ̄. Suppose that a = θka0 where k ≥ 1 and a0 ∈ M1 . We have
a = θka0 ≤R ∆p = θp∆

p
1 hence, by Part (1), a0 ≤R ∆

p
1 and k ≤ p. Let b0 ∈ M1

such that a0b0 = ∆
p
1 . Then aθp−kb0 = θka0θ

p−kb0 = θpa0b0 = θp∆
p
1 = ∆p , hence

com(a) = θp−kb0 ∈ Θ̄. So, if a ∈ Θ̄, then com(a) ∈ Θ̄ . Now, since com(com(a)) = a

for each unmovable element a of M , we have a ∈ Θ̄ if and only if com(a) ∈ Θ̄.

Part (5): Let α ∈ G1 \M1 . Since α 6∈ M1 the ∆1 ­form of α is of the form α = a∆−k
1

with a ∈ M1 , ∆1 6≤R a and k ≥ 1. Then α = a(θ∆−1)k = θka∆−k and θka is
unmovable by Part (3) of the lemma.

Part (6): Take a, b ∈ M . We assume that a, ab ∈ Θ̄ and we turn to prove that b ∈ Θ̄.
We write ab = θtc where t ≥ 0 and c ∈ M1 . On the other hand we know by Part
(4) that com(a) ∈ Θ̄, hence com(a) is of the form com(a) = θka0 with k ≥ 0 and
a0 ∈ M1 , and therefore a−1 is of the form a−1 = θka0∆

−ℓ = θk−ℓa0∆
−ℓ
1 where

ℓ = lg(a). So, b∆ℓ
1 = θt+k−ℓa0c. If we had t + k − ℓ < 0, then we would have

θℓ−t−kb∆ℓ
1 = a0c ∈ M1 , hence we would have θℓ−t−k ∈ M1 , which contradicts Part

(1). So, t + k − ℓ ≥ 0. By Part (1) we have τM1(θt+k−ℓa0c) = a0c, hence ∆1 ≤R a0c.
Let b0 ∈ M1 such that b0∆

ℓ
1 = a0c. Then b = θt+k−ℓb0 ∈ Θ̄. We show in the same

way that, if a, ba ∈ Θ̄, then b ∈ Θ̄.

Lemma 3.4 We have P−1P−1 ⊂ P−1 .

Proof Let α, β ∈ P−1 . Let α = a∆−k and β = b∆−ℓ be the ∆­forms of α and β ,
respectively. Since α, β ∈ P−1 , we have k, ℓ ≥ 1, dpt(a) ≤ dpt(∆k) − 1 = ζk and
dpt(b) ≤ dpt(∆ℓ) − 1 = ζℓ . Let ab = c∆t be the ∆­form of ab. Then the ∆­form
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of αβ is αβ = c∆−k−ℓ+t . We must show that αβ ∈ P−1 , that is, k + ℓ− t ≥ 1 and
dpt(c) ≤ dpt(∆k+ℓ−t) − 1 = ζ(k + ℓ− t).

Case 1: a, b ∈ M1 . Then t = 0 and c = ab, hence k + ℓ − t = k + ℓ ≥ 1 and
dpt(c) = 0 ≤ ζ(k + ℓ) = ζ(k + ℓ− t).

Case 2: a ∈ M1 and b ∈ Θ . We write b = θub0 where u ≥ 1 and b0 ∈ M1 . By
Lemma 3.3 (3) we have dpt(b) = ζu + 1 ≤ ζℓ , hence u < ℓ . Let ab0 = c0∆

v
1 be the

∆1 ­form of ab0 . If v < u, then t = v and c = θu−vc0 , hence k + ℓ − t ≥ ℓ − v ≥

ℓ − u ≥ 1 and dpt(c) = ζ(u − v) + 1 = ζu − ζt + 1 ≤ ζℓ − ζt ≤ ζ(k + ℓ − t). If
v ≥ u, then t = u and c = ∆

v−u
1 c0 ∈ M1 , hence k + ℓ− t = k + ℓ− u ≥ ℓ− u ≥ 1

and dpt(c) = 0 ≤ ζ(k + ℓ − t). The case “a ∈ Θ and b ∈ M1” can be proved in a
similar way.

Case 3: a, b ∈ Θ . We set a = θua0 and b = θvb0 , where u, v ≥ 1 and a0, b0 ∈ M1 .
Since dpt(a) = ζu + 1 ≤ ζk , we have u < k . Similarly, we have v < ℓ . Let
a0b0 = c0∆

w
1 be the ∆1 ­form of a0b0 . If w < u + v, then t = w and c = θu+v−wc0 ,

hence k+ℓ− t ≥ k+ℓ−(u+v) = (k−u)+(ℓ−v) ≥ 1 and dpt(c) = ζ(u+v−w)+1 =

ζu + 1 + ζv − ζt ≤ ζk + ζℓ− ζt = ζ(k + ℓ− t). If w ≥ u + v, then t = u + v and
c = c0∆

w−u−v
1 ∈ M1 , hence k + ℓ− t = k + ℓ− (u + v) = (k − u) + (ℓ− v) ≥ 1 and

dpt(c) = 0 ≤ ζ(k + ℓ− t).

Case 4: either a 6∈ Θ̄ , or b 6∈ Θ̄. Since (H,G1) satisfies Condition B with constant ζ ,
there exists ε ∈ {0, 1} such that dpt(c) = dpt(a) + dpt(b) − ζt − ε. If c ∈ M1 , then
ε = 1 and

0 = dpt(c) = dpt(a) + dpt(b) − ζt − 1 ≤ ζk + ζℓ− ζt − 1 < ζ(k + ℓ− t) .

This (strict) inequality also implies that k + ℓ− t ≥ 1. If c 6∈ M1 , then

1 ≤ dpt(c) ≤ dpt(a) + dpt(b) − ζt ≤ ζk + ζℓ− ζt = ζ(k + ℓ− t) .

Again, this inequality also implies that k + ℓ− t ≥ 1.

Lemma 3.5 We have G1P−1G1 ⊂ P−1 .

Proof We take α ∈ G1 and β ∈ P−1 and we turn to prove that αβ ∈ P−1 . The
proof of the inclusion βα ∈ P−1 is made in a similar way. Let α = a∆−k and
β = b∆−ℓ be the ∆­forms of α and β , respectively. Since β ∈ P−1 we have ℓ ≥ 1
and dpt(b) ≤ dpt(∆ℓ)−1 = ζℓ . Let ab = c∆t be the ∆­form of ab. Then the ∆­form
of αβ is αβ = c∆−k−ℓ+t . We must show that k+ ℓ− t ≥ 1 and dpt(c) ≤ ζ(k+ ℓ− t).

Case 1: α ∈ M1 and b ∈ M1 . We have k = 0, α = a, t = 0 and c = ab ∈ M1 . Thus
k + ℓ− t = ℓ ≥ 1 and 0 = dpt(c) ≤ ζ(k + ℓ− t).
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Case 2: α ∈ M1 and b ∈ Θ . We have k = 0, α = a and b = θvb0 where v ≥ 1 and
b0 ∈ M1 . We also have dpt(b) = ζv+1 ≤ ζℓ , hence v < ℓ . Let ab0 = c0∆

u
1 be the ∆1 ­

form of ab0 . If u < v, then t = u and c = θv−uc0 , hence k+ ℓ− t = ℓ−u ≥ ℓ−v ≥ 1
and dpt(c) = ζ(v−u)+1 = ζv+1− ζt ≤ ζℓ− ζt = ζ(k+ ℓ− t). If u ≥ v, then t = v

and c = ∆
u−v
1 c0 ∈ M1 , hence k + ℓ− t = ℓ− v ≥ 1 and 0 = dpt(c) ≤ ζ(k + ℓ− t).

Case 3: α ∈ M1 and b ∈ M \ Θ̄. We have k = 0 and α = a. On the other hand,
by Lemma 3.3 (6), we have ab ∈ M \ Θ̄, hence c 6∈ M1 , and therefore dpt(c) ≥ 1.
Since (H,G1) satisfies Condition B with constant ζ , there exists ε ∈ {0, 1} such that
dpt(c) = dpt(a) + dpt(b) − ζt − ε. So,

1 ≤ dpt(c) ≤ 0 + ζℓ− ζt = ζ(k + ℓ− t) .

This inequality also implies that k + ℓ− t ≥ 1.

Case 4: α 6∈ M1 and b ∈ M1 . By Lemma 3.3 (5) we have k ≥ 1 and a = θka0

with a0 ∈ M1 . Let a0b = c0∆
u
1 be the ∆1 ­form of a0b. If u < k , then t = u and

c = θk−uc0 , hence k + ℓ − t ≥ ℓ ≥ 1 and dpt(c) = ζ(k − u) + 1 ≤ ζk − ζt + ζℓ ≤

ζ(k + ℓ − t). If u ≥ k , then t = k and c = c0∆
u−k
1 ∈ M1 , hence k + ℓ − t = ℓ ≥ 1

and 0 = dpt(c) ≤ ζ(k + ℓ− t).

Case 5: α 6∈ M1 and b ∈ Θ . By Lemma 3.3 (5) we have k ≥ 1 and a = θka0 with
a0 ∈ M1 . On the other hand, b is written b = θvb0 with v ≥ 1 and b0 ∈ M1 . Since
dpt(b) = ζv + 1 ≤ ζℓ , we have v < ℓ . Let a0b0 = c0∆

w
1 be the ∆1 ­form of a0b0 .

If w < k + v, then t = w and c = θk+v−wc0 , hence k + ℓ − t ≥ k + v − w ≥ 1 and
dpt(c) = ζ(k + v − w) + 1 = ζk + ζv + 1 − ζt ≤ ζk + ζℓ − ζt = ζ(k + ℓ − t). If
w ≥ k + v, then t = k + v and c = c0∆

w−k−v
1 ∈ M1 , hence k + ℓ− t = ℓ− v ≥ 1 and

0 = dpt(c) ≤ ζ(k + ℓ− t).

Case 6: α 6∈ M1 and b ∈ M \ Θ̄ . By Lemma 3.3 (5) we have k ≥ 1 and a = θka0

with a0 ∈ M1 . On the other hand, by Lemma 3.3 (6), we have ab ∈ M \ Θ̄, hence
c 6∈ M1 , and therefore dpt(c) ≥ 1. Since (H,G1) satisfies Condition B with constant
ζ and a ∈ Θ , dpt(c) = dpt(a) + dpt(b) − ζt − 1. So,

1 ≤ dpt(c) ≤ ζk + 1 + ζℓ− ζt − 1 = ζ(k + ℓ− t) .

This inequality also implies that k + ℓ− t ≥ 1.

Lemma 3.6 We have G1 ∩ (P ∪ P−1) = ∅.

Proof Let α ∈ G1 and let α = a∆−k be the ∆­form of α . If α ∈ M1 , then k = 0
and α = a, thus α 6∈ P−1 . If α 6∈ M1 , then, by Lemma 3.3 (5), we have k ≥ 1 and
a = θka0 where a0 ∈ M1 , hence dpt(a) = ζk + 1 = dpt(∆k), and therefore α 6∈ P−1 .
Since α−1 ∈ G1 , we also have α−1 6∈ P−1 , hence α 6∈ P .
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Lemma 3.7 We have P ∩ P−1 = ∅.

Proof Let α ∈ P−1 and let α = a∆−k be its ∆­form. By definition we have
k ≥ 1 and dpt(a) < dpt(∆k) = ζk + 1. Let ℓ = lg(a). Then the ∆­form of α−1 is
α−1 = com(a)∆k−ℓ . We are going to show that α−1 6∈ P−1 , that is, either k − ℓ ≥ 0
or dpt(com(a)) ≥ ζ(ℓ− k) + 1.

Case 1: a ∈ M1 . Let b ∈ M1 such that ab = ∆ℓ
1 . We have a−1 = b∆−ℓ

1 = bθℓ∆−ℓ =

θℓb∆−ℓ , hence com(a) = θℓb, and therefore, dpt(com(a)) = ζℓ+ 1 > ζ(ℓ− k) + 1,
since k ≥ 1. So, α−1 6∈ P−1 .

Case 2: a ∈ Θ . We write a = θua0 where a0 ∈ M1 and u ≥ 1. We have
dpt(a) = ζu + 1 ≤ ζk , hence u < k . Let t ≥ 0 be the length of a0 and let
b0 ∈ M1 such that a0b0 = ∆t

1 . We have a−1
0 = b0∆

−t
1 = θtb0∆

−t , hence a−1 =

θt−ub0∆
−t , and therefore α−1 = θt−ub0∆

k−t . If u < t , then com(a) = θt−ub0 and
dpt(com(a)) = ζ(t − u) + 1 > ζ(t − k) + 1, hence α−1 6∈ P−1 . If u ≥ t , then
α−1 = θ−u+tb0∆

k−t = b0∆
u−t
1 ∆k−t−u+t = b0∆

u−t
1 ∆k−u and k − u ≥ 1, hence

α−1 6∈ P−1 .

Case 3: a ∈ M \ Θ̄. Recall that a com(a) = ∆ℓ . Since (H,G1) satisfies Condition B
with constant ζ and 1 ∈ M1 , we have 0 = dpt(1) = dpt(a) + dpt(com(a)) − ζℓ − 1,
hence

dpt(com(a)) = ζℓ+ 1 − dpt(a) ≥ ζℓ+ 1 − ζk = ζ(ℓ− k) + 1 ,

and therefore α−1 6∈ P−1 .

Lemma 3.8 We have G = P ∪ P−1 ∪ G1 .

Proof We take α ∈ G and we assume that α 6∈ (P−1 ∪ G1). We are going to show
that α ∈ P , that is, α−1 ∈ P−1 . Let α = a∆k be the ∆­form of α and let ℓ be the
length of a. Then the ∆­form of α−1 is com(a)∆−k−ℓ .

Case 1: a ∈ M1 . Then k ≥ 1 because α 6∈ (P−1 ∪ G1). If a = 1, then α−1 =

∆−k ∈ P−1 . So, we can assume that a 6= 1, and therefore ℓ ≥ 1. Let b ∈ M1 such
that ab = ∆ℓ

1 . We have a−1 = θℓb∆−ℓ , hence α−1 = θℓb∆−k−ℓ and com(a) = θℓb.
Then k + ℓ ≥ 1 and dpt(com(a)) = ζℓ+ 1 ≤ ζℓ+ ζk = ζ(ℓ+ k), hence α−1 ∈ P−1 .

Case 2: a ∈ Θ . We write a = θua0 where u ≥ 1 and a0 ∈ M1 . Since α 6∈ P−1 we
have dpt(a) = ζu + 1 ≥ ζ(−k) + 1, hence u ≥ −k . We also have u 6= −k , otherwise
we would have α = a0∆

−u
1 ∈ G1 . So, u > −k . Let t be the length of a0 and let

b0 ∈ M1 such that a0b0 = ∆t
1 . We have a−1

0 = b0∆
−t
1 , hence a−1 = θt−ub0∆

−t , and
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therefore α−1 = θt−ub0∆
−k−t . If u < t , then com(a) = θt−ub0 , k + t > k + u ≥ 1

and dpt(com(a)) = ζ(t − u) + 1 < ζ(t + k) + 1 = dpt(∆t+k), hence α−1 ∈ P−1 .
If u ≥ t , then α−1 = b0∆

u−t
1 ∆−k−u , com(a) = b0∆

u−t
1 ∈ M1 , k + u ≥ 1, and

dpt(com(a)) = 0 ≤ ζ(k + u), hence α−1 ∈ P−1 .

Case 3: a ∈ M \ Θ̄. Since (H,G1) satisfies Condition B with constant ζ , we have
0 = dpt(1) = dpt(a) + dpt(com(a)) − ζℓ− 1. On the other hand, since ∆ℓ ∈ Θ̄, by
Lemma 3.3 (6), com(a) 6∈ Θ̄, hence com(a) 6∈ M1 , and therefore dpt(com(a)) ≥ 1.
Moreover, since α 6∈ P−1 , we have dpt(a) ≥ ζ(−k) + 1. So,

1 ≤ dpt(com(a)) = ζℓ+ 1 − dpt(a) ≤ ζℓ+ 1 + ζk − 1 = ζ(ℓ+ k) .

This inequality also implies that ℓ+ k ≥ 1. Thus, α−1 ∈ P−1 .

Proof of Theorem 3.2 We have PP ⊂ P by Lemma 3.4, we have G1PG1 ⊂ P by
Lemma 3.5, and we have the disjoint union G = P⊔P−1 ⊔G1 by Lemma 3.6, Lemma
3.7 and Lemma 3.8.

4 Artin groups of type A

In this section we assume that G and M are the Artin group and the Artin monoid of
type An , respectively, where n ≥ 2. Recall that G is defined by the presentation

G = 〈s1, . . . , sn | sisjsi = sjsisj for |i − j| = 1, sisj = sjsi for |i − j| ≥ 2〉 ,

and that M is the submonoid of G generated by s1, s2, . . . , sn . Recall also that
G is the braid group Bn+1 on n + 1 strands and M is the positive braid monoid
B+

n+1 . By Brieskorn–Saito [1] and Deligne [10], (G,M,Ω) is a Garside structure,
where Ω = (s1 · · · sn) · · · (s1s2s3)(s1s2)s1 . The element Ω is not central in G but
∆ = Ω2 = (s1 · · · sn)n+1 is central and, by Dehornoy [5], (G,M,∆) is also a Garside
structure on G . The latter is the Garside structure that we consider in this section.

We denote by G1 (resp. M1 ) the subgroup of G (resp. the submonoid of M ) generated
by s2, . . . , sn and we set ∆1 = (s2 · · · sn)n . Then (G1,M1,∆1) is a parabolic substruc­
ture of (G,M,∆) and ∆1 is central in G1 . On the other hand, we denote by H (resp.
N ) the subgroup of G (resp. the submonoid of M ) generated by s1, . . . , sn−1 and
we set Λ = (s1 · · · sn−1)n . Again, (H,N,Λ) is a parabolic substructure of (G,M,∆).
Observe that M1 ∪ N generates M .

The purpose of this section is to prove the following.
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Theorem 4.1 The pair (H,G1) satisfies Condition A with constant ζ = 1 and Con­
dition B with constant ζ = 1.

By applying Theorem 3.2 we deduce the following.

Corollary 4.2 The pair (H,G1) is a Dehornoy structure.

For 1 ≤ i ≤ n − 1 we set Gi = 〈si+1, . . . , sn〉, Mi = 〈si+1, . . . , sn〉
+ , ∆i =

(si+1 · · · sn)n+1−i and Hi = 〈si, . . . , sn−1〉. By iterating Corollary 4.2 and applying
Proposition 3.1 we get the following.

Corollary 4.3 (1) For each 1 ≤ i ≤ n−1 the pair (Hi,Gi) is a Dehornoy structure
on (Gi−1,Mi−1,∆i−1), where (G0,M0,∆0) = (G,M,∆).

(2) For each 1 ≤ i ≤ n − 1 we denote by Pi the set of (Hi,Gi)­positive elements
of Gi−1 . Furthermore we set Pn = {sk

n | k ≥ 1}. For each ǫ = (ǫ1, . . . , ǫn) ∈
{±1}n the set Pǫ = P

ǫ1
1 ⊔ · · · ⊔ Pǫn

n is the positive cone for a left­order on G .

Before proving Theorem 4.1 we show that the orders on G given in Corollary 4.3 (2)
coincide with those obtained using Theorem 1.1. More precisely we prove the follow­
ing.

Proposition 4.4 The set P = PH,G1 of (H,G1)­positive elements is equal to the set
of s1 ­positive elements of G = Bn+1 .

Proof Let P′ denote the set of s1 ­positive elements of G . We know by Dehornoy [4]
that we have the disjoint union G = P′ ⊔ P′−1 ⊔ G1 . We also know by Corollary 4.2
that PP ⊂ P , G1PG1 ⊂ P and G = P ⊔ P−1 ⊔ G1 . Let α ∈ P′ . By definition α is
written α = α0s1α1 · · · s1αp where p ≥ 1 and α0, α1, . . . , αp ∈ G1 . The ∆­form of
s1 is s1 = s1∆

0 , hence s1 does not lie in P−1 . The element s1 does not lie in G1 either,
hence s1 lies in P . Since PP ⊂ P and G1PG1 ⊂ P we deduce that α lies in P . So,
P′ ⊂ P and therefore P′−1 ⊂ P−1 . Since we have disjoint unions G = P ⊔ P−1 ⊔ G1

and G = P′ ⊔ P′−1 ⊔ G1 we conclude that P = P′ and P−1 = P′−1 .

The rest of the section is dedicated to the proof of Theorem 4.1. We recall once for all
the expressions of ∆ and θ over the standard generators.

∆ = (s1s2 · · · sn)n+1
= (s1 · · · sn−1s2

nsn−1 · · · s1) · · · (sn−1s2
nsn−1)s2

n ,

θ = s1 · · · sn−1s2
nsn−1 · · · s1 .
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Proposition 4.5 The pair (H,G1) satisfies Condition A with constant ζ = 1.

Proof Let k ≥ 1. Then, by Dehornoy [6], bh(∆k) = bh(Ω2k) = 2k + 2, hence
dpt(∆k) = k + 1.

It remains to show that (H,G1) satisfies Condition B with constant ζ = 1 (see Propo­
sition 4.12). This is the goal of the rest of the section.

An (N,M1)­expression of length p of an element a ∈ M is defined to be an expression
of a of the form a = ap · · · a2a1 with ai ∈ N if i is even and ai ∈ M1 if i is odd.

Lemma 4.6 (Dehornoy [6], Burckel [2]) Let a ∈ M and let a = ap · · · a2a1 be an
(N,M1)­expression of a. Then p ≥ bh(a).

Let a ∈ M . Choose an expression a = siℓ · · · si2 si1 of a over S and set rev(a) =

si1 si2 · · · siℓ . Since the relations that define M are symmetric, the definition of rev(a)
does not depend on the choice of the expression of a. It is easily checked that
rev(Ω) = Ω , rev(∆) = ∆ and rev(θ) = θ . Moreover, rev(a) ∈ M1 for all a ∈ M1 and
rev(a) ∈ N for all a ∈ N .

Lemma 4.7 Let a ∈ M . Then dpt(rev(a)) = dpt(a).

Proof Let a = ap · · · a2a1 be the alternating form of a. If p is even, then rev(a) =
rev(a1) rev(a2) · · · rev(ap) 1 is a (N,M1)­expression of rev(a) hence, by Lemma 4.6,
p+1 ≥ bh(rev(a)), and therefore dpt(a) = p

2 ≥ dpt(rev(a)). If p is odd, then rev(a) =
rev(a1) rev(a2) · · · rev(ap) is a (N,M1)­expression of rev(a) hence, by Lemma 4.6,
p ≥ bh(rev(a)), and therefore dpt(a) = p−1

2 ≥ dpt(rev(a)). So, dpt(a) ≥ dpt(rev(a))
in both cases. Since rev(rev(a)) = a, we also have dpt(rev(a)) ≥ dpt(a), hence
dpt(rev(a)) = dpt(a).

Lemma 4.8 Let a ∈ M \ M1 and k ≥ 1. Then dpt(aθk) = dpt(a) + k .

Proof Let a ∈ M\M1 . It suffices to show that bh(aθ) = bh(a)+2. Let a = ap · · · a2a1

be the alternating form of a. Note that, since a 6∈ M1 , we have p ≥ 2. Note also that, by
Lemma 3.3 (1), we have a1θ = θa1 . Then aθ = ap · · · a3a2θa1 = ap · · · a3b4b3b2a1 ,
where b4 = a2s1 ∈ N , b3 = s2 · · · sn−1s2

n ∈ M1 and b2 = sn−1 · · · s2s1 ∈ N . We turn
to show that aθ = ap · · · a2b4b3b2a1 is the alternating form of aθ . This will prove the
lemma.
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Let x = τM1(ap · · · a3b4b3b2) = τM1(ap · · · a3a2θ). We know by Lemma 3.3 (1) that
x∨R θ = θx = xθ , hence x ≤R ap · · · a2 , and therefore x = 1, since τM1 (ap · · · a3a2) =
1. We have ap · · · a3b4b3 = ap · · · a3a2s1s2 · · · sn−1s2

n . It is easily checked that
(s1 · · · sn−1s2

n) ∨R si = si+1(s1 · · · sn−1s2
n) for all i ∈ {1, . . . , n − 1}. Thus, if there

exists i ∈ {1, . . . , n−1} such that si ≤R ap · · · a3b4b3 , then there exists j ∈ {2, . . . , n}

such that sj ≤R ap · · · a3a2 . But, since τM1(ap · · · a3a2) = 1, such a j does not
exist, hence such an i does not exist either, hence τN(ap · · · a3b4b3) = 1. We have
ap · · · a3b4 = ap · · · a3a2s1 . We have s1 ∨R si = sis1 for all i ∈ {3, . . . , n}, and
s1∨Rs2 = s1s2s1 . Thus, for i ∈ {2, . . . , n}, if si ≤R ap · · · a3b4 , then si ≤R ap · · · a3a2 .
Since such an i does not exist, we have τM1(ap · · · a3b4) = 1. This finishes the proof
that ap · · · a3b4b3b2a1 is the alternating form of aθ since ap · · · a3 is an alternating
form and τN(ap · · · a3) = 1.

Lemma 4.9 (1) Let a ∈ M1 and b ∈ M \ M1 . Then dpt(ab) = dpt(ba) = dpt(b).

(2) Let a ∈ Θ and b ∈ M \ M1 . Then dpt(ab) = dpt(ba) = dpt(a) + dpt(b) − 1.

Proof Let a ∈ M1 and b ∈ M \ M1 . We obviously have bh(ba) = bh(b), hence
dpt(ba) = dpt(b). On the other hand, since rev(a) ∈ M1 , By Lemma 4.7 we have
dpt(ab) = dpt(rev(ab)) = dpt(rev(b) rev(a)) = dpt(rev(b)) = dpt(b).

Let a ∈ Θ and b ∈ M \ M1 . Write a = θka0 with a0 ∈ M1 and k ≥ 1. By the above
and Proposition 4.5 we have dpt(a) = dpt(θk) = dpt(∆k) = k + 1. Then, by the above
and Lemma 4.8, dpt(ba) = dpt(bθk) = dpt(b) + k = dpt(a) + dpt(b) − 1. On the
other hand, since rev(a) ∈ Θ , we have dpt(ab) = dpt(rev(ab)) = dpt(rev(b) rev(a)) =
dpt(rev(a)) + dpt(rev(b)) − 1 = dpt(a) + dpt(b) − 1.

Lemma 4.10 Let a ∈ M and k ≥ 0. If a∆−k ∈ G1 then a ∈ Θ̄.

Proof Let a∆−k = a0∆
−t
1 be the ∆1 ­form of a∆−k . We have a = a0∆

−t
1 ∆k =

θka0∆
k−t
1 . If k ≥ t then we clearly have a ∈ Θ̄ . Suppose that k < t . Then

a∆t−k
1 = θka0 , hence ∆

t−k
1 ≤R τM1(θka0). By Lemma 3.3 (1) we have τM1(θka0) = a0 ,

hence ∆
t−k
1 ≤R a0 . Let b0 ∈ M1 such that a0 = b0∆

t−k
1 . Then a = θkb0 ∈ Θ̄.

Lemma 4.11 Let a, b ∈ M \ M1 , c ∈ M1 and k ≥ 0 such that ab = c∆k and
dpt(a) + dpt(b) = k + 2. Then (a, b) ∈ (Θ×Θ).

Proof Let p = dpt(a) and q = dpt(b). Note that, since a, b 6∈ M1 , we have p, q ≥ 1.
We have bh(a) ≥ 2p, hence bh(a) − 1 > 2p − 2, and therefore, by Theorem 2.5,
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Ω−2p+2a = a∆−p+1 either lies in G1 or is s1 ­positive. Similarly, b∆−q+1 either lies
in G1 or is s1 ­positive. If either a∆−p+1 was s1 ­positive or b∆−q+1 was s1 ­positive,
then c = ab∆−k = (a∆−p+1)(b∆−q+1) would be s1 ­positive. Since c ∈ M1 , c cannot
be s1 ­positive, hence both a∆−p+1 and b∆−q+1 lie in G1 . We conclude by Lemma
4.10 that a, b ∈ Θ̄, hence a, b ∈ Θ since we assumed that a, b 6∈ M1 .

Now we are ready to prove the second part of Theorem 4.1.

Proposition 4.12 The pair (H,G1) satisfies Condition B with constant ζ = 1.

Proof We take (a, b) ∈ (M × M) \ (Θ̄ × Θ̄) such that a and b are unmovable. We
must show that (a, b) satisfies Condition B with constant ζ = 1. Let ab = c∆t

be the ∆­form of ab. So, we must show that there exists ε ∈ {0, 1} such that
dpt(c) = dpt(a) + dpt(b) − t − ε, and ε = 1 if either a ∈ Θ , or b ∈ Θ , or c ∈ M1 .

Case 1: a ∈ M1 and b ∈ M \ Θ̄. By Lemma 3.3 (6) we have ab 6∈ Θ̄, hence
c 6∈ M1 . Then, by Lemma 4.9, dpt(a)+dpt(b) = dpt(b) = dpt(ab) = dpt(c)+ t , hence
dpt(c) = dpt(a) + dpt(b) − t − 0. The case a ∈ M \ Θ̄ and b ∈ M1 is proved in a
similar way.

Case 2: a ∈ Θ and b ∈ M \ Θ̄ . We write a = θka0 where k ≥ 1 and a0 ∈ M1 .
Again, by Lemma 3.3 (6) we have ab 6∈ Θ̄, hence c 6∈ M1 . Then, by Lemma 4.9,
dpt(a) + dpt(b) − 1 = dpt(ab) = dpt(c) + t , hence dpt(c) = dpt(a) + dpt(b) − t − 1.
The case a ∈ M \ Θ̄ and b ∈ Θ is proved in a similar way.

Case 3: a, b ∈ M \ Θ̄. Set p = dpt(a) and q = dpt(b). We have bh(a) ∈ {2p, 2p + 1}
hence, by Theorem 2.5, Ω−2pa is s1 ­negative and Ω−2p+2a either lies in G1 or is
s1 ­positive. Similarly, Ω−2qb is s1 ­negative and Ω−2q+2b either lies in G1 or is
s1 ­positive. So, Ω−2p−2qab is s1 ­negative and Ω−2p−2q+4ab either lies in G1 or
is s1 ­positive. By Theorem 2.5 it follows that bh(ab) − 1 ≤ 2p + 2q and 2p +

2q − 4 < bh(ab) − 1, hence 2p + 2q − 2 ≤ bh(ab) ≤ 2p + 2q + 1, and therefore
p + q − 1 ≤ dpt(ab) ≤ p + q. So, there exists ε ∈ {0, 1} such that dpt(ab) =

p + q − ε = dpt(a) + dpt(b) − ε.

Suppose that c 6∈ M1 . By Lemma 4.9 (2), dpt(c) + t = dpt(c) + dpt(∆t) − 1 =

dpt(c∆t) = dpt(ab) = dpt(a) + dpt(b) − ε, hence dpt(c) = dpt(a) + dpt(b) − t − ε.
Suppose that c ∈ M1 . By Lemma 4.9 (1), dpt(a)+dpt(b)−ε = dpt(ab) = dpt(c∆t) =
dpt(∆t) = t + 1, hence dpt(a) + dpt(b) = t + 1 + ε. Since a, b 6∈ Θ̄ Lemma 4.11
implies that ε = 0. So, dpt(c) = 0 = dpt(a) + dpt(b) − t − 1.
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5 Artin groups of dihedral type, the even case

Let m ≥ 4 be an integer. Recall that the Artin group of type I2(m) is the group
G = AI2(m) defined by the presentation G = 〈s, t | Π(s, t,m) = Π(t, s,m)〉. Let M be
the submonoid of G generated by {s, t} and let Ω = Π(s, t,m). Then, by Brieskorn–
Saito [1] and Deligne [10], the triple (G,M,Ω) is a Garside structure on G . If m is
even then ∆ = Ω is central. However, if m is odd then Ω is not central but ∆ = Ω2

is central. In both cases, by Dehornoy [5], the triple (G,M,∆) is a Garside structure
on G . In this section we study the case where m is even and in the next one we will
study the case where m is odd. So, from now until the end of the section we assume
that m = 2k is even and ∆ = Π(s, t,m) = (st)k = (ts)k .

Remark By setting ∆ = Ω2 in the even case as in the odd case we could state global
results valid for all m ≥ 4, but it would be still necessary to differentiate the even case
from the odd case in the proofs, and this would lengthen the proofs for the even case.

We denote by G1 (resp. M1 ) the subgroup of G (resp. submonoid of M ) generated by
t , and by H (resp. N ) the subgroup of G (resp. submonoid of M ) generated by s. We
set ∆1 = t and Λ = s. By Brieskorn–Saito [1] the triples (G1,M1,∆1) and (H,N,Λ)
are parabolic substructures of (G,M,∆). On the other hand it is obvious that M1 ∪ N

generates M . The main result of the present section is the following.

Theorem 5.1 The pair (H,G1) satisfies Condition A with constant ζ = k − 1 and
Condition B with constant ζ = k − 1.

By Theorem 3.2 this implies the following.

Corollary 5.2 The pair (H,G1) is a Dehornoy structure on G .

We denote by P1 the set of (H,G1)­positive elements of G and we set P2 = {tn | n ≥

1}. For each ǫ = (ǫ1, ǫ2) ∈ {±1}2 we set Pǫ = P
ǫ1
1 ∪ P

ǫ2
2 . Then, by Proposition 3.1,

we have the following.

Corollary 5.3 The set Pǫ is the positive cone for a left­order on G .

In this section we denote by r1, . . . , r2k−1 the standard generators of the braid group
B2k on 2k = m strands. By Crisp [3] we have an embedding ι : G → B2k which sends
s to

∏k−1
i=0 r2i+1 and sends t to

∏k−1
i=1 r2i . In the second part of the section we will show

that the orders obtained from Corollary 5.3 can be deduced from ι together with the
Dehornoy order. More precisely, we show the following.
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Proposition 5.4 Let α ∈ G . Then α is (H,G1)­negative if and only if ι(α) is
r1 ­negative.

The proof of Theorem 5.1 is based on the following observation whose proof is left to
the reader.

Lemma 5.5 Let a be an unmovable element of M . Then a is uniquely written in the
form a = tupsvp · · · tu1sv1 tu0 with u0, up ≥ 0, u1, . . . , up−1 ≥ 1 and v1, . . . , vp ≥ 1. In
this case dpt(a) = p.

The first part of Theorem 5.1 is a straightforward consequence of this lemma.

Proposition 5.6 The pair (H,G1) satisfies Condition A with constant ζ = k − 1.

Proof Let p ≥ 1 be an integer. We have θ = s(ts)k−1 , hence θp = (s(ts)k−1)p . By
Lemma 5.5 it follows that dpt(θp) = p(k − 1) + 1, hence dpt(∆p) = dpt(θptp) =

dpt(θp) = p(k − 1) + 1.

If a ∈ M \ {1} is written as in Lemma 5.5 we set σ(a) = t if up 6= 0 and σ(a) = s if
up = 0. Similarly we set τ (a) = t if u0 6= 0 and τ (a) = s if u0 = 0. In other words
σ(a) is the first letter of a and τ (a) is the last one. The following is a straightforward
consequence of Lemma 5.5.

Lemma 5.7 (1) Let a, b be two unmovable elements of M such that ab is unmov­
able. Then

dpt(ab) =

{

dpt(a) + dpt(b) − 1 if a 6= 1, b 6= 1 and τ (a) = σ(b) = s ,

dpt(a) + dpt(b) otherwise .

(2) Let a, b ∈ M such that ab = ∆ . Then dpt(a) + dpt(b) = dpt(∆) = k .

Now we can prove the second part of Theorem 5.1.

Proposition 5.8 The pair (H,G1) satisfies Condition B with constant ζ = k − 1.

Proof We take two unmovable elements a, b ∈ M such that (a, b) 6∈ Θ̄ × Θ̄ and we
denote by ab = c∆p the ∆­form of ab. We must show that there exists ε ∈ {0, 1}
such that dpt(c) = dpt(a) + dpt(b) − p(k − 1) − ε and that ε = 1 if either a ∈ Θ , or
b ∈ Θ , or c ∈ M1 . We write a = ap+1ap · · · a1 and b = b1 · · · bpbp+1 so that:

• ai 6= 1, bi 6= 1 and aibi = ∆ for all i ∈ {1, . . . , p};



20 D Arcis and L Paris

• ap+1bp+1 = c;

• We set xi = τ (ai), x′i = σ(ai), yi = σ(bi), y′i = τ (bi) for all i ∈ {1, . . . , p + 1}.
Then x′i = xi+1 for all i ∈ {1, . . . , p − 1}.

We denote by ϕ : M → M the isomorphism that sends s to t and t to s. Since
aibi = ∆ , we have yi = ϕ(xi) and y′i = ϕ(x′i) for all i ∈ {1, . . . , p}. In particular,
y′i = ϕ(x′i) = ϕ(xi+1) = yi+1 for all i ∈ {1, . . . , p − 1}.

Let u = |{i ∈ {1, . . . , p} | x′i = s}|. By Lemma 5.7, dpt(a) = dpt(ap+1) +
∑p

i=1 dpt(ai) − u + εa , where εa is as follows. If p ≥ 1 and ap+1 6= 1, then:
εa = 0 if (x′p, xp+1) ∈ {(s, s), (t, s), (t, t)} and εa = 1 if (x′p, xp+1) = (s, t). If p ≥ 1
and ap+1 = 1, then: εa = 0 if x′p = t and εa = 1 if x′p = s. If p = 0, then εa = 0.

Let v = |{i ∈ {1, . . . , p} | y′i = s}|. As for a, by applying Lemma 5.7 we obtain
dpt(b) = dpt(bp+1) +

∑p
i=1 dpt(bi) − v + εb where εb is as follows. If p ≥ 1

and bp+1 6= 1, then: εb = 0 if (y′p, yp+1) ∈ {(s, s), (t, s), (t, t)} and εb = 1 if
(y′p, yp+1) = (s, t). If p ≥ 1 and bp+1 = 1, then: εb = 0 if y′p = t and εb = 1 if
y′p = s. If p = 0, then εb = 0.

By applying again Lemma 5.7 we obtain dpt(c) = dpt(ap+1) + dpt(bp+1) + εc where
εc is as follows. If ap+1 6= 1 and bp+1 6= 1, then: εc = −1 if (xp+1, yp+1) = (s, s)
and εc = 0 if (xp+1, yp+1) ∈ {(s, t), (t, s), (t, t)}. If either ap+1 = 1 or bp+1 = 1, then
εc = 0.

Finally, by Lemma 5.7 (2), we have
∑p

i=1(dpt(ai) + dpt(bi)) = pk . On the other hand,
since y′i = ϕ(x′i) for all i ∈ {1, . . . , p}, we have u + v = p.

Set ε = εa+εb−εc . By the above we have dpt(c) = dpt(a)+dpt(b)−p(k−1)−ε and
ε is as follows. If p ≥ 1, ap+1 6= 1 and bp+1 6= 1, then: ε = 0 if (x′p, xp+1, yp+1) ∈
{(s, s, t), (t, t, s)} and ε = 1 otherwise. If p ≥ 1, ap+1 6= 1 and bp+1 = 1, then:
ε = 0 if (x′p, xp+1) = (s, s) and ε = 1 otherwise. If p ≥ 1, ap+1 = 1 and bp+1 6= 1,
then: ε = 0 if (x′p, yp+1) = (t, s) and ε = 1 otherwise. If p ≥ 1, ap+1 = 1
and bp+1 = 1, then ε = 1. If p = 0, a 6= 1 and b 6= 1, then: ε = 0 if
(xp+1, yp+1) ∈ {(s, t), (t, s), (t, t)} and ε = 1 otherwise. If p = 0 and either a = 1 or
b = 1, then ε = 0.

Suppose that a ∈ Θ . Then a is written a = θq with q ≥ 1. Set b = trb′ where b′ 6= 1
(since b 6∈ Θ̄) and σ(b′) = s. If r = 0, then p = 0, a = θq 6= 1, b = b′ 6= 1 and
(xp+1, yp+1) = (s, s), hence ε = 1. If 0 < r < q, then r = p > 0, ap+1 = θq−p 6= 1,
bp+1 = b′ 6= 1 and (x′p, xp+1, yp+1) = (s, s, s), hence ε = 1. If r = q, then r = p = q,
ap+1 = 1, bp+1 = b′ 6= 1 and (x′p, yp+1) = (s, s), hence ε = 1. If r > q, then p = q,
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ap+1 = 1, bp+1 = tr−qb′ and (x′p, yp+1) = (s, t), hence ε = 1. The case b ∈ Θ is
proved in the same way.

Suppose that c ∈ M1 . Then p ≥ 1, since (a, b) 6∈ (Θ̄×Θ̄). If ap+1 6= 1 and bp+1 6= 1,
then (xp+1, yp+1) = (t, t), hence ε = 1. If ap+1 6= 1 and bp+1 = 1, then xp+1 = t ,
hence ε = 1. If ap+1 = 1 and bp+1 6= 1, then yp+1 = t , hence ε = 1. If ap+1 = 1
and bp+1 = 1, then ε = 1.

We turn now to the proof of Proposition 5.4. We denote by G′
1 (resp M′

1 ) the subgroup of
B2k (resp. the submonoid of B+

2k ) generated by r2, . . . , r2k−1 and we denote by H′ (resp.
N′ ) the subgroup of B2k (resp. the submonoid of B+

2k ) genetared by r1, . . . , r2k−2 . Note
that ι(t) ∈ G′

1 , hence ι(G1) ⊂ G′
1 . We denote by ΩB = (r1r2 · · · r2k−1) · · · (r1r2)r1

the standard Garside element of B2k and by Φ : B2k → B2k , α 7→ ΩBαΩ
−1
B

, the
conjugation by ΩB . Recall that Φ(ri) = r2k−i for all i ∈ {1, . . . , 2k − 1}. So,
Φ(G′

1) = H′ and Φ(H′) = G′
1 .

Lemma 5.9 Let a be an unmovable element of M such that dpt(a) ≤ k − 1. Then
there exist b1 ∈ M′

1 and b2 ∈ N′ such that ι(a) = b1b2 .

Proof Let p = dpt(a). By Lemma 5.5, a can be written a = tu0sv1 tu1 · · · svp tup where
u0, up ≥ 0, u1, . . . , up−1 ≥ 1 and v1, . . . , vp ≥ 1. We show by induction on p that
there exist b1 ∈ M′

1 and b2 ∈ 〈r1, . . . , r2p〉
+ such that ι(a) = b1b2 . Since p ≤ k − 1

this proves the lemma. The case p = 0 is obvious because ι(t) ∈ M′
1 . We assume that

1 ≤ p ≤ k− 1 and that the inductive hypothesis holds. Set a′ = tu0 sv1 tu1 · · · svp−1 tup−1 .
By induction there exist b′1 ∈ M′

1 and b′2 ∈ 〈r1, . . . , r2p−2〉
+ such that ι(a′) = b′1b′2 .

Note that b′2 commutes with ri for all i ≥ 2p. So,

ι(a) = b′1b′2

(

k−1
∏

i=0

r
vp

2i+1

)(

k−1
∏

i=1

r
up

2i

)

= b′1

(

k−1
∏

i=p

r
vp

2i+1

)

b′2

(

p−1
∏

i=0

r
vp

2i+1

)(

k−1
∏

i=1

r
up

2i

)

=

b′1

(

k−1
∏

i=p

r
vp

2i+1

)





k−1
∏

i=p+1

r
up

2i



 b′2

(

p−1
∏

i=0

r
vp

2i+1

)(

p
∏

i=1

r
up

2i

)

= b1b2 ,

where

b1 = b′1

(

k−1
∏

i=p

r
vp

2i+1

)





k−1
∏

i=p+1

r
up

2i



 ∈ M′
1 ,

b2 = b′2

(

p−1
∏

i=0

r
vp

2i+1

)(

p
∏

i=1

r
up

2i

)

∈ 〈r1, . . . , r2p〉
+ .
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Proof of Proposition 5.4 We denote by P the set of (H,G1)­positive elements of
G and by P′ the set of r1 ­positive elements of B2k . By Corollary 5.2 we have the
disjoint union G = P ⊔ P−1 ⊔ G1 and by Dehornoy [4] we have the disjoint union
B2k = P′ ⊔ P′−1 ⊔ G′

1 . It suffices to show that ι(P−1) ⊂ P′−1 . Indeed, suppose that
ι(P−1) ⊂ P′−1 . Since ι is a homomorphism we also have ι(P) ⊂ P′ . Since we also
know that ι(G1) ⊂ G′

1 , from the disjoint unions given above follows that α ∈ P−1 if
and only if ι(α) ∈ P′−1 .

Let α be an element of P−1 . Let α = a∆−p be the ∆­form of α . By definition we
have p ≥ 1 and dpt(a) ≤ p(k − 1). Suppose first that p = 1 and dpt(a) ≤ k − 1. By
Lemma 5.9 there exist b1 ∈ M′

1 and b2 ∈ N′ such that ι(a) = b1b2 . Moreover, by
Crisp [3], ι(∆) = ΩB . Thus ι(α) = b1b2Ω

−1
B

= b1Ω
−1
B

Φ(b2). Since b1,Φ(b2) ∈ M′
1

and Ω
−1
B

∈ P′−1 , it follows that ι(α) ∈ P′−1 .

Now we consider the general case where p ≥ 1 and dpt(a) ≤ p(k − 1). It is easily
deduced from Lemma 5.5 that a can be written a = a1a2 · · · ap where ai is an
unmovable element of M such that dpt(ai) ≤ k− 1 for all i ∈ {1, . . . , p}. Note that ai

may be equal to 1 in the above expression. We have α = (a1∆
−1)(a2∆

−1) · · · (ap∆
−1)

and, by the above, ι(ai∆
−1) ∈ P′−1 for all i ∈ {1, . . . , p}, hence ι(α) ∈ P′−1 .

6 Artin groups of dihedral type, the odd case

Let m = 2k + 1 ≥ 5 be an odd integer and let G = AI2(m) = 〈s, t | Π(s, t,m) =

Π(t, s,m)〉 be the Artin group of type I2(m). Let M be the submonoid of G generated
by {s, t} and let Ω = Π(s, t,m) = (st)ks = (ts)kt . Recall that, by Brieskorn–Saito [1]
and Deligne [10], the triple (G,M,Ω) is a Garside structure on G . As pointed out in
Section 5, Ω is not central but ∆ = Ω2 is, and, by Dehornoy [5], (G,M,∆) is also a
Garside structure on G . This is the Garside structure on G that will be considered in
the present section.

We denote by G1 (resp. M1 ) the subgroup of G (resp. submonoid of M ) generated
by t , and by H (resp. N ) the subgroup of G (resp. submonoid of M ) generated by
s. Set ∆1 = t2 and Λ = s2 . Then, by Brieskorn–Saito [1], the triples (G1,M1,∆1)
and (H,N,Λ) are parabolic substructures of (G,M,∆). Moreover, M1 ∪ N obviously
generates M . The main result of this section is the following.

Theorem 6.1 The pair (H,G1) satisfies Condition A with constant ζ = 2k − 1 and
Condition B with constant ζ = 2k − 1.
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By Theorem 3.2 this implies the following.

Corollary 6.2 The pair (H,G1) is a Dehornoy structure on G .

We denote by P1 the set of (H,G1)­positive elements of G and we set P2 = {tn | n ≥

1}. For each ǫ = (ǫ1, ǫ2) ∈ {±1}2 we set Pǫ = P
ǫ1
1 ∪ P

ǫ2
2 . Then by Proposition 3.1

we have the following.

Corollary 6.3 The set Pǫ is the positive cone for a left­order on G .

Let r1, . . . , r2k be the standard generators of the braid group B2k+1 on m = 2k + 1
strands. Again, by Crisp [3], we have an embedding ι : G → B2k+1 which sends s to
∏k−1

i=0 r2i+1 and t to
∏k

i=1 r2i . The proof of the following is substantially the same as
the proof of Proposition 5.4, hence it is left to the reader.

Proposition 6.4 Let α ∈ G . Then α is (H,G1)­negative if and only if ι(α) is
r1 ­negative.

We start now the proof of Theorem 6.1. We say that an element a ∈ M is Ω­unmovable

if Ω 6≤L a or, equivalently, if Ω 6≤R a. The following is an observation.

Lemma 6.5 (1) Let a be an Ω­unmovable element of M . Then a is uniquely
written in the form a = tupsvp · · · tu1sv1 tu0 , where u0, up ≥ 0, u1, . . . , up−1 ≥ 1
and v1, . . . , vp ≥ 1. In this case we have dpt(a) = p.

(2) Let a be an unmovable element of M . Then a is uniquely written in the form
a = a′Ωε where a′ is Ω­unmovable and ε ∈ {0, 1}.

The first part of Theorem 6.1 is a direct consequence of this lemma.

Proposition 6.6 The pair (H,G1) satisfies Condition A with constant ζ = 2k − 1.

Proof Let p ≥ 1 be an integer. We have θ = (st)k(ts)k , hence θp = ((st)k(ts)k)p . By
Lemma 6.5 (1) it follows that dpt(θp) = p(2k − 1) + 1, hence dpt(∆p) = dpt(θpt2p) =
dpt(θp) = p(2k − 1) + 1.

The second part of Theorem 6.1 will be much more difficult to prove. Let a ∈ M \{1}
be an Ω­unmovable element that we write as in Lemma 6.5 (1). Then we set σ(a) = t

if up 6= 0 and σ(a) = s if up = 0. Similarly, we set τ (a) = t if u0 6= 1 and τ (a) = s

if u0 = 0. In other words, σ(a) is the first letter of a and τ (a) is its last one. On the
other hand, we denote by ϕ : G → G the automorphism which sends s to t and t to
s. Note that ϕ is the conjugation by Ω , that is, ϕ(α) = ΩαΩ−1 for all α ∈ G . The
following is again a direct consequence of Lemma 6.5.
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Lemma 6.7 (1) Let a, b ∈ M such that ab is Ω­unmovable. Then

dpt(ab) =

{

dpt(a) + dpt(b) − 1 if a 6= 1, b 6= 1, and τ (a) = σ(b) = s ,

dpt(a) + dpt(b) otherwise .

(2) Let a, b ∈ M \ {1} such that ab = Ω . Then

dpt(a) + dpt(b) =

{

k + 1 if σ(a) = s ,

k if σ(a) = t .

(3) Let c be an Ω­unmovable element of M . Then

dpt(ϕ(c)) =







dpt(c) + 1 if c 6= 1 and σ(c) = τ (c) = t ,

dpt(c) − 1 if c 6= 1 and σ(c) = τ (c) = s ,

dpt(c) otherwise .

(4) Let c be an Ω­unmovable element of M . Then

dpt(cΩ) =

{

dpt(c) + k − 1 if c 6= 1 and τ (c) = s ,

dpt(c) + k otherwise .

(5) Let a, b ∈ M \ {1} such that aϕ(b) = Ω . Then

dpt(a) + dpt(b) =

{

k + 1 if τ (a) = s ,

k if τ (a) = t .

Lemma 6.8 Let a1, a2, b1, b2 be four non­trivial Ω­unmovable elements of M such
that σ(a1) = τ (a2), τ (b1) = σ(b2), a1b1 = Ω and a2 ϕ(b2) = Ω . Set u = |{i ∈

{1, 2} | σ(ai) = s}| and v = |{i ∈ {1, 2} | τ (bi) = s}|. Then dpt(a1) + dpt(a2) +
dpt(b1) + dpt(b2) = 2k − 1 + u + v.

Proof If σ(a1) = s and σ(a2) = s, then τ (a2) = s, τ (b1) = s and τ (b2) = t ,
hence u = 2, v = 1 and, by Lemma 6.7, dpt(a1) + dpt(a2) + dpt(b1) + dpt(b2) =

2k + 2 = 2k − 1 + u + v. If σ(a1) = s and σ(a2) = t , then τ (a2) = s, τ (b1) = s

and τ (b2) = s, hence u = 1, v = 2 and, by Lemma 6.7, dpt(a1) + dpt(a2) +
dpt(b1) + dpt(b2) = 2k + 2 = 2k − 1 + u + v. If σ(a1) = t and σ(a2) = s, then
τ (a2) = t , τ (b1) = t and τ (b2) = t , hence u = 1, v = 0 and, by Lemma 6.7,
dpt(a1) + dpt(a2) + dpt(b1) + dpt(b2) = 2k = 2k − 1 + u + v. If σ(a1) = t and
σ(a2) = t , then τ (a2) = t , τ (b1) = t and τ (b2) = s, hence u = 0, v = 1 and, by
Lemma 6.7, dpt(a1) + dpt(a2) + dpt(b1) + dpt(b2) = 2k = 2k − 1 + u + v.

Lemma 6.9 Let a, b be two Ω­unmovable elements in M . We assume that the
∆­form of ab is in the form ab = c∆p where c is Ω­unmovable.
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(1) Suppose that (a, b) 6∈ (Θ̄ × Θ̄). There exists ε ∈ {0, 1} such that dpt(c) =

dpt(a) + dpt(b) − p(2k − 1) − ε. Moreover, ε = 1 if either a ∈ Θ or b ∈ Θ or
c ∈ M1 .

(2) Suppose that (aΩ, ϕ(b)) 6∈ (Θ̄× Θ̄). The exists ε ∈ {0, 1} such that dpt(cΩ) =
dpt(aΩ) + dpt(ϕ(b)) − p(2k − 1) − ε. Moreover, ε = 1 if either aΩ ∈ Θ or
ϕ(b) ∈ Θ .

(3) Suppose that (a, bΩ) 6∈ (Θ̄ × Θ̄). There exists ε ∈ {0, 1} such that dpt(cΩ) =
dpt(a)+ dpt(bΩ)− p(2k − 1)− ε. Moreover, ε = 1 if either a ∈ Θ or bΩ ∈ Θ .

(4) Suppose that (aΩ, ϕ(b)Ω) 6∈ (Θ̄ × Θ̄). There exists ε ∈ {0, 1} such that
dpt(c) = dpt(aΩ)+dpt(ϕ(b)Ω)− (p+1)(2k−1)−ε. Moreover, ε = 1 if either
aΩ ∈ Θ or ϕ(b)Ω ∈ Θ or c ∈ M1 .

Proof We write a and b in the form a = a2p+1a2p · · · a2a1 and b = b1b2 · · · b2pb2p+1

so that:

• ai 6= 1, bi 6= 1, aibi = Ω if i is odd, and ai ϕ(bi) = Ω if i is even, for all
i ∈ {1, . . . , 2p};

• c = a2p+1b2p+1 ;

• Set xi = τ (ai), x′i = σ(ai), yi = σ(bi), y′i = τ (bi), for all i ∈ {1, . . . , 2p + 1}.
Then xi+1 = x′i for all i ∈ {1, . . . , 2p − 1}.

We have yi = ϕ(xi) and y′i = x′i if i is odd, and yi = xi and y′i = ϕ(x′i) if i is even, for
all i ∈ {1, . . . , 2p}. Thus, if i is odd, then yi+1 = xi+1 = x′i = y′i , and if i is even,
then yi+1 = ϕ(xi+1) = ϕ(x′i) = y′i , for i ∈ {1, . . . , 2p − 1}.

Let u = |{i ∈ {1, . . . , 2p} | x′i = s}|. By using Lemma 6.7 we show successively the
following equalities.

dpt(a) = dpt(a2p+1) +
∑2p

i=1 dpt(ai) − u + ε1,a ,

dpt(aΩ) = dpt(a2p+1) +
∑2p

i=1 dpt(ai) − u + k + ε2,a ,

where ε1,a and ε2,a are as follows. If p ≥ 1 and a2p+1 6= 1, then:

ε1,a =

{

0 if (x′2p, x2p+1) ∈ {(s, s), (t, s), (t, t)} ,
1 if (x′2p, x2p+1) = (s, t) ,

ε2,a =











−1 if (x1, x′2p, x2p+1) ∈ {(s, s, s), (s, t, s), (s, t, t)} ,
0 if (x1, x′2p, x2p+1) ∈ {(s, s, t), (t, s, s), (t, t, s), (t, t, t)} ,
1 if (x1, x′2p, x2p+1) = (t, s, t) .
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If p ≥ 1 and a2p+1 = 1, then:

ε1,a =

{

0 if x′2p = t ,

1 if x′2p = s ,
ε2,a =











−1 if (x1, x′2p) = (s, t) ,
0 if (x1, x′2p) ∈ {(s, s), (t, t)} ,
1 if (x1, x′2p) = (t, s) .

If p = 0 and a 6= 1, then:

ε1,a = 0 , ε2,a =

{

−1 if x2p+1 = s ,

0 if x2p+1 = t .

If p = 0 and a = 1, then ε1,a = ε2,a = 0.

Let v = |{i ∈ {1, . . . , 2p} | y′i = s}|. Similarly, by using Lemma 6.7 we prove
successively the following equalities.

dpt(b) = dpt(b2p+1) +
∑2p

i=1 dpt(bi) − v + ε1,b ,

dpt(ϕ(b)) = dpt(b2p+1) +
∑2p

i=1 dpt(bi) − v + ε2,b ,

dpt(bΩ) = dpt(b2p+1) +
∑2p

i=1 dpt(bi) − v + k + ε3,b ,

dpt(ϕ(b)Ω) = dpt(b2p+1) +
∑2p

i=1 dpt(bi) − v + k + ε4,b ,

where ε1,b , ε2,b , ε3,b and ε4,b are as follows. If p ≥ 1 and b2p+1 6= 1, then:

ε1,b =

{

0 if (y′2p, y2p+1) ∈ {(s, s), (t, s), (t, t)} ,
1 if (y′2p, y2p+1) = (s, t) ,

ε2,b =



































−1 if (y1, y′2p, y2p+1, y′2p+1) ∈ {(s, s, s, s), (s, t, s, s), (s, t, t, s)} ,
0 if (y1, y′2p, y2p+1, y′2p+1) ∈ {(s, s, s, t), (s, s, t, s), (s, t, s, t),

(s, t, t, t), (t, s, s, s), (t, t, s, s), (t, t, t, s)} ,
1 if (y1, y′2p, y2p+1, y′2p+1) ∈ {(s, s, t, t), (t, s, s, t), (t, s, t, s),

(t, t, s, t), (t, t, t, t)} ,
2 if (y1, y′2p, y2p+1, y′2p+1) = (t, s, t, t) ,

ε3,b =











−1 if (y′2p, y2p+1, y′2p+1) ∈ {(s, s, s), (t, s, s), (t, t, s)} ,
0 if (y′2p, y2p+1, y′2p+1) ∈ {(s, s, t), (s, t, s), (t, s, t), (t, t, t)} ,
1 if (y′2p, y2p+1, y′2p+1) = (s, t, t) ,

ε4,b =











−1 if (y1, y′2p, y2p+1) ∈ {(s, s, s), (s, t, s), (s, t, t)} ,
0 if (y1, y′2p, y2p+1) ∈ {(s, s, t), (t, s, s), (t, t, s), (t, t, t)} ,
1 if (y1, y′2p, y2p+1) = (t, s, t) .
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If p ≥ 1 and b2p+1 = 1, then:

ε1,b =

{

0 if y′2p = t ,

1 if y′2p = s ,
ε2,b =

{

0 if y1 = s ,

1 if y1 = t ,

ε3,b = 0 , ε4,b =











−1 if (y1, y′2p) = (s, t) ,
0 if (y1, y′2p) ∈ {(s, s), (t, t)} ,
1 if (y1, y′2p) = (t, s) .

If p = 0 and b 6= 1, then:

ε1,b = 0 , ε2,b =











−1 if (y2p+1, y′2p+1) = (s, s) ,
0 if (y2p+1, y′2p+1) ∈ {(s, t), (t, s)} ,
1 if (y2p+1, y′2p+1) = (t, t) ,

ε3,b =

{

−1 if y′2p+1 = s ,

0 if y′2p+1 = t ,
ε4,b =

{

−1 if y2p+1 = s ,

0 if y2p+1 = t .

If p = 0 and b = 1, then ε1,b = ε2,b = ε3,b = ε4,b = 0.

Again, by applying Lemma 6.7 we prove successively the following equalities.

dpt(c) = dpt(a2p+1) + dpt(b2p+1) + ε1,c ,

dpt(cΩ) = dpt(a2p+1) + dpt(b2p+1) + k + ε2,c ,

where ε1,c and ε2,c are as follows. If a2p+1 6= 1 and b2p+1 6= 1, then:

ε1,c =

{

−1 if (x2p+1, y2p+1) = (s, s) ,
0 if (x2p+1, y2p+1) ∈ {(s, t), (t, s), (t, t)} ,

ε2,c =











−2 if (x2p+1, y2p+1, y′2p+1) = (s, s, s) ,
−1 if (x2p+1, y2p+1, y′2p+1) ∈ {(s, s, t), (s, t, s), (t, s, s), (t, t, s)} ,
0 if (x2p+1, y2p+1, y′2p+1) ∈ {(s, t, t), (t, s, t), (t, t, t)} .

If a2p+1 6= 1 and b2p+1 = 1, then:

ε1,c = 0 , ε2,c =

{

−1 if x2p+1 = s ,

0 if x2p+1 = t .

If a2p+1 = 1 and b2p+1 6= 1, then:

ε1,c = 0 , ε2,c =

{

−1 if y′2p+1 = s ,

0 if y′2p+1 = t .

If a2p+1 = 1 and b2p+1 = 1, then ε1,c = ε2,c = 0.

From Lemma 6.8 we also get
∑2p

i=1(dpt(ai) + dpt(bi)) = p(2k − 1) + u + v.
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Part (1): Let ε = ε1,a + ε1,b − ε1,c . By the above we have dpt(c) = dpt(a) + dpt(b) −
p(2k − 1) − ε, and ε is as follows. If p ≥ 1, a2p+1 6= 1 and b2p+1 6= 1, then: ε = 0
if (x′2p, x2p+1, y2p+1) ∈ {(s, s, t), (t, t, s)}, and ε = 1 otherwise. If p ≥ 1, a2p+1 6= 1
and b2p+1 = 1, then: ε = 0 if (x′2p, x2p+1) = (s, s), and ε = 1 otherwise. If p ≥ 1,
a2p+1 = 1 and b2p+1 6= 1, then: ε = 0 if (x′2p, y2p+1) = (t, s), and ε = 1 otherwise.
If p ≥ 1, a2p+1 = 1 and b2p+1 = 1, then ε = 1. If p = 0, a = a2p+1 6= 1
and b = b2p+1 6= 1, then: ε = 0 if (x2p+1, y2p+1) ∈ {(s, t), (t, s), (t, t)}, and ε = 1
otherwise. If p = 0 and a = a2p+1 = 1, then ε = 0. If p = 0 and b = b2p+1 = 1,
then ε = 0.

Suppose that a ∈ Θ . Then a is written a = θq with q ≥ 1. On the other hand we
write b = trb′ where b′ 6= 1 (since b 6∈ Θ̄) and σ(b′) = s. If r = 0, then p = 0,
x2p+1 = s and y2p+1 = s, hence ε = 1. If 1 ≤ r < 2q, then r = 2p, a2p+1 = θq−p ,
b2p+1 = b′ and (x′2p, x2p+1, y2p+1) = (s, s, s), hence ε = 1. If r ≥ 2q, then q = p,
a2p+1 = 1, b2p+1 6= 1 and x′2p = s, hence ε = 1. The case b ∈ Θ is proved in the
same way.

Suppose that c ∈ M1 . Then p ≥ 1, since (a, b) 6∈ Θ̄×Θ̄. If a2p+1 6= 1 and b2p+1 6= 1,
then (x2p+1, y2p+1) = (t, t), hence ε = 1. If a2p+1 6= 1 and b2p+1 = 1, then x2p+1 = t ,
hence ε = 1. If a2p+1 = 1 and b2p+1 6= 1, then y2p+1 = t , hence ε = 1. If a2p+1 = 1
and b2p+1 = 1, then ε = 1.

Part (2): Let ε = ε2,a + ε2,b − ε2,c . By the above we have dpt(cΩ) = dpt(aΩ) +
dpt(ϕ(b)) − p(2k − 1) − ε, and ε is as follows. If p ≥ 1, a2p+1 6= 1 and b2p+1 6= 1,
then: ε = 0 if (x′2p, x2p+1, y2p+1) ∈ {(s, s, t), (t, t, s)}, and ε = 1 otherwise. If p ≥ 1,
a2p+1 6= 1 and b2p+1 = 1, then: ε = 0 if (x1, x′2p, x2p+1) ∈ {(t, s, s), (t, t, s), (t, t, t)},
and ε = 1 otherwise. If p ≥ 1, a2p+1 = 1 and b2p+1 6= 1, then: ε = 0 if
(x′2p, y2p+1) = (t, s), and ε = 1 otherwise. If p ≥ 1, a2p+1 = 1 and b2p+1 = 1, then:
ε = 0 if x′2p = t , and ε = 1 otherwise. If p = 0, a = a2p+1 6= 1 and b = b2p+1 6= 1,
then: ε = 0 if (x2p+1, y2p+1) ∈ {(s, s), (s, t), (t, s)}, and ε = 1 otherwise. If p = 0,
a = a2p+1 = 1 and b = b2p+1 6= 1, then: ε = 0 if y2p+1 = s, and ε = 1 otherwise.
If p = 0 and b = b2p+1 = 1, then ε = 0.

Suppose that aΩ ∈ Θ . Then aΩ is written aΩ = θqt with q ≥ 1, hence a = θq−1(st)k .
On the other hand we write b = srb′ , where b′ 6= 1 (since ϕ(b′) 6∈ Θ̄) and σ(b′) = t .
We necessarily have r = 2p ≤ 2(q−1), hence a2p+1 = θq−p−1(st)k and b2p+1 = b′ . If
p ≥ 1, then (x′2p, x2p+1, y2p+1) = (t, t, t), hence ε = 1. If p = 0, then (x2p+1, y2p+1) =
(t, t), hence ε = 1.

Suppose that ϕ(b) ∈ Θ . Then ϕ(b) is written ϕ(b) = θq with q ≥ 1, hence
b = ((ts)k(st)k)q . On the other hand we write a = a′sr where either a′ = 1 or
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τ (a′) = t . If r = 0 and a′ = 1, then p = 0, b2p+1 = b 6= 1 and y2p+1 = t , hence
ε = 1. If r = 0 and a′ 6= 1, then p = 0, a2p+1 = a′ 6= 1, b2p+1 = b 6= 1 and
(x2p+1, y2p+1) = (t, t), hence ε = 1. If 0 < r < 2q and a′ = 1, then r = 2p,
a2p+1 = 1, b2p+1 = ((ts)k(st)k)q−p 6= 1 and (x′2p, y2p+1) = (s, t), hence ε = 1. If
0 < r < 2q and a′ 6= 1, then r = 2p, a2p+1 = a′ 6= 1, b2p+1 = ((ts)k(st)k)q−p 6= 1
and (x′2p, x2p+1, y2p+1) = (s, t, t), hence ε = 1. If r = 2q and a′ = 1, then r = 2p,
a2p+1 = 1, b2p+1 = 1 and x′2p = s, hence ε = 1. If r = 2q and a′ 6= 1, then r = 2p,
a2p+1 = a′ 6= 1, b2p+1 = 1 and (x1, x′2p, x2p+1) = (s, s, t), hence ε = 1. If r > 2q,
then p = q, a2p+1 = a′sr−2q 6= 1, b2p+1 = 1, and (x1, x′2p, x2p+1) = (s, s, s), hence
ε = 1.

Part (3): Let ε = ε1,a+ε3,b−ε2,c . By the above we have dpt(cΩ) = dpt(a)+dpt(bΩ)−
p(2k − 1) − ε, and ε is as follows. If p ≥ 1, a2p+1 6= 1 and b2p+1 6= 1, then: ε = 0
if (x′2p, x2p+1, y2p+1) ∈ {(s, s, t), (t, t, s)}, and ε = 1 otherwise. If p ≥ 1, a2p+1 6= 1
and b2p+1 = 1, then: ε = 0 if (x′2p, x2p+1) = (t, t), and ε = 1 otherwise. If p ≥ 1,
a2p+1 = 1 and b2p+1 6= 1, then: ε = 0 if (x′2p, y2p+1) = (t, s), and ε = 1 otherwise.
If p ≥ 1, a2p+1 = 1 and b2p+1 = 1, then: ε = 0 if x′2p = t , and ε = 1 otherwise.
If p = 0, a 6= 1 and b 6= 1, then: ε = 0 if (x2p+1, y2p+1) ∈ {(s, t), (t, s), (t, t)}, and
ε = 1 otherwise. If p = 0, a 6= 1 and b = 1, then: ε = 0 if x2p+1 = t , and ε = 1
otherwise. If p = 0 and a = 1, then ε = 0.

Suppose that a ∈ Θ . Then a is written a = θq with q ≥ 1. On the other hand we
write b = trb′ where either b′ = 1 or σ(b′) = s. If r = 0 and b′ = 1, then p = 0,
a2p+1 = θq , b2p+1 = 1 and x2p+1 = s, hence ε = 1. If r = 0 and b′ 6= 1, then p = 0,
a2p+1 = θq , b2p+1 = b′ 6= 1 and (x2p+1, y2p+1) = (s, s), hence ε = 1. If 0 < r < 2q

and b′ = 1, then r = 2p, a2p+1 = θq−p 6= 1, b2p+1 = 1 and (x′2p, x2p+1) = (s, s),
hence ε = 1. If 0 < r < 2q and b′ 6= 1, then r = 2p, a2p+1 = θq−p 6= 1,
b2p+1 = b′ 6= 1 and (x′2p, x2p+1, y2p+1) = (s, s, s), hence ε = 1. If r = 2q and b′ = 1,
then p = q, a2p+1 = 1, b2p+1 = 1 and x′2p = s, hence ε = 1. If r = 2q and b′ 6= 1,
then p = q, a2p+1 = 1, b2p+1 = b′ 6= 1 and (x′2p, y2p+1) = (s, s), hence ε = 1. If
r > 2q, then a2p+1 = 1, b2p+1 = tr−2qb′ 6= 1 and (x′2p, y2p+1) = (s, t), hence ε = 1.

Suppose that bΩ ∈ Θ . Then bΩ is written bΩ = θqt with q ≥ 1, hence b = θq−1(st)k .
On the other hand we write a = a′tr where a′ 6= 1 (since a 6∈ Θ̄) and τ (a′) = s. If
r = 0, then p = 0, a2p+1 = a′ 6= 1, b2p+1 = θq−1(st)k and (x2p+1, y2p+1) = (s, s),
hence ε = 1. If r > 0, then r = 2p ≤ 2(q− 1), a2p+1 = a′ 6= 1, b2p+1 = θq−p−1(st)k

and (x′2p, x2p+1, y2p+1) = (t, s, s), hence ε = 1.

Part (4): Let ε = 1 + ε2,a + ε4,b − ε1,c . By the above we have dpt(c) = dpt(aΩ) +
dpt(ϕ(b)Ω) − (p + 1)(2k − 1) − ε, and ε is as follows. If p ≥ 1, a2p+1 6= 1 and
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b2p+1 6= 1, then: ε = 0 if (x′2p, x2p+1, y2p+1) ∈ {(s, s, t), (t, t, s)}, and ε = 1 otherwise.
If p ≥ 1, a2p+1 6= 1 and b2p+1 = 1, then: ε = 0 if (x′2p, x2p+1) = (s, s), and ε = 1
otherwise. If p ≥ 1, a2p+1 = 1 and b2p+1 6= 1, then: ε = 0 if (x′2p, y2p+1) = (t, s),
and ε = 1 otherwise. If p ≥ 1, a2p+1 = 1 and b2p+1 = 1, then ε = 1. If p = 0,
a 6= 1 and b 6= 1, then: ε = 0 if (x2p+1, y2p+1) ∈ {(s, s), (s, t), (t, s)}, and ε = 1
otherwise. If p = 0, a 6= 1 and b = 1, then: ε = 0 if x2p+1 = s, and ε = 1 otherwise.
If p = 0, a = 1 and b 6= 1, then: ε = 0 if y2p+1 = s, and ε = 1 otherwise. If p = 0,
a = 1 and b = 1, then ε = 1.

Suppose that aΩ ∈ Θ . Then aΩ is written aΩ = θqt with q ≥ 1, hence a =

θq−1(st)k . On the other hand we write b = srb′ , where either b′ = 1 or σ(b′) = t .
If r = 0 and b′ = 1, then p = 0, a = θq−1(st)k 6= 1, b = 1 and x2p+1 = t , hence
ε = 1. If r = 0 and b′ 6= 1, then p = 0, a = θq−1(st)k 6= 1, b = b′ 6= 1 and
(x2p+1, y2p+1) = (t, t), hence ε = 1. If r > 0 and b′ = 1, then r = 2p ≤ 2(q − 1),
a2p+1 = θq−p−1(st)k 6= 1, b2p+1 = b′ = 1 and (x′2p, x2p+1) = (t, t), hence ε = 1. If
r > 0 and b′ 6= 1, then r = 2p ≤ 2(q − 1), a2p+1 = θq−p−1(st)k 6= 1, b2p+1 = b′ 6= 1
and (x′2p, x2p+1, y2p+1) = (t, t, t), hence ε = 1.

Suppose that ϕ(b)Ω ∈ Θ . Then ϕ(b)Ω is written ϕ(b)Ω = θqt with q ≥ 1, hence
b = (ts)kθq−1 . On the other hand we write a = a′sr where either a′ = 1 or τ (a′) = t .
If r = 0 and a′ = 1, then p = 0, a = 1, b = (ts)kθq−1 6= 1 and y2p+1 = t , hence
ε = 1. If r = 0 and a′ 6= 1, then p = 0, a = a′ 6= 1, b = (ts)kθq−1 6= 1 and
(x2p+1, y2p+1) = (t, t), hence ε = 1. If r > 0 and a′ = 1, then r = 2p ≤ 2(q − 1),
a2p+1 = 1, b2p+1 = (ts)kθq−p−1 6= 1 and (x′2p, y2p+1) = (s, t), hence ε = 1. If r > 0
and a′ 6= 1, then r = 2p ≤ 2(q − 1), a2p+1 = a′ 6= 1, b2p+1 = (ts)kθq−p−1 6= 1 and
(x′2p, x2p+1, y2p+1) = (s, t, t), hence ε = 1.

Suppose that c ∈ M1 . If p ≥ 1, a2p+1 6= 1 and b2p+1 6= 1, then (x2p+1, y2p+1) = (t, t),
hence ε = 1. If p ≥ 1, a2p+1 6= 1 and b2p+1 = 1, then x2p+1 = t , hence ε = 1. If
p ≥ 1, a2p+1 = 1 and b2p+1 6= 1, then y2p+1 = t , hence ε = 1. If p ≥ 1, a2p+1 = 1
and b2p+1 = 1, then ε = 1. If p = 0, a 6= 1 and b 6= 1, then (x2p+1, y2p+1) = (t, t),
hence ε = 1. If p = 0, a 6= 1 and b = 1, then x2p+1 = t , hence ε = 1. If p = 0,
a = 1 and b 6= 1, then y2p+1 = t , hence ε = 1. If p = 0, a = 1 and b = 1, then
ε = 1.

Lemma 6.10 Let a, b be two Ω­unmovable elements of M . We assume that the
∆­form of ab is in the form ab = (cΩ)∆p where c is an Ω­unmovable element of M

and p ≥ 0.

(1) Suppose that (a, b) 6∈ (Θ̄ × Θ̄). There exists ε ∈ {0, 1} such that dpt(cΩ) =

dpt(a) + dpt(b) − p(2k − 1) − ε. Moreover, ε = 1 if either a ∈ Θ or b ∈ Θ .
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(2) Suppose that (aΩ, ϕ(b)) 6∈ (Θ̄× Θ̄). There exists ε ∈ {0, 1} such that dpt(c) =
dpt(aΩ) + dpt(ϕ(b)) − (p + 1)(2k − 1) − ε. Moreover, ε = 1 if either aΩ ∈ Θ

or ϕ(b) ∈ Θ or c ∈ M1 .

(3) Suppose that (a, bΩ) 6∈ (Θ̄ × Θ̄). There exists ε ∈ {0, 1} such that dpt(c) =

dpt(a) + dpt(bΩ) − (p + 1)(2k − 1) − ε. Moreover, ε = 1 if either a ∈ Θ or
bΩ ∈ Θ or c ∈ M1 .

(4) Suppose that (aΩ, ϕ(b)Ω) 6∈ (Θ̄ × Θ̄). There exists ε ∈ {0, 1} such that
dpt(cΩ) = dpt(aΩ) + dpt(ϕ(b)Ω) − (p + 1)(2k − 1) − ε. Moreover, ε = 1 if
either aΩ ∈ Θ or ϕ(b)Ω ∈ Θ .

Proof We write a and b in the form a = a2p+2a2p+1 · · · a2a1 and b = b1b2 · · · b2p+1

b2p+2 so that:

• ai 6= 1, bi 6= 1, aibi = Ω if i is odd, and ai ϕ(bi) = Ω if i is even, for all
i ∈ {1, . . . , 2p + 1};

• c = a2p+2 ϕ(b2p+2).

• Set xi = τ (ai), x′i = σ(ai), yi = σ(bi) and y′i = τ (bi) for all i ∈ {1, . . . , 2p+2}.
Then xi+1 = x′i for all i ∈ {1, . . . , 2p}.

For i ∈ {1, . . . , 2p + 1} we have yi = ϕ(xi) and y′i = x′i if i is odd and yi = xi and
y′i = ϕ(x′i) if i is even. So, if i ∈ {1, . . . , 2p}, then yi+1 = xi+1 = x′i = y′i if i is odd,
and yi+1 = ϕ(xi+1) = ϕ(x′i) = y′i if i is even.

Let u = |{i ∈ {1, . . . , 2p+ 1} | x′i = s}|. By using Lemma 6.7 we obtain successively
the following equalities.

dpt(a) = dpt(a2p+2) +
∑2p+1

i=1 dpt(ai) − u + ε1,a ,

dpt(aΩ) = dpt(a2p+2) +
∑2p+1

i=1 dpt(ai) − u + k + ε2,a ,

where ε1,a and ε2,a are as follows. If a2p+2 6= 1, then:

ε1,a =

{

0 if (x′2p+1, x2p+2) ∈ {(s, s), (t, s), (t, t)} ,
1 if (x′2p+1, x2p+2) = (s, t) ,

ε2,a =











−1 if (x1, x′2p+1, x2p+2) ∈ {(s, s, s), (s, t, s), (s, t, t)} ,
0 if (x1, x′2p+1, x2p+2) ∈ {(s, s, t), (t, s, s), (t, t, s), (t, t, t)} ,
1 if (x1, x′2p+1, x2p+2) = (t, s, t) .

If a2p+2 = 1, then:

ε1,a =

{

0 if x′2p+1 = t ,

1 if x′2p+1 = s ,
ε2,a =











−1 if (x1, x′2p+1) = (s, t) ,
0 if (x1, x′2p+1) ∈ {(s, s), (t, t)} ,
1 if (x1, x′2p+1) = (t, s) .
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Let v = |{i ∈ {1, . . . , 2p + 1} | y′i = s}|. Similarly, by using Lemma 6.7 we obtain
successively the following equalities.

dpt(b) = dpt(b2p+2) +
∑2p+1

i=1 dpt(bi) − v + ε1,b ,

dpt(ϕ(b)) = dpt(b2p+2) +
∑2p+1

i=1 dpt(bi) − v + ε2,b ,

dpt(bΩ) = dpt(b2p+2) +
∑2p+1

i=1 dpt(bi) − v + k + ε3,b ,

dpt(ϕ(b)Ω) = dpt(b2p+2) +
∑2p+1

i=1 dpt(bi) − v + k + ε4,b ,

where ε1,b , ε2,b , ε3,b and ε4,b are as follows. If b2p+2 6= 1, then:

ε1,b =

{

0 if (y′2p+1, y2p+2) ∈ {(s, s), (t, s), (t, t)} ,
1 if (y′2p+1, y2p+2) = (s, t) ,

ε2,b =



































−1 if (y1, y′2p+1, y2p+2, y′2p+2) ∈ {(s, s, s, s), (s, t, s, s), (s, t, t, s)} ,
0 if (y1, y′2p+1, y2p+2, y′2p+2) ∈ {(s, s, s, t), (s, s, t, s), (s, t, s, t),

(s, t, t, t), (t, s, s, s), (t, t, s, s), (t, t, t, s)} ,
1 if (y1, y′2p+1, y2p+2, y′2p+2) ∈ {(s, s, t, t), (t, s, s, t), (t, s, t, s),

(t, t, s, t), (t, t, t, t)} ,
2 if (y1, y′2p+1, y2p+2, y′2p+2) = (t, s, t, t) ,

ε3,b =











−1 if (y′2p+1, y2p+2, y′2p+2) ∈ {(s, s, s), (t, s, s), (t, t, s)} ,
0 if (y′2p+1, y2p+2, y′2p+2) ∈ {(s, s, t), (s, t, s), (t, s, t), (t, t, t)} ,
1 if (y′2p+1, y2p+2, y′2p+2) = (s, t, t) ,

ε4,b =











−1 if (y1, y′2p+1, y2p+2) ∈ {(s, s, s), (s, t, s), (s, t, t)} ,
0 if (y1, y′2p+1, y2p+2) ∈ {(s, s, t), (t, s, s), (t, t, s), (t, t, t)} ,
1 if (y1, y′2p+1, y2p+2) = (t, s, t) .

If b2p+2 = 1, then:

ε1,b =

{

0 if y′2p+1 = t ,

1 if y′2p+1 = s ,
ε2,b =

{

0 if y1 = s ,

1 if y1 = t ,

ε3,b = 0 , ε4,b =











−1 if (y1, y′2p+1) = (s, t) ,
0 if (y1, y′2p+1) ∈ {(s, s), (t, t)} ,
1 if (y1, y′2p+1) = (t, s) .

Again, by using Lemma 6.7 we obtain the following equalities.

dpt(c) = dpt(a2p+2) + dpt(b2p+2) + ε1,c ,

dpt(cΩ) = dpt(a2p+2) + dpt(b2p+2) + k + ε2,c ,
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where ε1,c and ε2,c are as follows. If a2p+2 6= 1 and b2p+2 6= 1, then:

ε1,c =











−1 if (x2p+2, y2p+2, y′2p+2) ∈ {(s, s, s), (s, t, s), (t, s, s)} ,
0 if (x2p+2, y2p+2, y′2p+2) ∈ {(s, s, t), (s, t, t), (t, s, t), (t, t, s)} ,
1 if (x2p+2, y2p+2, y′2p+2) = (t, t, t) ,

ε2,c =

{

−1 if (x2p+2, y2p+2) ∈ {(s, s), (s, t), (t, s)} ,
0 if (x2p+2, y2p+2) = (t, t) .

If a2p+2 6= 1 and b2p+2 = 1, then:

ε1,c = 0 , ε2,c =

{

−1 if x2p+2 = s ,

0 if x2p+2 = t .

If a2p+2 = 1 and b2p+2 6= 1, then:

ε1,c =











−1 if (y2p+2, y′2p+2) = (s, s) ,
0 if (y2p+2, y′2p+2) ∈ {(s, t), (t, s)} ,
1 if (y2p+2, y′2p+2) = (t, t) ,

ε2,c =

{

−1 if y2p+2 = s ,

0 if y2p+2 = t .

If a2p+2 = 1 and b2p+2 = 1, then ε1,c = ε2,c = 0.

Finally, from Lemma 6.7 and Lemma 6.8 follows that

2p+1
∑

i=1

(dpt(ai) + dpt(bi)) = p(2k − 1) + k + u + v + εd ,

where εd = −1 if x′2p+1 = s, and εd = 0 if x′2p+1 = t .

Part (1): Let ε = ε1,a + ε1,b − ε2,c + εd . By the above we have dpt(cΩ) = dpt(a) +
dpt(b)− p(2k− 1)− ε, where ε is as follows. If a2p+2 6= 1 and b2p+2 6= 1, then ε = 0
if (x′2p+1, x2p+2, y2p+2) ∈ {(s, s, s), (t, t, t)}, and ε = 1 otherwise. If a2p+2 6= 1 and
b2p+2 = 1, then ε = 0 if (x′2p+1, x2p+2) = (t, t), and ε = 1 otherwise. If a2p+2 = 1
and b2p+2 6= 1, then ε = 0 if (x′2p+1, y2p+2) = (t, t), and ε = 1 otherwise. If
a2p+2 = 1 and b2p+2 = 1, then ε = 0 if x′2p+1 = t , and ε = 1 otherwise.

Suppose that a ∈ Θ . Then a is written a = θq with q ≥ 1. On the other hand we
write b = trb′ where b′ 6= 1 (since b 6∈ Θ̄) and σ(b′) = s. We necessarily have r =

2p + 1 < 2q, a2p+2 = θq−p−1(st)k , b2p+2 = b′ , and (x′2p+1, x2p+2, y2p+2) = (t, t, s),
hence ε = 1. The case b ∈ Θ is proved in a similar way.

Part (2): Let ε = 1 + ε2,a + ε2,b − ε1,c + εd . By the above we have dpt(c) =

dpt(aΩ) + dpt(ϕ(b)) − (p + 1)(2k − 1) − ε, and ε is as follows. If a2p+2 6= 1
and b2p+2 6= 1, then ε = 0 if (x′2p+1, x2p+2, y2p+2) ∈ {(s, s, s), (t, t, t)}, and ε = 1
otherwise. If a2p+2 6= 1 and b2p+2 = 1, then ε = 0 if (x′2p+1, x2p+2) = (s, s), and
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ε = 1 otherwise. If a2p+2 = 1 and b2p+2 6= 1, then ε = 0 if (x′2p+1, y2p+2) = (t, t),
and ε = 1 otherwise. If a2p+2 = 1 and b2p+2 = 1, then ε = 1.

Suppose that aΩ ∈ Θ . Then aΩ is written aΩ = θqt with q ≥ 1, hence a = θq−1(st)k .
On the other hand we write b = srb′ where b′ 6= 1 (since ϕ(b) 6∈ Θ̄) and σ(b′) = t .
If r < 2(q − 1) + 1, then r = 2p + 1, a2p+2 = θq−1−p 6= 1, b2p+2 = b′ 6= 1, and
(x′2p+1, x2p+2, y2p+2) = (s, s, t), hence ε = 1. If r ≥ 2(q − 1) + 1, then a2p+2 = 1,
b2p+2 6= 1 and x′2p+1 = s, hence ε = 1.

Suppose that ϕ(b) ∈ Θ . Then ϕ(b) is written ϕ(b) = θq with q ≥ 1, hence
b = ((ts)k(st)k)q . On the other hand we write a = a′sr where either a′ = 1 or τ (a′) = t .
We necessarily have r = 2p + 1 < 2q, a2p+2 = a′ and b2p+2 = ((ts)k(st)k)q−p−1(ts)k ,
hence x′2p+1 = s and x2p+2 = t if a′ 6= 1, and therefore ε = 1.

Suppose that c ∈ M1 . If a2p+2 6= 1 and b2p+2 6= 1, then x2p+2 = t and y2p+2 = s,
hence ε = 1. If a2p+2 6= 1 and b2p+2 = 1, then x2p+2 = t , hence ε = 1. If a2p+2 = 1
and b2p+2 6= 1, then y2p+2 = s, hence ε = 1. If a2p+2 = 1 and b2p+2 = 1, then
ε = 1.

Part (3): Let ε = 1 + ε1,a + ε3,b − ε1,c + εd . By the above we have dpt(c) =

dpt(a) + dpt(bΩ) − (p + 1)(2k − 1) − ε, and ε is as follows. If a2p+2 6= 1 and
b2p+2 6= 1, then ε = 0 if (x′2p+1, x2p+2, y2p+2) ∈ {(s, s, s), (t, t, t)}, and ε = 1
otherwise. If a2p+2 6= 1 and b2p+2 = 1, then ε = 0 if (x′2p+1, x2p+2) = (s, s), and
ε = 1 otherwise. If a2p+2 = 1 and b2p+2 6= 1, then ε = 0 if (x′2p+1, y2p+2) = (t, t),
and ε = 1 otherwise. If a2p+2 = 1 and b2p+2 = 1, then ε = 1.

Suppose that a ∈ Θ . Then a is written a = θq with q ≥ 1. On the other hand we write
b = trb′ where either b′ = 1 or σ(b′) = s. We necessarily have r = 2p+1 < 2q, hence
a2p+2 = θq−p−1(st)k and b2p+2 = b′ . If b′ 6= 1, then (x′2p+1, x2p+2, y2p+2) = (t, t, s),
hence ε = 1. If b′ = 1, then (x′2p+1, x2p+2) = (t, t), hence ε = 1.

Suppose that bΩ ∈ Θ . Then bΩ is written bΩ = θqt with q ≥ 1, hence b = θq−1(st)k .
On the other hand we write a = a′tr where a′ 6= 1 (since a 6∈ Θ̄) and τ (a′) = s. If
r ≥ 2q − 1, then p = q − 1, a2p+2 = a′tr−2p−1 and b2p+2 = 1, hence x′2p+1 = t , and
therefore ε = 1. If r < 2q−1, then r = 2p+1, a2p+2 = a′ and b2p+2 = θq−p−1 6= 1,
hence (x′2p+1, x2p+2, y2p+2) = (t, s, s), and therefore ε = 1.

Suppose that c ∈ M1 . If b2p+2 6= 1 and a2p+2 6= 1, then x2p+2 = t and y2p+2 = s,
hence ε = 1. If a2p+2 6= 1 and b2p+2 = 1, then x2p+2 = t , hence ε = 1. If a2p+2 = 1
and b2p+2 6= 1, then y2p+2 = s, hence ε = 1. If a2p+2 = 1 and b2p+2 = 1, then
ε = 1.
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Part (4): Let ε = 1 + ε2,a + ε4,b − ε2,c + εd . By the above we have dpt(cΩ) =

dpt(aΩ) + dpt(ϕ(b)Ω) − (p + 1)(2k − 1) − ε, and ε is as follows. If a2p+2 6= 1
and b2p+2 6= 1, then: ε = 0 if (x′2p+1, x2p+2, y2p+2) ∈ {(s, s, s), (t, t, t)}, and ε = 1
otherwise. If a2p+2 6= 1 and b2p+2 = 1, then: ε = 0 if (x′2p+1, x2p+2) = (t, t), and
ε = 1 otherwise. If a2p+2 = 1 and b2p+2 6= 1, then: ε = 0 if (x′2p+1, y2p+2) = (t, t),
and ε = 1 otherwise. If a2p+2 = 1 and b2p+2 = 1, then ε = 0 if x′2p+1 = t , and ε = 1
otherwise.

Suppose that aΩ ∈ Θ . Then aΩ is written aΩ = θqt with q ≥ 1, hence a = θq−1(st)k .
On the other hand we write b = srb′ where either b′ = 1 or σ(b′) = t . If r ≥ 2q − 1,
then a2p+2 = 1 and x′2p+1 = s, hence ε = 1. If r < 2q − 1, then r = 2p + 1,
a2p+2 = θq−p−1 and b2p+2 = b′ , hence x′2p+1 = s, x2p+2 = s and either b2p+2 = 1 or
y2p+2 = t , and therefore ε = 1.

Suppose that ϕ(b)Ω ∈ Θ . Then ϕ(b)Ω is written ϕ(b)Ω = θqt with q ≥ 1, hence
b = ((ts)k(st)k)q−1(ts)k . On the other hand we write a = a′sr where either a′ = 1 or
τ (a′) = t . If r ≥ 2q − 1, then b2p+2 = 1 and x′2p+1 = s, hence ε = 1. If r < 2q − 1,
then r = 2p + 1, a2p+2 = a′ and b2p+2 = ((ts)k(st)k)q−p−1 , hence x′2p+1 = s and
y2p+2 = t , and therefore ε = 1.

Now, the second part of Theorem 6.1 is a direct consequence of the previous two
lemmas.

Proposition 6.11 The pair (H,G1) satisfies Condition B with constant ζ = 2k − 1.

Proof We take two unmovable elements a, b ∈ M , and we consider the ∆­form
ab = c∆p of ab. We should prove that there exists ε ∈ {0, 1} such that dpt(c) =

dpt(a) + dpt(b) − p(2k − 1) − ε, and ε = 1 if either a ∈ Θ or b ∈ Θ or c ∈

M1 . Clearly, there exist two Ω­unmovable elements a′, b′ ∈ M such that (a, b) ∈

{(a′, b′), (a′Ω, ϕ(b′)), (a′, b′Ω), (a′Ω, ϕ(b′)Ω)}. Let a′b′ = d∆q be the ∆­form of a′b′ .
Then, again, there exists an Ω­unmovable element c′ ∈ M such that d ∈ {c′, c′Ω}.
Suppose that d = c′ . Then: c = c′ and p = q if (a, b) = (a′, b′), c = c′Ω and
p = q if either (a, b) = (a′Ω, ϕ(b′)) or (a, b) = (a′, b′Ω), and c = c′ and p = q + 1
if (a, b) = (a′Ω, ϕ(b′)Ω). These four cases are covered by Lemma 6.9. Suppose that
d = c′Ω . Then: c = c′Ω and p = q if (a, b) = (a′, b′), c = c′ and p = q + 1
if either (a, b) = (a′Ω, ϕ(b′)) or (a, b) = (a′, b′Ω), and c = c′Ω and p = q + 1 if
(a, b) = (a′Ω, ϕ(b′)Ω). These four cases are covered by Lemma 6.10.
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