Ordering Garside groups
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We introduce a structure on a Garside group that we call Dehornoy structure and
we show that an iteration of such a structure leads to a left-order on the group.
We define two conditions on a Garside group G and we show that, if G satisfies
these two conditions, then G has a Dehornoy structure. Then we show that the
Artin groups of type A and of type I,(m), m > 4, satisfy these conditions, and
therefore have Dehornoy structures. As indicated by the terminology, one of the
orders obtained by this method on the Artin groups of type A coincides with the
Dehornoy order.
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1 Introduction

A group G is said to be left-orderable if there exists a total order < on G invariant by
left-multiplication. Recall that a subset P of G is a subsemigroup if a8 € P for all
a, B € P. Itis easily checked that a left-order < on G is determined by a subsemigroup
P such that G = PUP~'U{1}: we have o < 3 if and only if a~!3 € P. In this case
the subsemigroup P is called the positive cone of <.

The first explicit left-order on the braid group 5, was determined by Dehornoy [4].
The fact that B, is left-orderable is important, but, furthermore, the Dehornoy order
is interesting by itself, and there is a extensive literature on it. We refer to Dehornoy—
Dynnikov—Rolfsen—Wiest [8] for a complete report on left-orders on braid groups and
on the Dehornoy order in particular. The definition of the Dehornoy order is based on
the following construction.

Let G be a group and let S = {s1,s2,...,s,} be a finite ordered generating set for G.
Let i € {1,2,...,n}. Wesay that « € G is s;-positive (resp. s;-negative) if « is

written in the form o = ags;aq - - - s;qy, (resp. a = aosi_lal . 'sl-_lozm) with m > 1
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and g, a1, ...,Qy € (Siz1,...,8,). Foreach i € {1,2,... ,n} we denote by P;"
(resp. P;) the set of s;-positive elements (resp. s;-negative elements) of G. The key
point in the definition of the Dehornoy order is the following.

Theorem 1.1 (Dehornoy [4]) Let G = B, be the braid group on n + 1 strands
and let S = {sy,s2,...,s,} be its standard generating set. For each i € {1,2,... ,n}
we have the disjoint union (s;,si11,...,8,) = P UP;7 U {Sit1,...,5n).

Let G = B,+1 be the braid group on n + 1 strands. Set Pp = Pfr (W P;r - P,J[.
Then, by Theorem 1.1, Pp is the positive cone for a left-order <p on G. This is the
Dehornoy order.

A careful reader will notice that Theorem 1.1 leads to more than one left-order on 5,1 .
Indeed, if € = (€1, €2,...,€¢,) € {+,—}", then P* = P{' UP U---LIPY is a positive
cone for a left-order on B, 1. The case € = (4, —, +,...) is particularly interesting
because, by Dubrovina—Dubrovin [11], in this case P¢ determines an isolated left-order
in the space of left-orders on B, .

Our goal in the present paper is to extend the Dehornoy order to some Garside groups.

A first approach would consist on keeping the same definition, as follows. Let G be a
group and let S = {s1,52,...,s,} be a finite ordered generating set for G. Again, we
denote by P;" (resp. P;) the set of s;-positive elements (resp. s;-negative elements)
of G. Then we say that S determines a Dehornoy structure (in Ito’s sense) if, for each
i € {l,...,n}, wehave the disjoint union (s;, Si+1, ... ,5,) = PFUP;TU{Sit1,- -, 8n)-
In this case, as for the braid group, foreach € € {4, —}" the set P* = P{'UPS’L- - -LUPY
is the positive cone for a left-order on G. This approach was used by Ito [16] to construct
isolated left-orders in the space of left-orders of some groups.

In the present paper we will consider another approach of the Dehornoy order in terms
of Garside groups (see Dehornoy [6], Fromentin [13], Fromentin—Paris [14]), and our
definition of Dehornoy structure will be different from that in Ito’s sense given above.

In Section 2 we recall some basic and preliminary definitions and results on Garside
groups. We refer to Dehornoy et al. [7] for a full account on the theory. In Section
3 we give our (new) definition of Dehornoy structure and show how such a structure
leads to a left-order on the group (see Proposition 3.1). Then we define two conditions
on a Garside group, that we call Condition A and Condition B, and show that a Garside
group which satisfies these two conditions has a Dehornoy structure (see Theorem 3.2).

The aim of the rest of the paper is to apply Theorem 3.2 to the Artin groups of type
A, that is, the braid groups, and the Artin groups of dihedral type. In Section 4 we
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prove that a braid group with its standard Garside structure satisfies Condition A and
Condition B (see Theorem 4.1), and therefore has a Dehornoy structure in the sense of
the definition of Section 3 (see Corollary 4.2). We also prove that the left-orders on
the group induced by this structure are the same as the left-orders induced by Theorem
1.1 (see Proposition 4.4), as expected. Section 5 and Section 6 are dedicated to the
Artin groups of dihedral type. There is a difference between the even case, treated
in Section 5, and the odd case, treated in Section 6. The latter case requires much
more calculations. In both cases we show that such a group satisfies Condition A and
Condition B, and therefore admits a Dehornoy structure. Then we show that the left-
orders obtained from this Dehornoy structure can also be obtained via an embedding
of the group in a braid group defined by Crisp [3].

2 Preliminaries

Let G be a group and let M be a submonoid of G such that M "M~ = {1}. Then
we have two partial orders <z and <; on G defined by a <y 3 if Ba~! € M, and
a <y Bif a=!3 € M. For each a € M we set Divg(a) = {b € M | b <g a} and
Divy(a) = {b € M | b <; a}. We say that a € M is balanced if Divg(a) = Div.(a).
In that case we set Div(a) = Divg(a) = Divy(a). We say that M is Noetherian if
for each element a € M there is an integer n > 1 such that a cannot be written as a
product of more than n non-trivial elements.

Definition Let G be a group, let M be a submonoid of G such that M "M~ = {1},
and let A be a balanced element of M. We say that G is a Garside group with Garside
structure (G,M, A) if:

(a) M is Noetherian;

(b) Div(A) is finite, it generates M as a monoid, and it generates G as a group;

(¢c) (G, <g) is alattice.

Let (G, M, A) be a Garside structure on G. Then A is called the Garside element and
the elements of Div(A) are called the simple elements (of the Garside structure). The
lattice operations of (G, <g) are denoted by Ag and Vg. The ordered set (G, <p) is
also a lattice and its lattice operations are denoted by A, and V.

Now take a Garside group G with Garside structure (G, M, A) and set S = Div(A) \
{1}. The word length of an element o € G with respect to S is denoted by lg(a) =
lgs(ar). The right greedy normal form of an element a € M is the unique expression
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a=u,---upuy of a over S satisfying (u, - - - u;) A\g A = u; forall i € {1,...,p}. We
define the left greedy normal form of an element of M in a similar way. The following
two theorems contain several key results of the theory of Garside groups.

Theorem 2.1 (Dehornoy—Paris [9], Dehornoy [5]) (1) Let a € M and let a =
up - - - upuy be the greedy normal form of a. Then l1g(a) = p.

(2) Let o € G. There exists a unique pair (a,b) € M x M such that o = ab~! and
a Ag b = 1. In that case we have 1g(a) = lg(a) 4 1g(b).

The expression of « given in Theorem 2.1 (2) is called the (right) orthogonal form of
a. The left orthogonal form of an element of G is defined in a similar way.

We say that an element a € M is unmovable if A £ a or, equivalently, if A £, a.

Theorem 2.2 (Dehornoy—Paris [9], Dehornoy [5]) Let o € G. There exists a unique
pair (a,k) € M x Z such that a is unmovable and o = aAF.

The expression of « given above is called the (right) A-form of «. We define the left
A-form of an element of G in a similar way.

Definition Let ¢ be a balanced element of M. Denote by G (resp. My) the subgroup
of G (resp. the submonoid of M) generated by Div(d). We say that (Gs, M;,d) is
a parabolic substructure of (G,M,A) if § is balanced and Div(é) = Div(A) N Ms.
In that case Gy is called a parabolic subgroup of G and My is called a parabolic
submonoid of M.

Remark Let H be a parabolic subgroup of G. Then there exists a unique parabolic
substructure (G, Ms,d) of (G,M,A) such that H = Gg. Indeed, the above element
0 should be the greatest element in H N Div(A) for the order relation <g, hence 0
is entirely determined by H. Similarly, if N is a parabolic submonoid of M, then
there exists a unique parabolic substructure (Gg, My, d) such that N = Mg, where §
is the greatest element of Div(A) N N for the order relation <g. So, we can speak of
a parabolic subgroup or of a parabolic submonoid without necessarily specifying the
corresponding element § or the triple (Gg, My, d).

Theorem 2.3 (Godelle [15]) Let (H,N,d) be a parabolic substructure of (G, M, A).

(1) H is a Garside group with Garside structure (H, N, §).
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(2) Leta € N andlet a = u,---uyu; be the greedy normal form of a with respect
to (G,M,A). Then u; € Div(d) forall i € {1,2,...,p} and a = u, - - - upu; is
the greedy normal form of a with respect to (H, N, 9).

(3) Leta,8 € H and v € G such that « <g v <g 3. Then v € H.
(4) Leta,B € H. Then a N\g B, Vg 3 € H.

(5) Let « € H and let « = ab™' be the orthogonal form of o with respect to
(G,M,A). Then a,b € N and o« = ab~! is the orthogonal form of o with
respect to (H, N, ).

Example Let S be a finite set. A Coxeter matrix over S is a square matrix M =
(ms )5 1es indexed by the elements of S with coefficients in N U {oo} such that
mgs=1forall s € S and my; =m; s > 2 forall s,t €S, s #t. If 5,1 are two letters
and m is an integer > 2mwe denote by II(s, #,m) the word s’isi -+ of length m. In other
words TI(s, t,m) = (st)2 if m is even and II(s, z,m) = (st)" 2 s if m is odd. The Artin
group associated with M is the group A = Ay, defined by the presentation

A= (S | H(Sv ty ms,t) = H(tv S, ms,t) for Sat S S7 S # t and mx,t 7é OO> .

The Coxeter group associated with M is the quotient W = W), of A by the relations
s> =1, s € S. We say that A is of spherical type if W is finite. The braid groups are
the star examples of Artin groups of spherical type.

We denote by AT the monoid having the following monoid presentation.
AT = (S| (s, t,ms,) = 1I(t, s, my,) for s,t € S, s # t and my, # 00) ™ .

By Paris [17] the natural homomorphism A* — A is injective. So, we can consider
AT as a submonoid of A. It is easily checked that AT N (AT)~! = {1}, hence we
can consider the order relations <p and <; on A. Suppose that A is of spherical
type. Then, by Brieskorn—Saito [1] and Deligne [10], for all a;, 5 € A the elements
aAg 5 and o Vg B exist, and (A,AT, A) is a Garside structure, where A = VgS. Let
X be a subset of S and let Ay be the subgroup of A generated by X. Then, again by
Brieskorn—Saito [1] and Deligne [10], Ay is a parabolic subgroup of A and it is an
Artin group of spherical type.

The triple (G, M, A) denotes again an arbitrary Garside structure on a group G. Besides
the greedy normal forms, we will use some other normal forms of the elements of M
defined from a pair (Vo, V1) of parabolic submonoids of M. Their definition is based
on the following.
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Proposition 2.4 (Dehornoy [6]) Let N be a parabolic submonoid of M. For each
a € M there exists a unique b € N such that {c € N| ¢ <ga} = {c € N| ¢ <g b}.

The element b of Proposition 2.4 is called the (right) N-fail of a and is denoted by
b = 7n(a) = Tvr(a). We define in a similar way the left N-tail of a, denoted by

Tv,(a).

Now, assume that N; and N, are two parabolic submonoids of M such that N, U N;
generates M. Then each nontrivial element a € M is uniquely written in the form
a = a,---axa; where a, # 1, a; = 7y,(ap - - a;) if i is odd, and a; = 7n,(a, - - - a;)
if i is even. This expression is called the (right) alternating form of a with respect to
(N2, N1). Note that we may have a; = 1,buta; # 1 foralli € {2,...,p}. The number
p is called the (Na,Ny)-breadth of a and is denoted by p = bh(a) = bhy, x,(a). By
extension we set bh(1) = 1 so that a € N; < bh(a) = 1.

Now, consider the standard Garside structure (Bn“,B:[ +1,A) on the braid group

Bt1. Let S = {s1,52,...,s,} be the standard generating system of B, N| be the
submonoid of B: 1 generated by {s2,...,5,}, and N, be the submonoid generated
by {s1,...,8,—1}. Then Ny and N, are parabolic submonoids of B:[ 1 and they are
both isomorphic to B;. Observe that N; UN, generates B: 1
alternating forms with respect to (N, N;). The definitions of the next section are

inspired by the following.

hence we can consider

Theorem 2.5 (Fromentin—Paris [14]) Let a € B: 1 and k € 7. Then A *a is
s1 -negative if and only if k > max{1,bh(a) — 1}.

3 Orders on Garside groups

We consider a Garside structure (G, M, A) on a Garside group G and two parabolic
substructures (H,N, A) and (G, M, Ay). We assume that N = M, M| # M, N UM,
generates M, A is central in G, and A is central in G;. Note that the assumption “A
is central in G” is not so restrictive since, by Dehornoy [5], if (G, M, A) is a Garside
structure, then (G, M, Ak) is also a Garside structure for each k > 1, and there exists
k > 1 such that A* is central in G. We will consider alternating forms with respect to
(N, My).

The depth of an element a € M, denoted by dpt(a), is dpt(a) = % if bh(a)
is odd and is dpt(a) = % if bh(a) is even. In other words, if a = a,---asxa; is
the alternating form of a, then dpt(a) is the number of indices i € {1,...,p} such
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that a; ¢ M, (that is, the number of even indices). Note that a € M, if and only if
dpt(a) = 0.

Definition Let o € G and let & = aA~* be its A-form. We say that o is (H, G1)-
negative if k > 1 and dpt(a) < dpt(Ak). We say that « is (H, G1)-positive if a lis
(H, Gy)-negative. We denote by P = Py ¢, the set (H, Gy)-positive elements and by
P~ ! the set of (H, G1)-negative elements.

Definition We say that (H, Gy) is a Dehornoy structure if P satisfies the following
conditions:

(a) PPCP,
(b) GPG; CP,
(c) we have the disjoint union G = P L P UG.

Our goal in this section is to prove a criterion for (H, G1) to be a Dehornoy structure.
But, before, we show how the orders appear in this context.

Suppose given two sequences of parabolic subgroups Gy = G, Gy, ...,G, and Hy, .. .,
H, such that G;11,H;11 C G; and (Hi+1,Gjy1) is a Dehornoy structure on G; for all
i€{0,1,...,n—1} and G, ~ Z. Foreach i € {0, 1,...,n— 1} we denote by P; the
set of (H;11, Gi+1)-positive elements of G;. On the other hand, we choose a generator
a, of G, and we set P, = {a* | k > 1}. Foreach ¢ = (eg, €1, ...,6,) € {£1}"F we
set P* =P LIP{'U--- LIPS,

Proposition 3.1 Under the above assumptions P¢ is the positive cone for a left-order
onG.

Proof We must prove that we have a disjoint union G = P¢ LI (P¢)~! LU {1} and that
P°P¢ C P¢. The fact that we have a disjoint union G = P¢ LU (P°)~! L {1} follows
directly from Condition (c) of the definition. Let «, 5 € P¢. Let i,j € {0,1,...,n}
such that o € P§' and 8 € P;j . If i < j, then, by Condition (b) of the definition,
af € P§ C PC. Similarly, if i > j, then aff € P;j C P¢. If i = j, then, by Condition
(a) of the definition, a8 € P§ C P°. O

Definition Let ( > 1 be an integer. We say that the pair (H, G) satisfies Condition
A with constant ¢ if dpt(A¥) = Ck + 1 forall k > 1.

We set 6 = AAI_I = Al_lA € M. We say that an element a € M is a theta element
if it is of the form a = 6*ay with k > 1 and ag € M,. We denote by O the set of theta
elements of M and weset © = © U M.
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Definition Let ¢ > 1 be an integer. Let (a,b) € (M x M)\ (© x ©) such that a, b
are both unmovable. Let ab = c¢A’ be the A-form of ab. We say that (a, b) satisfies
Condition B with constant ¢ if there exists € € {0, 1} such that

(a) dpt(c) = dpt(a) + dpt(b) — (t — ¢,
(b) e=1ifeithera € ©,orb e O, o0r c € M;.

We say that (H, Gy) satisfies Condition B with constant ( if each pair (a,b) € (M X
M)\ (O x ©) as above satisfies Condition B with constant (.

Theorem 3.2 If there exists a constant ( > 1 such that (H, G) satisfies Condition A
with constant ( and Condition B with constant (, then (H, G1) is a Dehornoy structure.

Let ¢ > 1 be an integer. From here until the end of the section we assume that (H, G1)
satisfies Condition A with constant ¢ and Condition B with constant . Our goal is
then to prove that (H, G;) is a Dehornoy structure, that is, to prove Theorem 3.2.

Let a be an unmovable element of M and let p = lg(a). Then p is the smallest integer
> 0 such that a <z A?. Let com(a) € M such that acom(a) = A”. Then, by
El-Rifai-Morton [12], com(a) is unmovable, Ig(com(a)) = p, and a~! = com(a)A ™7
is the A-form of a~'. Note that acom(a) = com(a)a = AP since A is central. In
particular, com(com(a)) = a.

Lemma3.3 (1) Letae M. Then A\ga=1and 8 Vga = 0a = af.
(2) Let a = 0*ay be a theta element, where k > 1 and ag € M,. Then dpt(a) =
Ck+1.

(3) Let a = 0*ay be a theta element, where k > 1 and ay € M,. Then a
is unmovable if and only if ay is unmovable in M; (that is, if and only if

Ay £r ao).
(4) Leta be anunmovable element of M. We have a € © ifand only if com(a) € O.
(5) Let a € Gy \ M. Then o has a A -form of the form o = aA™* where k > 1
and a = 0%ay € © with ag € M, .
(6) Letac © andb e M\ ©. Thenab € M\ © and ba € M\ ©.

Proof Part (1): Let a € M. Let u = a Ag 0. We have u <g 0, hence ul\; <g
AA; = A, and therefore u/A; € Div(A). On the other hand, since u <g a, we have
u € My, hence uA, € M;. So, uA; € Div(A) N M; = Div(A), thus u = 1. Let
v =aVg0. Since A and A; commute with a, we have #a = afl. In particular,
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v <g af. Let x; € M such that v = x;0. Then x; <z a and, since M; is a
parabolic submonoid, x; € M; and there exists x, € M; such that x,x; = a. So,
a = xyx1 <gpv=ux10 = 0x;1, hence x, <y 0, and therefore, since a Ag 8 = 1, we have
xp = 1. Thus x; =a and v = af = fa.

Part (2): Itis clear that dpt(a) = dpt(aag) foralla € M andall ag € M. Leta = 0%y
be a theta element. Then dpt(a) = dpt(6¥) = dpt(HkA’f) = dpt(A*) = Ck + 1.

Part (3): Let a = 6%ay be a theta element. Suppose that A <g ag. Let a; € M, such
that ag = a;A;. Then a = GkalAl = Gk_laléAl = Gk_lalA, hence A <p a. Now
suppose that A <g a. By Part (1) we have 7y, (a) = ag. Since A <g a, we have
Ay <ga,hence Ay <g Ty, (a) = agp.

Part (4): Let a be an unmovable element of M and let p = lg(a). Suppose that
a € M. Let b € M; such that ab = A’l’. Then ab?b = 6Pab = QI’AII’ = AP, hence
com(a) = @b € ©. Suppose that a = 6*ay where k > 1 and ay € M,. We have
a = 0kay <g AP = @PAF hence, by Part (1), ag <g A} and k < p. Let by € M,
such that agpbg = A’l’. Then ab?*by = 6kagh?*by = OPayby = QI’AII’ = AP, hence
com(a) = 0P by € ©. So,if a € O, then com(a) € ©. Now, since com(com(a)) = a
for each unmovable element a of M, we have a € © if and only if com(a) € ©.

Part (5): Let « € Gy \ M, . Since o ¢ M, the A;-form of «v is of the form o = aAl_k
with a € My, A} £g a and k > 1. Then o = a(@A~H* = G*aA~* and 6%a is
unmovable by Part (3) of the lemma.

Part (6): Take a,b € M. We assume that a,ab € © and we turn to prove that b € ©.
We write ab = 6'c where t > 0 and ¢ € M;. On the other hand we know by Part
(4) that com(a) € ©, hence com(a) is of the form com(a) = #*ay with k > 0 and
ay € M, and therefore a~' is of the form a~!' = #fgpA~¢ = Gk_gaoAl_Z where
¢ = lg(a). So, bAf = 9 =Lgpc. If we had t + k — ¢ < 0, then we would have
QZ_t_kbAf = apc € M, hence we would have §~"~F € M,, which contradicts Part
(1). So, t +k — ¢ > 0. By Part (1) we have 7y, (0" Layc) = age, hence Ay <g apc.
Let bg € M; such that boAf = apc. Then b = 0"t*~fpy € ©. We show in the same
way that, if a,ba € O, then b € O. O

Lemma 3.4 We have PP~ c p~1,

Proof Let o, € P~!. Let @« = aA ™% and B = bA~* be the A-forms of a and 3,
respectively. Since o, 3 € P~!, we have k,¢ > 1, dpt(a) < dpt(A*) — 1 = Ck and
dpt(b) < dpt(AY) — 1 = L. Let ab = cA’ be the A-form of ab. Then the A-form
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of af is aff = cA~F=t+1 We must show that af € P71, thatis, k+¢ —1t> 1 and
dpt(c) < dpt(A*FN) — 1 = Clk+ £ —1).

Case 1: a,b € M. Thent =0 and ¢ = ab, hence k+ ¢ —t=k+ ¢ > 1 and
dpt(c) =0 < Ck+0)=C(k+ £ —1).

Case 2: a € My and b € ©. We write b = 0"by where u > 1 and by € M. By
Lemma 3.3 (3) we have dpt(b) = (u+ 1 < ¢/, hence u < £. Let abyg = coA] be the
Aj-form of aby. If v < u,then t = v and ¢ = 0“ V¢o,hence k + 0 —t > ¢ —v >
L—u>landdptic) =Cu—v)+1=Cu—Ct+1 < U -t < k+¢—1). If
v>u,thent=wuand c = Al "co € My, hence k+ ¢ —t=k+{—-u>l—u>1
and dpt(c) = 0 < ((k+ ¢ —t). The case “a € © and b € M,” can be proved in a
similar way.

Case 3: a,b € ©. We set a = 0"ay and b = 0"by, where u,v > 1 and agy, by € M; .
Since dpt(a) = Cu + 1 < Ck, we have u < k. Similarly, we have v < . Let
agby = coAY be the Aj-form of apby. If w < u+ v, then r = w and ¢ = 0"y,
hence k+/0—t > k+0—(u+v) = (k—u)+({—v) > 1 and dpt(c) = ((u+v—w)+1 =
Cu+1+v—C<Ck+¢l—Ct=Ck+¢—1). Ifw>u+v,thent=u+vand
c=coAY """ eM,hence k+{—t=k+{—u+v)=(k—-u)+C—v)>1and
dpt(c) =0 < ((k+ ¢ —1).

Case 4: either a ¢ ©, or b & ©. Since (H, G) satisfies Condition B with constant ¢,
there exists € € {0, 1} such that dpt(c) = dpt(a) + dpt(b) — (t — e. If ¢ € My, then
e=1and
0 = dpt(c) = dpt(a) +dpt(d) — (t — 1 < Ck+Cl—(t—1 < ((k+L—1).
This (strict) inequality also implies that k + ¢ —t > 1. If ¢ € My, then
1 < dpt(c) < dpt(a) +dpt(b) =t < Ck+ 0 —(t=C(k+ ¢ —1).

Again, this inequality also implies that k + ¢ — ¢ > 1. O

Lemma 3.5 We have G;P~'G;, c P~!.

Proof We take o € G| and 8 € P! and we turn to prove that a3 € P~'. The
proof of the inclusion Bav € P~! is made in a similar way. Let o = aA~* and
B = bA~¢ be the A-forms of o and /3, respectively. Since 5 € P~! we have ¢ > 1
and dpt(b) < dpt(Af)—1 = (L. Let ab = ¢ be the A-form of ab. Then the A-form
of aff is aff = cA~F=4+" We must show that k+¢—¢ > 1 and dpt(c) < ((k+£—1).

Casel: o € My and b € My. Wehave k=0, « =a,t=0and ¢ = ab € M;. Thus
k+/0—t=4£>1and 0 =dpt(c) < ((k+ ¢ —1).
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Case2: o« € My and b € ©. We have k =0, « = a and b = 0"by where v > 1 and
by € M. Wealsohave dpt(b) = (v+1 < (/,hence v < £. Let aby = coA'f bethe A -
formof aby. If u < v,thent =wuand ¢ = 6" “co,hence k+/—t=0—u>l—v>1
and dpt(c) =C(v—u)+ 1=+ 1= < - t=(k+0—1). Ifu>v,thentr=v
and c = A{ "co e My, hence k + ¢ —t=/¢—v>1and 0 =dpt(c) < ((k+{—1).

Case 3: a« € My and b € M\ ©. We have k = 0 and @ = a. On the other hand,
by Lemma 3.3 (6), we have ab € M \ ©, hence ¢ ¢ My, and therefore dpt(c) > 1.
Since (H, G)) satisfies Condition B with constant ¢, there exists ¢ € {0, 1} such that
dpt(c) = dpt(a) + dpt(b) — (t — . So,

1 <dptc) O+l —Ct=Ck+C—1).
This inequality also implies that k + ¢ —¢ > 1.

Case 4: o ¢ My and b € M;. By Lemma 3.3(5) we have k > 1 and a = 6*aq
with ap € M. Let apb = coAY be the Aj-form of apb. If u < k, then t = u and
c=6"co, hence k+ ¢ —¢t>¢>1anddpt(c) = Ctk —u)+1 < Ck—(t+ ¢l <
Ctk+ 0 —1). Ifqu,thent:kandc:coA'f_k € Mi,hence k+/¢—t=/0>1
and 0 = dpt(c) < ((k+ ¢ —1).

Case 5: oo & My and b € ©. By Lemma 3.3 (5) we have k > 1 and a = 0*a with
ayp € M. On the other hand, b is written b = 6'by with v > 1 and by € M;. Since
dpt(b) = (v +1 < (¢, we have v < £. Let aphy = coAY’ be the A;-form of agby.
If w<k+v,thent=wand ¢ = 0" "¢y, hence k+¢ —t > k+v—w > 1 and
dptic) =Ck+v—-w+1=Ck+ v+ 1 - < Ck+U—-Ct=Ck+Ll0—1). If
w>k+v,thent=k-+vand c = coA”f_k_V € M;,hence k+/¢—t=/¢—v>1 and
0=dpt(c) < ((k+¢—1).

Case 6: o ¢ My and b € M\ ©. By Lemma 3.3(5) we have k > 1 and a = 6¥qq
with ap € M;. On the other hand, by Lemma 3.3 (6), we have ab € M \ ©, hence
¢ & My, and therefore dpt(c) > 1. Since (H, G) satisfies Condition B with constant
¢ and a € O, dpt(c) = dpt(a) + dpt(b) — (t — 1. So,

1<dpt(c) <Ck+ 1+l —(t—1=(k+{—1).
This inequality also implies that k +¢ —¢ > 1. O

Lemma 3.6 We have G, N (PUP~ ) = 0.

Proof Let o € G; and let @ = aA~* be the A-form of . If « € M, then k = 0
and o = a, thus o € P!, If o & M, then, by Lemma 3.3 (5), we have k > 1 and
a = 6*ay where ag € M, hence dpt(a) = Ck + 1 = dpt(A¥), and therefore o ¢ P~!.
Since a~! € G;, we also have a~! ¢ P~! hence o ZP. D
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Lemma 3.7 We have PN P! = ().

Proof Let o € P! and let @« = aA~* be its A-form. By definition we have
k > 1 and dpt(a) < dpt(A¥) = Ck + 1. Let £ = lg(a). Then the A-form of o' is
a~! = com(a)A¥*. We are going to show that a~! ¢ P~!, that is, either k — £ > 0
or dpt(com(a)) > C({ — k) + 1.

Case l: a € M. Let b € M, such that ab = Af. We have o' = bAl_g = bo‘A—t =
6*bA~*, hence com(a) = 0°b, and therefore, dpt(com(a)) = (L +1 > ((l —k) + 1,
since k > 1. So, a~! ¢ P71,

Case 2: a € ©. We write a = 0"ayg where ay € My and u > 1. We have
dpt(a) = Cu+ 1 < Ck, hence u < k. Let t+ > 0 be the length of ap and let
by € M such that apby = A}. We have aal = boA]" = 0'bgA™", hence a ' =
0'"*by A", and therefore o' = 0" “by A", If u < t, then com(a) = 6" by and
dpt(com(a)) = C(t —u) + 1 > ((t — k) + 1, hence o~ ¢ P~'. If u > ¢, then
a”l = 97U AR = poAYTTARTITUH = po AYTIARTU and k — u > 1, hence
a~lgpt,

Case 3: a € M\ ©. Recall that acom(a) = A. Since (H, G;) satisfies Condition B
with constant ( and 1 € M|, we have 0 = dpt(1) = dpt(a) + dpt(com(a)) — (¢ — 1,

hence
dpt(com(a)) = £+ 1 —dpt(a) >l +1—Ck=((—k)+1,

and therefore o' ¢ P!, O

Lemma 3.8 We have G =PUP ' UG].

Proof We take o € G and we assume that o & (P~! U G;). We are going to show
that o € P, thatis, a~' € P~1. Let @ = aA* be the A-form of « and let ¢ be the
length of a. Then the A-form of o~ ! is com(a)A~*—¢.

Case 1: a € My. Then k > 1 because o« ¢ (P"' UG)). If a = 1, then o~ ! =
A—F e P!, So, we can assume that a # 1, and therefore ¢ > 1. Let b € M, such
that ab = Af. We have a—! = 0bA~*, hence a~! = 6*bA—** and com(a) = 0%b.
Then k + ¢ > 1 and dpt(com(a)) = (¢ + 1 < (l + Ck = ((¢ + k), hence o' € P71,

Case 2: a € ©. We write a = 0"ay where u > 1 and ay € M. Since o & P! we
have dpt(a) = (u+ 1 > ((—k) + 1, hence u > —k. We also have u # —k, otherwise
we would have o = aoAl_” € Gy. So, u > —k. Let t be the length of ap and let
by € My such that apby = A). We have a(;l = boA]', hence a ' =0""py A", and
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therefore a=! = 0" “boA~F". If u < ¢, then com(a) = 0" “by, k+1 >k +u > 1
and dpt(com(a)) = ((t —u) + 1 < C(t + k) + 1 = dpt(A™K), hence o' € P!,
If u>t, then o' = boA'f_tA_k_“, com(a) = byA{™" € My, k+u > 1, and
dpt(com(a)) = 0 < ((k + u), hence o' € P71,

Case 3: a € M\ ©. Since (H,G) satisfies Condition B with constant ¢, we have
0 = dpt(1) = dpt(a) + dpt(com(a)) — (¢ — 1. On the other hand, since Al € O, by
Lemma 3.3 (6), com(a) € ©, hence com(a) € M, and therefore dpt(com(a)) > 1.
Moreover, since o &€ P~!, we have dpt(a) > ((—k) + 1. So,

1 <dpt(com(a)) =L+ 1 —dpt(a) <L+ 1+Ck—1=({+k).

This inequality also implies that £ + k > 1. Thus, o~ € P71, O

Proof of Theorem 3.2 We have PP C P by Lemma 3.4, we have G|PG; C P by
Lemma 3.5, and we have the disjoint union G = PLIP~! UG by Lemma 3.6, Lemma
3.7 and Lemma 3.8. O

4 Artin groups of type A

In this section we assume that G and M are the Artin group and the Artin monoid of
type A,, respectively, where n > 2. Recall that G is defined by the presentation

G = (s1,...,8, | sisjs; = sjsisj for |i — j| = 1, ;57 = sj5; for |i —j| > 2),

and that M is the submonoid of G generated by s;,s>,...,s,. Recall also that
G is the braid group B,4+; on n + 1 strands and M is the positive braid monoid
B:{ 1. By Brieskorn—Saito [1] and Deligne [10], (G, M, ?) is a Garside structure,
where Q = (s;---s,) - (s15253)(s152)s1. The element ) is not central in G but
A = Q% = (s1---5,)""! is central and, by Dehornoy [5], (G, M, A) is also a Garside

structure on G. The latter is the Garside structure that we consider in this section.

We denote by G (resp. M) the subgroup of G (resp. the submonoid of M) generated
by s2,...,s, and we set A; = (s ---s,)". Then (G, M, A) is a parabolic substruc-
ture of (G, M, A) and A is central in G;. On the other hand, we denote by H (resp.
N) the subgroup of G (resp. the submonoid of M) generated by s;,...,s,—1 and
we set A = (s1---5,-1)". Again, (H,N, A) is a parabolic substructure of (G, M, A).
Observe that M; U N generates M.

The purpose of this section is to prove the following.
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Theorem 4.1 The pair (H, G) satisfies Condition A with constant ( = 1 and Con-
dition B with constant ( = 1.

By applying Theorem 3.2 we deduce the following.
Corollary 4.2 The pair (H, G) is a Dehornoy structure.

For 1 < i < n—1weset G = (Sit1,..-,80)0, Mi = (siz1,...,8)", A; =
(Sig1 -+ s 1= and H; = (Siy...,Sp—1). By iterating Corollary 4.2 and applying
Proposition 3.1 we get the following.

Corollary 4.3 (1) Foreach 1 <i < n—1 the pair (H;, G;) is a Dehornoy structure
on (Gi—lyMi—la Ai—l)a where (G07M07 A0) = (G7 M7 A)

(2) Foreach 1 <i < n—1 we denote by P; the set of (H;, G;)-positive elements
of G;_1. Furthermore we set P, = {s* | k > 1}. Foreach ¢ = (¢1,...,¢,) €
{£1}" the set P© = P{' Ul --- LIPS is the positive cone for a left-order on G.

Before proving Theorem 4.1 we show that the orders on G given in Corollary 4.3 (2)
coincide with those obtained using Theorem 1.1. More precisely we prove the follow-
ing.

Proposition 4.4 The set P = Py g, of (H,Gy)-positive elements is equal to the set
of s -positive elements of G = B, .

Proof Let P’ denote the set of s;-positive elements of G. We know by Dehornoy [4]
that we have the disjoint union G = P’ LI P'~! LI G,. We also know by Corollary 4.2
that PP C P, G\PG, C P and G = PP~ ' UGj. Let a € P'. By definition « is
written o = agsya - - - sy, where p > 1 and g, o, ..., ), € Gi. The A-form of
s1is 51 = 51 A%, hence s; does not lie in P~!'. The element s, does not lie in G| either,
hence sy lies in P. Since PP C P and G{PG; C P we deduce that « lies in P. So,
P’ C P and therefore P'~! ¢ P~!. Since we have disjoint unions G = P LI P~ LI G,
and G = P’ U P~ UG, we conclude that P = P’ and P~! = P'~1. O

The rest of the section is dedicated to the proof of Theorem 4.1. We recall once for all
the expressions of A and 6 over the standard generators.

| 2 2 2
A= (s1s2 - 80)" T = (51 Sum1SpSu—1 51 (Su—1S7Sn—1)Sh 5

2
O =51 Syu_1S,5n—1"""51-
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Proposition 4.5 The pair (H, G) satisfies Condition A with constant { = 1.

Proof Let k > 1. Then, by Dehornoy [6], bh(A¥) = bh(Q%*) = 2k + 2, hence
dpt(AF) =k + 1. m]

It remains to show that (H, G) satisfies Condition B with constant ( = 1 (see Propo-
sition 4.12). This is the goal of the rest of the section.

An (N, My)-expression of length p of an element a € M is defined to be an expression
of a of the form a = a, - - - aa; with a; € N if i is even and a; € M, if i is odd.

Lemma 4.6 (Dehornoy [6], Burckel [2]) Leta € M and let a = a, - - -a>a; be an
(N, My)-expression of a. Then p > bh(a).

Let a € M. Choose an expression a = s;, ---s;,5; of a over S and set rev(a) =
8i\Si, - - - 8i, . Since the relations that define M are symmetric, the definition of rev(a)
does not depend on the choice of the expression of a. It is easily checked that
rev(€)) = Q, rev(A) = A and rev(f) = 6. Moreover, rev(a) € M for all a € M, and
rev(a) € N forall a € N.

Lemma 4.7 Leta € M. Then dpt(rev(a)) = dpt(a).

Proof Let a = a,---ara; be the alternating form of a. If p is even, then rev(a) =
rev(aj)rev(as) - - -rev(ay) 1 is a (N, My)-expression of rev(a) hence, by Lemma 4.6,
p+1 > bh(rev(a)), and therefore dpt(a) = g > dpt(rev(a)). If p is odd, then rev(a) =
rev(ar)rev(as) - - -rev(a,) is a (N, Mj)-expression of rev(a) hence, by Lemma 4.6,
p > bh(rev(a)), and therefore dpt(a) = [%1 > dpt(rev(a)). So, dpt(a) > dpt(rev(a))
in both cases. Since rev(rev(a)) = a, we also have dpt(rev(a)) > dpt(a), hence
dpt(rev(a)) = dpt(a). D

Lemma4.8 Leta € M\ M; and k > 1. Then dpt(af*) = dpt(a) + k.

Proof Leta € M\M,. Itsuffices to show that bh(af) = bh(a)+2. Leta = a, - - - ara,
be the alternating form of a. Note that, since a ¢ M, wehave p > 2. Note also that, by
Lemma 3.3 (1), we have a10 = 6a;. Then af = a, - - - azaxfa; = a, - - - a3bsbsbray,
where by = aysy € N, by = 57 - --sn_lsﬁ € M, and by = 5,1 ---sp51 € N. We turn
to show that afl = aj, - - - axbsb3bya; is the alternating form of afl. This will prove the
lemma.



16 D Arcis and L Paris

Let x = 7y, (ay - - - azbab3by) = Ty, (ap - - - azazf). We know by Lemma 3.3 (1) that
xVg 0 = 0x = x0, hence x < a, - - - ay, and therefore x = 1, since 7y, (a, - - - az3az) =
1. We have a,---a3bsby = ap---agazslsz---sn_ls%. It is easily checked that
(51 Sn_152) VR 8; = Sip1(s1---S,_152) forall i € {1,...,n — 1}. Thus, if there
exists i € {1,...,n—1} suchthats; <g a, - --azbsbs, then there exists j € {2,...,n}
such that s; <g a,---asay. But, since 7y, (a,---aza;) = 1, such a j does not
exist, hence such an i does not exist either, hence 7y(q, - - - a3bsbz) = 1. We have
ay---azby = a,---azazs;. We have s; Vg s; = s;51 for all i € {3,...,n}, and
s1Vrsy = s15281. Thus, fori € {2,...,n},ifs; <g a,---azbs,thens; <g a,---azay.
Since such an i does not exist, we have 7y, (a, - - - azbs) = 1. This finishes the proof
that a, - - - azbsbszbra; is the alternating form of af since a, - - - a3 is an alternating
form and 7y(a, -+ - a3) = 1. D

Lemmad4.9 (1) Leta € My and b € M \ M;. Then dpt(ab) = dpt(ba) = dpt(b).
(2) Leta€ © and b € M\ M. Then dpt(ab) = dpt(ba) = dpt(a) + dpt(b) — 1.

Proof Let a € My and b € M \ M;. We obviously have bh(ba) = bh(b), hence
dpt(ba) = dpt(b). On the other hand, since rev(a) € M;, By Lemma 4.7 we have
dpt(ab) = dpt(rev(ab)) = dpt(rev(b) rev(a)) = dpt(rev(b)) = dpt(b).

Leta€ © and b € M\ M;. Write a = 0%ay with ag € M, and k > 1. By the above
and Proposition 4.5 we have dpt(a) = dpt(Hk) = dpt(Ak) = k+ 1. Then, by the above
and Lemma 4.8, dpt(ba) = dpt(b6*) = dpt(b) + k = dpt(a) + dpt(b) — 1. On the
other hand, since rev(a) € ©, we have dpt(ab) = dpt(rev(ab)) = dpt(rev(b) rev(a)) =
dpt(rev(a)) + dpt(rev(b)) — 1 = dpt(a) + dpt(b) — 1. O

Lemma4.10 Leta € M andk > 0. IfaA=* € G| then a € ©.

Proof Let aA™* = ayA[" be the A;-form of aA~. We have a = apA['A* =
HkaoA]f_’. If kK > t then we clearly have a € ©. Suppose that k < ¢. Then
aAtl_k = 0*ay, hence Atl_k <gr Tm,(0%ap). By Lemma 3.3 (1) we have 7y, (0¥ ag) = ao,
hence Atl_k <g ag. Let by € M; such that ag = boA’I_k. Then a = 6*by € B. ]

Lemma 4.11 Let a,b € M\ M, ¢ € M, and k > 0 such that ab = c¢AF and
dpt(a) + dpt(b) = k+ 2. Then (a,b) € (O x O).

Proof Let p = dpt(a) and g = dpt(b). Note that, since a,b ¢ M, we have p,g > 1.
We have bh(a) > 2p, hence bh(a) — 1 > 2p — 2, and therefore, by Theorem 2.5,
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QO=2+2g = aA~PT! either lies in G or is sy -positive. Similarly, bA~4*! either lies
in Gy oris sy -positive. If either aA7PT! was s -positive or bA~IT! was s -positive,
then ¢ = abA™* = (aA=P+T1)(bA~9T") would be s -positive. Since ¢ € M, ¢ cannot
be s;-positive, hence both aA~*+! and bA~*! lie in G;. We conclude by Lemma
4.10 that a, b € O, hence a,b € O since we assumed that a,b & M. O

Now we are ready to prove the second part of Theorem 4.1.

Proposition 4.12 The pair (H, G1) satisfies Condition B with constant ( = 1.

Proof We take (a,b) € (M x M) \ (© x ©) such that ¢ and b are unmovable. We
must show that (a,b) satisfies Condition B with constant ( = 1. Let ab = cA’
be the A-form of ab. So, we must show that there exists ¢ € {0,1} such that
dpt(c) = dpt(a) + dpt(b) —t —e,and € = 1 ifeither a € ©,0r b € O, 0r ¢c € M;.

Case 1: a € My and b € M\ ©. By Lemma 3.3(6) we have ab ¢ ©, hence
¢ € M. Then, by Lemma 4.9, dpt(a) + dpt(b) = dpt(b) = dpt(ab) = dpt(c)+ ¢, hence
dpt(c) = dpt(a) + dpt(b) —t — 0. The case a € M \ © and b € M, is proved in a
similar way.

Case 2: a € © and b € M\(:). We write a = 0Fag where k > 1 and ay € M.
Again, by Lemma 3.3 (6) we have ab ¢ ©, hence ¢ ¢ M;. Then, by Lemma 4.9,
dpt(a) + dpt(b) — 1 = dpt(ab) = dpt(c) + ¢, hence dpt(c) = dpt(a) + dpt(b) — ¢ — 1.
The case a € M \ © and b € O is proved in a similar way.

Case 3: a,b € M\ ©. Set p = dpt(a) and ¢ = dpt(b). We have bh(a) € {2p,2p + 1}
hence, by Theorem 2.5, Q~?%q is s;-negative and Q~%*2q either lies in Gy or is
s1-positive. Similarly, Q729b is s;-negative and Q~2972p either lies in G; or is
s1-positive. So, Q=2 2gp is s1-negative and O~ =20+4g) either lies in G, or
is sy-positive. By Theorem 2.5 it follows that bh(ab) — 1 < 2p + 2q and 2p +
2g — 4 < bh(ab) — 1, hence 2p + 2q — 2 < bh(ab) < 2p + 2q + 1, and therefore
p+q—1 < dptab) < p+ q. So, there exists ¢ € {0, 1} such that dpt(ab) =
p+ q — e = dpt(a) + dpt(b) — €.

Suppose that ¢ ¢ M;. By Lemma 4.9 (2), dpt(c) + ¢t = dpt(c) + dpt(A") — 1 =
dpt(cA") = dpt(ab) = dpt(a) + dpt(b) — &, hence dpt(c) = dpt(a) + dpt(b) — t — €.
Suppose that ¢ € M. By Lemma 4.9 (1), dpt(a) + dpt(b) — ¢ = dpt(ab) = dpt(cA") =
dpt(A’") = t + 1, hence dpt(a) + dpt(b) = t + 1 +¢. Since a,b ¢ © Lemma 4.11
implies that ¢ = 0. So, dpt(c) = 0 = dpt(a) 4+ dpt(b) — ¢t — 1. O
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S Artin groups of dihedral type, the even case

Let m > 4 be an integer. Recall that the Artin group of type I(m) is the group
G = Ap,(m) defined by the presentation G = (s, 7 | II(s, ,m) = II(t,s,m)). Let M be
the submonoid of G generated by {s,¢} and let 2 = TI(s, 7, m). Then, by Brieskorn—
Saito [1] and Deligne [10], the triple (G, M, () is a Garside structure on G. If m is
even then A = Q is central. However, if m is odd then ) is not central but A = Q2
is central. In both cases, by Dehornoy [5], the triple (G, M, A) is a Garside structure
on G. In this section we study the case where m is even and in the next one we will
study the case where m is odd. So, from now until the end of the section we assume
that m = 2k is even and A = Il(s,t,m) = (st = (ts)k.

Remark By setting A = 2 in the even case as in the odd case we could state global
results valid for all m > 4, but it would be still necessary to differentiate the even case
from the odd case in the proofs, and this would lengthen the proofs for the even case.

We denote by G; (resp. M) the subgroup of G (resp. submonoid of M) generated by
t,and by H (resp. N) the subgroup of G (resp. submonoid of M) generated by s. We
set A; =t and A = s. By Brieskorn-Saito [1] the triples (G, M, A;) and (H,N, A)
are parabolic substructures of (G, M, A). On the other hand it is obvious that M; U N
generates M. The main result of the present section is the following.

Theorem 5.1 The pair (H,G,) satisfies Condition A with constant ( = k — 1 and
Condition B with constant { =k — 1.

By Theorem 3.2 this implies the following.
Corollary 5.2 The pair (H, G) is a Dehornoy structure on G.

We denote by P; the set of (H, G)-positive elements of G and we set P, = {7 | n >
1}. For each € = (1, €2) € {£1}* we set P° = P{' U P5>. Then, by Proposition 3.1,
we have the following.

Corollary 5.3 The set P¢ is the positive cone for a left-order on G.

In this section we denote by ry,..., 1 the standard generators of the braid group
By on 2k = m strands. By Crisp [3] we have an embedding ¢ : G — By, which sends
s to Hf:_ol ri+1 and sends 7 to Hf:_ll ry;. In the second part of the section we will show
that the orders obtained from Corollary 5.3 can be deduced from ¢ together with the
Dehornoy order. More precisely, we show the following.
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Proposition 5.4 Let « € G. Then « is (H,Gy)-negative if and only if «(a) is
ry -negative.

The proof of Theorem 5.1 is based on the following observation whose proof is left to
the reader.

Lemma 5.5 Let a be an unmovable element of M. Then a is uniquely written in the
form a = 5" - - - 15110 with ug,up >0, uy,...,u,—1 > 1andvy,...,v, > 1. In
this case dpt(a) = p.

The first part of Theorem 5.1 is a straightforward consequence of this lemma.

Proposition 5.6 The pair (H, Gy) satisties Condition A with constant { =k — 1.

Proof Let p > 1 be an integer. We have 6 = s(s)*~!, hence 67 = (s(ts)*~')’. By
Lemma 5.5 it follows that dpt(6”) = p(k — 1) 4+ 1, hence dpt(AP) = dpt(P#’) =
dpt(6P) = ptk — 1) + 1. O

If a € M\ {1} is written as in Lemma 5.5 we set o(a) = 1 if u, # 0 and o(a) = s if
up, = 0. Similarly we set 7(a) =t if ug # 0 and 7(a) = s if up = 0. In other words
o(a) is the first letter of a and 7(a) is the last one. The following is a straightforward
consequence of Lemma 5.5.

Lemma5.7 (1) Leta,b be two unmovable elements of M such that ab is unmov-
able. Then

dpt(ab) = {

(2) Leta,b € M such that ab = A. Then dpt(a) + dpt(b) = dpt(A) = k.

dpt(a) +dpt(b) — 1 ifa# 1, b# 1 and 1(a) = o(b) = s,
dpt(a) + dpt(b) otherwise .

Now we can prove the second part of Theorem 5.1.

Proposition 5.8 The pair (H, G) satisties Condition B with constant ( =k — 1.

Proof We take two unmovable elements a,b € M such that (a,b) € © x © and we
denote by ab = cA? the A-form of ab. We must show that there exists ¢ € {0, 1}
such that dpt(c) = dpt(a) + dpt(b) — p(k — 1) — € and that ¢ = 1 if either a € O, or
bec©,orcec M. Wewrite a = a,41a,---aj and b = by ---byb,; so that:

o a;#1,b;# 1and qib; = Aforallie {l,...,p};
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° ap+1bp+1 =C;

o Wesetx; = 7(a;), x; = o(a;), yi = o(by), y; = 7(by) forall i € {1,...,p+1}.
Then x; = x;4 forall i € {1,...,p — 1}.

We denote by ¢ : M — M the isomorphism that sends s to ¢ and ¢ to s. Since
ab; = A, we have y; = p(x;) and y; = @(x}) for all i € {1,...,p}. In particular,
yi = o)) = pxip1) = yipq forall i € {1,...,p —1}.

Let u = [{i € {1,...,p} | x; = s}|. By Lemma 5.7, dpt(a) = dpt(a,+) +
ledpt(a,-) — u + g4, where ¢, is as follows. If p > 1 and a,1; # 1, then:

Ea = 0 if (x;wxp-i-l) € {(S,S),(Z,S),(t, t)} and €a = 1if (x;rxp—l-l) = (S, t)- pr >1

and @, = 1, then: ¢, = 0if x, =rand ¢, = 1 if x, = 5. If p = 0, then ¢, = 0.

Letv = |{i € {l,...,p} | ¥i = s}|. As for a, by applying Lemma 5.7 we obtain
dpt(b) = dpt(b,11) + 211'7:1 dpt(b;) — v + &, where ¢, is as follows. If p > 1
and b, # 1, then: ¢, = 0 if (yj/,,yp+1) € {(s,9),(,s),(,n} and g, = 1 if
O Ypr1) = (s,0). I p > 1 and byyy = 1, then: g, = 0 if y, =t and g, = 1 if
y, =s.If p=0, then ¢, = 0.

By applying again Lemma 5.7 we obtain dpt(c) = dpt(a,+1) + dpt(bp41) + €. where
gc is as follows. If a,11 # 1 and b, # 1, then: . = —1 if (xpq1,Yp41) = (5,5)
and e, = 0 if (Xp41,¥p+1) € {(s,0),(t,5),(t,0)}. If either a1 =1 or b,y = 1, then
e. = 0.

Finally, by Lemma 5.7 (2), we have Z’i’zl (dpt(a;) + dpt(b;)) = pk. On the other hand,
since y; = @(x}) forall i € {1,...,p}, we have u + v = p.

Set € = ¢,+¢, —e.. By the above we have dpt(c) = dpt(a)+dpt(b) —p(k— 1) — e and
¢ isas follows. If p > 1, a,1 # 1 and b, # 1, then: ¢ = 0 if (xj’,,xp+1,yp+1) €
{(s,s,1),(t,t,5)} and € = 1 otherwise. If p > 1, apy1 # 1 and b,y = 1, then:
e=0if (x;,,po) = (s,s) and € = 1 otherwise. If p > 1, a,41 = 1 and b, # 1,
then: ¢ = 0 if (x;,,ypH) = (t,5) and € = 1 otherwise. If p > 1, apy1 = 1
and bpy1 = 1, then e = 1. If p =0, a # 1 and b # 1, then: ¢ = 0 if
(X1, Yp+1) € {(s,0),(t,5),(t,1)} and € = 1 otherwise. If p = 0 and either a = 1 or
b=1,then € = 0.

Suppose that a € ©. Then a is written a = 69 with ¢ > 1. Set b = "D’ where b’ # 1
(since b ¢ ©)and o(b') =s. f r=0,thenp=0,a=609+#1,b="> # 1 and
(Xp+1,Yp+1) = (5,8),hence e = 1. If 0 <r < g,thenr =p >0, a,41 =097 # 1,
bpr1 =b"# Land (x,, x,41,Yp11) = (5,5,5), hence ¢ = 1. If r = g, then r = p = q,
apr1 =1, bpp1 =0 # L and (x,,yp+1) = (s,5), hence ¢ = 1. If r > g, then p = q,
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apt1 = 1, bpy1 = 17790 and (xl',,yp+1) = (s,1), hence ¢ = 1. The case b € O is
proved in the same way.

Suppose that ¢ € M;. Then p > 1, since (a,b) € (© x ©). If apr1 # land by # 1,
then (X,41,yp+1) = (t,1), hence € = 1. If a,1 # 1 and b, = 1, then x,1 = ¢,
hence e = 1. If g4y = 1 and b, # 1, then y,4 | =t hence e = 1. If a1 =1
and b, = 1,then e = 1. O

We turn now to the proof of Proposition 5.4. We denote by G| (resp M/ ) the subgroup of
By (resp. the submonoid of B;%) generated by 79, ..., o1 and we denote by H' (resp.
N') the subgroup of By (resp. the submonoid of B;;() genetared by 7y, ..., rx—>. Note
that «(f) € G, hence «(G|) C G}. We denote by Qp = (riry---ry—1)--- (rir)r
the standard Garside element of By, and by ® : By — B, a — Qpafy!, the
conjugation by Q. Recall that ®(r;) = ry—; for all i € {1,...,2k — 1}. So,
®(G)) =H' and ®(H') = G.

Lemma 5.9 Let a be an unmovable element of M such that dpt(a) < k — 1. Then
there exist by € M| and b, € N’ such that «(a) = bb;.

Proof Let p = dpt(a). By Lemma 5.5, a can be written a = “0s"1¢*1 - . . s"*» where
ug,up > 0, uy,...,up—y > 1 and vy,...,v, > 1. We show by induction on p that
there exist by € M| and by € (ry,...,ry)" such that «(a) = b1b,. Since p < k — 1
this proves the lemma. The case p = 0 is obvious because «(f) € M. We assume that
1 < p < k— 1 and that the inductive hypothesis holds. Set a’ = 05”1141 ... g% —1f-1
By induction there exist b| € M} and b} € (ry,...,r—2)" such that «(a') = b} D).
Note that b’2 commutes with r; for all i > 2p. So,

k—1 k—1 k—1 p—1 k—1
o (H ) (Hr;;f) 5, (H ) b (H ) (H ) _

i=0 i=1 i=p i=0 i=1
k—1 k—1 p—1 P
/ Vp Up / Vp 2
b} Hr2i+1 H i | b2 H”zi+1 HrZi =biby,
i=p i=p+1 i=0 i=1
where
k—1 k—1
— 1 Vp Up /
by = b H”zi+1 H ri | €My,
i=p i=p+1

p—1 P
_ 1/ Vp Up +
by = by Hr2i+l ral | €ty rp)
i=0 i=1
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Proof of Proposition 5.4 We denote by P the set of (H, G;)-positive elements of
G and by P’ the set of ry-positive elements of B;. By Corollary 5.2 we have the
disjoint union G = P U P~! LU G| and by Dehornoy [4] we have the disjoint union
B = P'UP'~' U G]. It suffices to show that «(P~!) C P'~!. Indeed, suppose that
uP~" c P~ Since v is a homomorphism we also have «(P) C P’. Since we also
know that «(G{) C G, from the disjoint unions given above follows that o € P~! if
and only if «(a) € P71,

Let o be an element of P~'. Let o = aA™ be the A-form of «. By definition we
have p > 1 and dpt(a) < p(k — 1). Suppose first that p = 1 and dpt(a) < k — 1. By
Lemma 5.9 there exist by € M| and b, € N’ such that «(a) = b;b,. Moreover, by
Crisp [3], «(A) = Qp. Thus () = b1by Q5" = b1Q5' ®(by). Since by, D(by) € M|
and le e P'~1, it follows that (o) € P'7 1.

Now we consider the general case where p > 1 and dpt(a) < p(k — 1). It is easily
deduced from Lemma 5.5 that a can be written a = ajas---a, where a; is an
unmovable element of M such that dpt(a;,) < k—1 forall i € {1,...,p}. Note that g;
may be equal to 1 in the above expression. We have a = (a; A~ (@ A7) - - (apA_l)
and, by the above, t(a;A~1) € P/~! forall i € {1,...,p}, hence (o) € P'~L. O

6 Artin groups of dihedral type, the odd case

Let m = 2k + 1 > 5 be an odd integer and let G = Apm = (s,¢ | (s, t,m) =
I1(¢, s,m)) be the Artin group of type I>(m). Let M be the submonoid of G generated
by {s,¢} and let Q = II(s, ¢, m) = (st)'s = (ts)*¢. Recall that, by Brieskorn—Saito [1]
and Deligne [10], the triple (G, M, 2) is a Garside structure on G. As pointed out in
Section 5, € is not central but A = Q? is, and, by Dehornoy [5], (G, M, A) is also a
Garside structure on G. This is the Garside structure on G that will be considered in
the present section.

We denote by G (resp. M;) the subgroup of G (resp. submonoid of M) generated
by ¢, and by H (resp. N) the subgroup of G (resp. submonoid of M) generated by
s. Set A; = > and A = s?. Then, by Brieskorn—Saito [1], the triples (G1, My, A;)
and (H,N, A) are parabolic substructures of (G, M, A). Moreover, M; U N obviously
generates M. The main result of this section is the following.

Theorem 6.1 The pair (H, G) satisfies Condition A with constant ( = 2k — 1 and
Condition B with constant ( = 2k — 1.
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By Theorem 3.2 this implies the following.
Corollary 6.2 The pair (H, G) is a Dehornoy structure on G.

We denote by P; the set of (H, G)-positive elements of G and we set P, = {7"* | n >
1}. For each € = (€1, €2) € {£1}* we set P° = P{' U P3>. Then by Proposition 3.1
we have the following.

Corollary 6.3 The set P¢ is the positive cone for a left-order on G.

Let ry,...,ry be the standard generators of the braid group Byry; on m = 2k + 1
strands. Again, by Crisp [3], we have an embedding ¢ : G — B4+ which sends s to
H;:ol riy1 and ¢ to Hf‘: 1 2i. The proof of the following is substantially the same as
the proof of Proposition 5.4, hence it is left to the reader.

Proposition 6.4 Let « € G. Then « is (H,G))-negative if and only if t(c) is
ry -negative.

We start now the proof of Theorem 6.1. We say that an element a € M is §2-unmovable
if 0 £; a or, equivalently, if €2 Lg a. The following is an observation.

Lemma 6.5 (1) Let a be an §2-unmovable element of M. Then a is uniquely
written in the form a = t*rs' - - - 15110, where ug,u, > 0, uy,...,up—1 > 1
and vy,...,v, > 1. In this case we have dpt(a) = p.
(2) Let a be an unmovable element of M. Then a is uniquely written in the form
a = d'Q° where d' is 2-unmovable and ¢ € {0, 1}.

The first part of Theorem 6.1 is a direct consequence of this lemma.

Proposition 6.6 The pair (H, G) satisfies Condition A with constant { = 2k — 1.

Proof Let p > 1 be an integer. We have 6 = (s1)*(zs)*, hence 67 = ((st)*(ts)X)’. By
Lemma 6.5 (1) it follows that dpt(6”) = p(2k — 1) + 1, hence dpt(A?) = dpt(dP1?) =
dpt(0”) = pQRk — 1)+ 1. O

The second part of Theorem 6.1 will be much more difficult to prove. Let a € M \ {1}
be an 2-unmovable element that we write as in Lemma 6.5 (1). Then we set o(a) = ¢
if u, # 0 and o(a) = s if u, = 0. Similarly, we set 7(a) =t if ug # 1 and 7(a) = s
if ug = 0. In other words, o(a) is the first letter of a and 7(a) is its last one. On the
other hand, we denote by ¢ : G — G the automorphism which sends s to ¢ and ¢ to
s. Note that ¢ is the conjugation by Q, that is, p(a) = QaQ~! for all & € G. The
following is again a direct consequence of Lemma 6.5.
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Lemma 6.7 (1) Leta,b € M such that ab is €)-unmovable. Then

dpt(a) + dpt(b) — 1 ifa#1, b# 1, and1(a) = o(b) = s,

dpt(ab) = { dpt(a) + dpt(b) otherwise .

(2) Leta,b € M\ {1} such that ab = ). Then

k+1 ifo(a)=s,

dpt(a) + dpt(b) = { k ifo(a) =t.

(3) Let ¢ be an §)-unmovable element of M. Then

dpt(c)+1 ifc#1lando(c) =71(c)=t,
dpt(p(c)) = ¢ dpt(c) — 1 ifc# 1ando(c) = 7(c) = s,
dpt(c) otherwise .

(4) Let ¢ be an ) -unmovable element of M. Then

dpt(c) +k—1 ifc# 1 and7(c) =5,

dpt(cQ)) = { dpt(c) + k otherwise .

(5) Leta,b € M\ {1} such that a p(b) = Q). Then

| k+1 ifT(@) =+,
dpt(a) -+ dpt(b) = { ko ifr@=1.
Lemma 6.8 Let a;,ay, b, b, be four non-trivial {)-unmovable elements of M such
that o(a;) = 7(az), 7(b1) = o(by), atby = Q and a; p(by) = Q. Setu = |{i €
{1,2} | o(a;) = s}| and v = |{i € {1,2} | 7(b;) = s}|. Then dpt(a;) + dpt(az) +
dpt(by) + dpt(br) =2k — 1 +u+v.

Proof If o(a;) = s and o(ay) = s, then 7(ay) = s, 7(by) = s and 7(by) = t,
hence u = 2, v = 1 and, by Lemma 6.7, dpt(a;) + dpt(az) + dpt(by) + dpt(by) =
2k+2=2k—14u+v. If 6(a;) = s and o(ay) = t, then 7(ay) = s, 7(by) = s
and 7(bp) = s, hence u = 1, v = 2 and, by Lemma 6.7, dpt(a;) + dpt(az) +
dpt(b)) + dpt(by) = 2k+2 =2k — 14+ u+v. If o(a;) = t and o(ay) = s, then
T(ap) = t, 7(by) = t and 7(by) = ¢, hence u = 1, v = 0 and, by Lemma 6.7,
dpt(a;) + dpt(az) + dpt(by) + dpt(by) = 2k = 2k — 1 +u+v. If o(a;) = t and
o(ap) = t, then 7(ap) = t, 7(by) = t and 7(by) = s, hence u = 0, v = 1 and, by
Lemma 6.7, dpt(a;) + dpt(ay) + dpt(by) + dpt(by) = 2k =2k — 1 +u + v. O

Lemma 6.9 Let a,b be two ()-unmovable elements in M. We assume that the
A -form of ab is in the form ab = ¢AP where c is {2-unmovable.
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(1) Suppose that (a,b) ¢ (© x ©). There exists ¢ € {0,1} such that dpt(c) =
dpt(a) + dpt(b) — p(2k — 1) — €. Moreover, € = 1 if either a € © or b € © or
ceM,.

(2) Suppose that (a), (b)) & (O x ©). The exists € € {0, 1} such that dpt(c§2) =

dpt(af?) + dpt(e(b)) — p(2k — 1) — . Moreover, ¢ = 1 if either af) € © or
pb) € O.

(3) Suppose that (a,bQ?) ¢ (© x O). There exists € € {0, 1} such that dpt(c§)) =
dpt(a) + dpt(b2) — p(2k — 1) — €. Moreover, ¢ = 1 ifeither a € © or bS) € ©.

(4) Suppose that (a9, p(b)Q) & (© x ©). There exists € € {0,1} such that

dpt(c) = dpt(af2) + dpt(p(b) Q) — (p+ 1)(2k — 1) — . Moreover, € = 1 if either
a2 € © or p(b)Q € O orc € M.

Proof We write a and b in the form a = ay,41a2, - - - aca; and b = b1by - - - bypbop iy
so that:

o a; £ 1,b; # 1, aib; = Q if i is odd, and a; p(b;) = Q if i is even, for all
ie{l,...,2p};
o ¢ =aytibyir;
o Setx; = 7(a), X} = o(a;), yi = o(by), ¥i = 7(b;), forall i € {1,...,2p + 1}.
Then x;+1 = x} forall i € {1,...,2p — 1}.
We have y; = @(x;) and y; = x} if i is odd, and y; = x; and y: = p(x}) if i is even, for
all i € {1,...,2p}. Thus, if i is odd, then y;11 = x;11 = x} = y!, and if i is even,
then yiy1 = w(xip1) = @) = yi, fori € {1,...,2p — 1}.

Letu=|{i € {l,...,2p} | x, = s}|. By using Lemma 6.7 we show successively the
following equalities.

dpt(a) = dpt(azp1) + 77 dpt(a) — u+ €14,
dpt(af?) = dpt(as,+1) + Zizil dpt(a;)) —u+k+erq,

where €1, and e, , are as follows. If p > 1 and ay,11 # 1, then:

0 if (xy,, xop41) € {(5,9),(,9), (#, D},

1 if (4, Xop41) = (5,0),

=1 if (v, X, X2p11) € {(5,5,9), (5,1,9), (5,2,D)}
e2a=4¢ 0 if (xl,x’zp,xsz) € {(s,s,0),(t,s,5),(t,1,5),(t,1,0)},
1 if (X17x/2p7.x2p+1) = (t,5,1).

Ela =
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If p>1 and ay,41 = 1, then:

0 ifxlzp = t, 1 (x17'x/2p) (Su )7
€la = 1 ifx —s E2a = 0 if (xl,xzp) € {(57 s), (t, t)},
2p ) 1 if (xl,xlzp) =(,5).

If p=0and a # 1, then:

1 ifx =5

p+1 3
&1 =0 E2a — .
,a I ,a 0 le2p+1:[

Ifp=0anda=1,thene|, =ey,=0.

Let v =1|{i € {1,...,2p} | y} = s}|. Similarly, by using Lemma 6.7 we prove
successively the following equalities.

dpt(b) = dpt(bap1) + 377, dpt(hy) — v + €1,
dpt(p(b)) = dpt(bay11) + 377, dpt(hy) — v + €25,
dpt(h2) = dpt(byy+1) + 2?221 dpt(b;) — v+ k+e3p,
dpt(p(h) Q) = dpt(bap11) + Y7, dpt(bi) — v+ k + 4,

where €15, €2, €3 and €4, are as follows. If p > 1 and by, # 1, then:

. { 0 if 0y yape) € {(5,9).2,9).2,0)}
’ 1 if (), y2p1) = (5,1)
—1 if (yl,y/zp,yszrl,y’sz) € {(s,s,5,5),(s,1,5,5),(s,t,1,5)},
0 if (yl,yép,yszrl,y’sz) € {(s,8,5,0),(s,5,1,9),(s,1,5,1),
(s,1,8,0),(,8,s5,5),(t,1,5,5), (t,1,1,8)},
if (V15 Y5, Yop1, Yaps1) € {05, 8, 8,0, (,5,5,0), (1, 5,1, 5),
(t,1,8,0),(t, 1,t,0)},
2 Q1Y Y1 Vap ) = (5,11,
=1 if 0V, y2p1, Y0, 41) € {(s,5,9), (8, 5,5), (1,1,9)},
e3p =14 0 i Oh 21, Y50 1) € {(5,5,0),(5,1,9),(t,5,0), (1, 1,)}
L i (37 yopt 15 V1) = (5, 1,1),
=1 i 1,0, Y1) € {(5,5,9), (5,1,9), (5, 1,0},
eap =19 0 if QLYY Y1) € {(s,5,0),(,5,9), (1,1,9),t, 1, D},
L if O, y2p+1) = (85,1)

€26 =19
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If p>1 and by, = 1, then:

0 ify, =1, 0 ify, =y,
€l1p = . yzzp €2p = ; %
1 1fy2p:s, 1 ify, =1,

-1 if(ylaylzp):(svt)v
e35 =0, eap =19 0 if(1,55,) € {(s,9), 1,0},
1 if (ylvy/ZP) = (ta S) .

If p=0and b # 1, then:
=1 if (y2p+l7y,2p+1) = (S, S)7

61,}7 = 07 62,}7 = 0 lf (YZp+17y/2p+1) € {(Sa t)7(t7 S)}?
1 if (y2p+l7y,2p+1) = (t7 t))

€3p = ! %fyiz”“ Y = { —1 iy =,
0 1fy2er1 =1, 0 ifyy41=t.
Ifp=0andb=1,theney, =¢e2) =e3) =45 =0.

Again, by applying Lemma 6.7 we prove successively the following equalities.

dpt(c) = dpt(azp+1) + dpt(bopi1) + €1c
dpt(cQ?) = dpt(azy41) + dpt(bopi1) +k + e,

where € . and e, . are as follows. If ay,1 # 1 and by, # 1, then:

- { -1 %f (2p+15Y2p+1) = (8,9)
’ 0 if Geopt1,¥2p+1) € {(5,0), (1,5), (1, D},
=2 if (opt1, Y2pt 15 Y1) = (5,5,5)
€20=19 —1 if Qopr1,y2pt1, V0 1) € {0555,0,(5,1,9), (1,5, 9), (1,1,9)}
0 if Geap1, Yops15Ype) € {05, 1,0, (15,0, (1, 1,0}

If app41 # 1 and bypy1 = 1, then:

-1 ifx ==

p+1 3
&1 =0 E2 e = .
o« Poee 0 if Xop+1 = 1.

If app41 =1 and bypy1 # 1, then:

—1 ify, . =s

2p+1
517C:()7 €= { 0 ify/p-i— _tv
2p+1 — v

If axyp+1 = 1 and b2p+1 =1, then Ele = &2 = 0.

From Lemma 6.8 we also get Eizil(dpt(ai) +dpt(h)) = pQRk — 1) +u+v.



28 D Arcis and L Paris

Part (1): Lete = €14+ €1 — €1,c. By the above we have dpt(c) = dpt(a) + dpt(b) —
p(2k — 1) — €, and ¢ is as follows. If p > 1, aspy1 # 1 and bopyg # 1, then: € =0
if (x/zp,xzp+1,y2p+1) € {(s,s,0),(t,1,5)}, and € = 1 otherwise. If p > 1, agp41 # 1
and by, = 1, then: € = 0 if (x’zp,xsz) = (s,5), and € = 1 otherwise. If p > 1,
ayy+1 = 1 and bopyy # 1, then: € = 0 if (x’zp,ysz) = (t,s), and € = 1 otherwise.
Itfp>1, axy+1 = 1 and b2p+1 =1,thene =1. If p =0, a = axp+1 75 1
and b = byp1 # 1, then: € = 0 if (xpp11,y2p+1) € {(5,0),(t,5),(t,0)}, and € = 1
otherwise. If p =0 and a = asp11 = 1, thene = 0. If p =0 and b = by,41 = 1,
then ¢ = 0.

Suppose that a € ©. Then a is written @ = §9 with ¢ > 1. On the other hand we
write b = b’ where b’ # 1 (since b € ©) and o(b') = 5. If r = 0, then p = 0,
Xop+1 = s and yy,41 = s, hence e = 1. If 1 < r < 2q,then r = 2p, ay,41 = 0977,
byp1 = b’ and (x5, X2p+1,Y2p+1) = (5,5,5), hence e = 1. If r > 2q, then g = p,
ax+1 = 1, bypp1 # 1 and x’zp = s, hence ¢ = 1. The case b € O is proved in the
same way.

Suppose that ¢ € M;. Then p > 1, since (a,b) € O x O. If ag, 41 # 1 and by, i1 # 1,
then (xop41,y2p+1) = (t,1),hence € = 1. If ap,41 # 1 and by,41 = 1, then x| =1,
hence e = 1. If appy1 = 1 and by, 1 # 1,then yo,1 1 =t,hence e = 1. If appyy =1
and by,41 = 1,then € = 1.

Part (2): Let € = €24 + €2 — 2. By the above we have dpt(c§2) = dpt(af?) +
dpt(p(b)) — p(2k — 1) — €, and ¢ is as follows. If p > 1, aspy1 # 1 and bypqq # 1,
then: ¢ = 0 if (x/2p7x2p+17y2p+1) € {(s,s,1),(t,1,5)}, and € = 1 otherwise. If p > 1,
a1 # 1 and bypyy = 1, then: € = 0 if (x1,%y,,x2p41) € {(t,5,5), (1, 1,5), (¢,1, D)},
and ¢ = 1 otherwise. If p > 1, aypy1 = 1 and by, # 1, then: ¢ = 0 if
(x’zp,yng) = (t,5), and € = 1 otherwise. If p > 1, ay,+1 = 1 and by, = 1, then:
e=0 ifx’zp =t,and € = 1 otherwise. If p =0, a = az,41 # 1 and b = bypy1 # 1,
then: € = 0 if (xpp41,y2p+1) € {(5,9),(s5,0,(t,5)}, and ¢ = 1 otherwise. If p = 0,
a=ay+; = 1land b = by # 1,then: € =0 if yyp4 1 = s, and € = 1 otherwise.
If p=0and b =by,11 =1,then € =0.

Suppose that a§2 € ©. Then af) is written a$) = §9¢ with ¢ > 1, hence a = #7~(sr)*.
On the other hand we write b = s"b’, where b’ # 1 (since p(b') ¢ ©) and o(b') = t.
We necessarily have r = 2p < 2(qg—1), hence ay, 1 = 09—~ (s)k and bypy1 = b.If
p > 1,then (x’zp,xsz,ysz) = (t,t,1), hence ¢ = 1. If p = 0, then (x2p41,y2p+1) =
(t,1), hence € = 1.

Suppose that ¢(b) € ©. Then @(b) is written p(b) = 69 with ¢ > 1, hence
b = ((ts)*(st)*)?. On the other hand we write a = a's” where either @ = 1 or
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7@)=t. Ifr=0and d = 1,then p =0, by,y1 = b # 1 and yy,11 = 1, hence
e=1.Ifr=0andd # 1,then p =0, ayy1 =d # 1, bypy1 = b # 1 and
(X2p+1,y2p+1) = (t,1), hence ¢ = 1. If 0 < r < 2¢ and a =1, then r = 2p,
aypi1 = 1, by = (1) (s0))77 # 1 and (5, y2p11) = (5,1), hence & = 1. If
0<r<2gandd # 1,then r =2p, a1 = d # 1, bypy1 = (1) ()P £ 1
and (x3,, X2p+1,Y2p+1) = (5,1,7), hence ¢ = 1. If r = 2g and @’ = 1, then r = 2p,
ayy+1 =1, bypy1 =1 and x’zp =s,hence e = 1. If r = 2q and @’ # 1, then r = 2p,
aypy1 =d # 1, byr1 =1 and (Xl,.xlzp7x2p+1) = (s,s,1), hence ¢ = 1. If r > 2g,
then p = ¢, aspy1 = a's2 £ 1, by+1 =1, and (xl,x’zp,xsz) = (s, s,5), hence
e=1.

Part(3): Lete = €1 4+€3—¢€2 . By the above we have dpt(c€2) = dpt(a)+dpt(b2)—
p(2k — 1) — €, and ¢ is as follows. If p > 1, aspy1 # 1 and bopyq # 1, then: € =0
if (x/zp,xzp+1,y2p+1) € {(s,s,0),(t,1,5)}, and € = 1 otherwise. If p > 1, agp41 # 1
and by, = 1, then: € = 0 if (x’zp,xng) = (t,1), and € = 1 otherwise. If p > 1,
ayy+1 = 1 and bopyy # 1, then: € = 0 if (x’zp,ysz) = (t,s), and € = 1 otherwise.
If p>1, aypt1 =1 and by,y1 = 1, then: € = 0 if x’zp = t, and € = 1 otherwise.
If p=0,a# 1and b # 1, then: € = 0 if (xpp41,y2p+1) € {(5,0),(z,5),(t, 1)}, and
€ = 1 otherwise. If p =0,a# 1 and b = 1, then: ¢ =0 if xpp4; =t,and ¢ = 1
otherwise. If p =0 and a = 1, then € = 0.

Suppose that a € ©. Then a is written @ = §9 with ¢ > 1. On the other hand we
write b = 'b’ where either ¥’ = 1 or o(b') = s. If r =0 and ' = 1, then p = 0,
ay+t1 =07, bypyy = land xppy ) =s,hence e = 1. If r=0and b’ # 1, then p = 0,
aypy1 =09, by =" # 1 and (xp11,y2p4+1) = (5,5), hence e = 1. If 0 < r < 2¢
and b’ = 1, then r = 2p, azypy1 = 0777 # 1, bypy1 = 1 and (x’zp,xsz) = (s,5),
hence ¢ = 1. If 0 < r < 2g and &' # 1, then r = 2p, ayy1 = 0977 # 1,
byt =b' # 1 and (x’zp,xsz,ysz) = (s,s,5),hence e = 1. If r=2g and b’ =1,
then p = ¢q, aspy1 =1, bypp1 = 1 and x’217 =s,hence e =1.If r=2g and b’ # 1,
then p = q, aypy1 =1, bypp1 = b # 1 and (x’zp,ysz) = (s,5), hence ¢ = 1. If
r>2q,then azpi1 = 1, bapyy = 17290 £ 1 and (x’zp,ysz) = (s,1), hence ¢ = 1.

Suppose that bQ) € ©. Then bS) is written b2 = §9¢ with ¢ > 1, hence b = 09~ (sr)*.
On the other hand we write a = a’t" where d’ # 1 (since a € ©) and 7(a’) = 5. If
r=0,then p =0, ayy1 =d # 1, bypy1 = 077 (st)* and (xgpp1,y2ps1) = (5,9),
hence e = 1. If r > 0, then r =2p < 2(g— 1), app1 = d # 1, bypyy = 0977 (st)k
and (x5, X2p+1,Y2p+1) = (1, 5,5), hence £ = 1.

Part (4): Let e = 1+ &34 + €4 — €1,c. By the above we have dpt(c) = dpt(af?) +
dpt(p(b))) — (p + 1)(2k — 1) — €, and ¢ is as follows. If p > 1, ay,41 # 1 and
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byp1 # 1, then: € = 0if (X5, X2p+1,2p+1) € {(5,5,0), (#,1,5)}, and € = 1 otherwise.
If p>1, apy1 # 1 and by =1, then: ¢ =0 if (x’zp,xsz) =(s,8),and e = 1
otherwise. If p > 1, az,41 = 1 and bypy1 # 1, then: ¢ = 0 if (x’zp,yzp+1) = (t,5),
and € = 1 otherwise. If p > 1, asp11 = 1 and by, = 1, thene = 1. If p = 0,
a#1and b # 1, then: € = 0 if (xppt1,y2p41) € {(5,9),(5,0),(t,5)}, and ¢ = 1
otherwise. If p =0,a # 1 and b = 1, then: ¢ = 0 if Xop+1 = 5, and € = 1 otherwise.
If p=0,a=1and b # 1,then: ¢ =0if yy,41 = s, and € = 1 otherwise. If p =0,
a=1and b=1,thene =1.

Suppose that a2 € ©. Then af? is written af2 = 69 with ¢ > 1, hence a =
99— 1(st)k. On the other hand we write b = s'b’, where either ¥’ = 1 or o(b') = 1.
Ifr=0and b’ = 1,then p =0, a = 09" (st) #1, b =1 and xzp1| = t, hence
e=1.Ifr=0andd # 1,thenp =0, a =07 '(sH* # 1, b =0 # 1 and
(X2p+1,y2p+1) = (t,1), hence ¢ = 1. If r > 0 and b =1,then r =2p < 2(g — 1),
axypy1 = g1 P= (st £ 1, bypy1 =0 =1 and (x’zp,xng) = (t,1), hence ¢ = 1. If
r>0andd # 1,then r =2p <2(q— 1), azp1 = 0T P s £ 1, bopry = # 1
and (x’zp,xzp+1,y2p+1) = (t,t,1), hence ¢ = 1.

Suppose that (b)) € O. Then (b)) is written ()2 = 9t with g > 1, hence
b = (t5)#9~1. On the other hand we write a = d’s” where either @’ = 1 or 7(d') = t.
Ifr=0and @ = 1,thenp=0,a =1, b = (077" # 1 and y,1 = t, hence
e=1.Ifr=0andd # 1,thenp =0,a=d # 1, b = (ts)*07"" # 1 and
(X2p+1,y2p+1) = (t,1), hence ¢ = 1. If r > 0 and ad =1,then r =2p < 2(qg — 1),
a1 =1, bypi1 = (ts5)k97P~1 £ 1 and (x’zp,ysz) =(s,f),hence e =1.1If r >0
and d’ # 1,then r =2p < 2(q— 1), agpy1 = d # 1, bop1 = (ts)097P~1 £ 1 and
(x’zp,xsz,ysz) = (s,t,1), hence € = 1.

Suppose that c € M. If p > 1, azp11 # 1 and by, # 1, then (xp41,Y2p+1) = (¢, 1),
hence e = 1. If p > 1, aspy1 # 1 and bypy 1 = 1, then xpp41 = ¢, hence € = 1. If
p=>1,a,11 =1and by, # 1,then yp,11 =t,hence e = 1. If p > 1, a1 =1
and bopy1 = 1,thene =1.If p=0,a# 1 and b # 1, then (xopy1,y2p+1) = (¢, 1),
hence e = 1. If p=0,a # 1 and b = 1, then xy,41 =, hence e = 1. If p = 0,
a=1and b # 1,then ys,1 | =t, hencec =1. If p=0,a =1 and b = 1, then
e=1. D

Lemma 6.10 Let a,b be two )-unmovable elements of M. We assume that the
A -form of ab is in the form ab = (¢))AP where c is an §)-unmovable element of M
andp > 0.

(1) Suppose that (a,b) & (© x ©). There exists ¢ € {0,1} such that dpt(cQ2) =
dpt(a) + dpt(b) — p(2k — 1) — €. Moreover, € = 1 if eithera € © or b € O.
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2)

3)

“)

Suppose that (a2, (b)) & (O x ©). There exists € € {0, 1} such that dpt(c) =
dpt(af?) + dpt(e(b)) — (p + 1)(2k — 1) — €. Moreover, € = 1 if either af) € ©
or o(b) € © orc € M.

Suppose that (a,bSY) & (© x ©). There exists ¢ € {0, 1} such that dpt(c) =
dpt(a) + dpt(bQ2) — (p + 1)(2k — 1) — €. Moreover, € = 1 if either a € © or
bl € © orce M.

Suppose that (a9, (b)) & (© x ©). There exists ¢ € {0,1} such that
dpt(c2) = dpt(af)) + dpt(p(b) ) — (p + 1)(2k — 1) — . Moreover, € = 1 if
either af) € © or p(b)) € O.

Proof We write a and b in the form a = ayy2a2,11 -+ azxa; and b = byby - - - byp g

byp2 so that:

ai 1, b; # 1, ab; = Q if i is odd, and a; p(b;) = Q if i is even, for all
ie{l,....2p+1};

¢ = axy12 p(bypi2).

Set x; = 7(a;), X, = o(a;), yi = o(b;) and y, = 7(b;) forall i € {1,...,2p+2}.
Then x4 = x} forall i € {1,...,2p}.

Fori € {lI,...,2p + 1} we have y; = p(x;) and y; = x} if i is odd and y; = x; and

Vi =

o)) if i is even. So, if i € {1,...,2p}, then yiy1 = x;y1 = x} =y if i is odd,

and yir1 = p(xit1) = p(x}) =y} if i is even.

Letu=|{i e {1,...,2p+ 1} | x, = s}|. By using Lemma 6.7 we obtain successively
the following equalities.

dpt(a) = dpt(azys2) + 777" dptia) — u+eq,
dpt(af) = dpt(az,2) + S22 dpt(a) — u+ k + 2.4,

where €, and € , are as follows. If ay,;» # 1, then:

0 if (x’2p+1,x2p+2) € {(s,9),(,s), (0},

1 if (Y, g5 %2pt2) = (5,0)

—1 if (xl,x’zp+1,x2p+2) € {(s,s,5),(s,1,5),(s, 1,0},
ea=14¢ 0 if (xl,x’sz,xsz) € {(s,s,0),(t,s,5),(t,1,5),(t,1,1)},
1 if (xl,x’sz,xsz) = (1,s,1).

Ela =

If arp1o =1, then:

. —1 if (x1,x5, ) = (s,0)
0 ifx, . ,=t, . s T
Ela = . ,2p+1 o E2a = 0 if (.Xfl,x/z +1) € {(S, S)v(ty t)}v
1 ifx,  =s, ) i
P 1 1f(x1,x2p+1):(t,s).
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Letv=|{ie{l,...,2p+ 1} | y} = s}|. Similarly, by using Lemma 6.7 we obtain
successively the following equalities.

dpt(h) = dpt(bap+2) + S+ dpt(h) — v +e1p,
dpt(p(b)) = dpt(bap12) + S+ dpt(by) — v + €2,
dpt(bQ) = dpt(bap42) + ST dpt(hy) — v+ k + 35,
dpt(p(b) Q) = dpt(bap2) + 707" dpt(hy) — v+ k + ea,

where €1, €25, €3 and &4, are as follows. If by, > # 1, then:

. { 0 Op1:242) €459 0,9,1,)}.
if (yzp+1ay2p+2) = (s,1),
—1 if (yl,y’2p+1,y2p+2,y’2p+2) € {(s,s,s,5),(s,1,8,5),(s,1,2,8)},
0 if (yl,y’zp+1,y2p+2,y’2p+2) € {(s,s,s,1),(s,5,1,9),(s,,5,1),
(s,1,8,0),(,8,s5,5),(t,1,5,5), (t,1,1,8)},
1 if (yl,y’zp+1,y2p+2,y’2p+2) € {(s,s,1,0),(t,s,5,0),(t,5,1,5),
(t,1,8,0),(t,1,t,0)},
2 OV Y2p42: Vapgo) = (88, 1,1)
=1 i (V15 Vopt2: Vapia) € {(5,5,9), (1,5,9), (1,1,5)}
e3p =14 0 i Oh, 1 2p12,Y900) € {(5,5,0,(5,1,9),(t,5,0), (1, 1,1)}
1 if (y/2p+17))2p+27y/2p+2) =(s,1,1),
=1 i 1, Yoy 1 V2p+2) € {5,5,9), (s, 1,9), (s, 1, D)},
eap =19 0 if QLY 1, Y2p+2) € {(s,5,0,(t,5,9), (1, 1,5), (1,1,D)}
L if 5, Yoy Yop2) = (85,1

€2b =

If b2 = 1, then:
0 ify =1, 0 ify;=s,
ey = o y,2p+l - €2 :{ : V1 -
1fy2p+1—s, 1 ify, =1,

-1 if(ylayép+1):(sat)7
€3bp = 07 €4bp = 0 if ()’Iaylsz) € {(S7 S)7 (t7 t)}u
1 if (ylay/2p+1) = (ta S) .

Again, by using Lemma 6.7 we obtain the following equalities.

dpt(c) = dpt(az,12) + dpt(bop42) + €1.c
dpt(cQ) = dpt(azy42) + dpt(bop42) + k + €2,
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where € . and e, . are as follows. If ay,1» # 1 and by,> # 1, then:

=1 if (x2p+27 y2p+27y/2p+2) € {(Sa S, S)7 (S7 Z S)7 (ta s, S)} )
El,e = 0 if(x2p+27y2p+27y,2p+2) € {(s,s,t),(s,t, t)7 (I,S,t), (tv t,S)},
1 if (x2p+27 y2p+27y/2p+2) = (t7 Z t) )
o { -1 if (x2p+27y2p+2) € {(S,S), (Sv t)7 (tv S)},
€2,c = .
0 if (xopp2,y2p42) = (1,0).

If ay,1» # 1 and by,1» = 1, then:

1 ifxy,yo=s

p+2 3
Ele — 0 IS .
o« T 0 if Xop+2 = 1.

If ap4o = 1 and by, # 1, then:

if yyp10 =,

=¢ 0 if . e {(s,0,( =
61,6 1 ()’2p+27)’2p+2) {(Sa )7( 7S)}7 62,6 ify2p+2 —t.

-1 if (y2p+2yy,2p+2) = (S, S)’ 1
0012 Lo
1 lf (y2p+27y2p+2) - (t7 t) )

If axypt2 = 1 and b2p+2 =1, then Ele = &2 = 0.

Finally, from Lemma 6.7 and Lemma 6.8 follows that
2p+1
> (dpt(a) + dpt(hy) = p(2k — 1) +k +u+v+eq,
i=1

where e = —1 ifx’2p+1 =s,ande; =0 ifx’zl7Jrl =1

Part (1): Let € = €14+ €1 — €2, + 4. By the above we have dpt(cQ?) = dpt(a) +
dpt(b) — p(2k — 1) — ¢, where ¢ is as follows. If ay,1» # 1 and by,4> # 1,then e =0
if (x’2p+1,x2p+2,y2p+2) € {(s,s,9),(,t,1)}, and ¢ = 1 otherwise. If ay,1» # 1 and
b2 = 1, then e = 0if (x|, X2p42) = (1,7), and € = | otherwise. If azy42 = 1
and bypyo # 1, then ¢ = 0 if (x/2p+1,y2p+2) = (t,t), and ¢ = 1 otherwise. If
axp+2 = 1 and by, 1o = 1, then € = 0 if x’zl7Jr1 =t,and € = 1 otherwise.

Suppose that a € ©. Then a is written @ = §9 with ¢ > 1. On the other hand we
write b = 1"’ where b’ # 1 (since b € ©) and o(b’) = 5. We necessarily have r =
2p+ 1 < 2q, aypin = 09777 1(st), bypo = b/, and (V15 X2p425Y2p12) = (8,1,5),
hence € = 1. The case b € O is proved in a similar way.

Part (2): Lete = 1+ 634+ €25 — €1 + 4. By the above we have dpt(c) =
dpt(a)) + dpt(e(b)) — (p + 1)(2k — 1) — €, and ¢ is as follows. If aypyr # 1
and by # 1, then € = 0 if (x5, 1, X2p+2,¥2p+2) € {(5,5,9),(t, 7,0}, and e = 1
otherwise. If asp4o # 1 and by,1» = 1, then ¢ = 0 if (x'zp L1,Xp+2) = (s,5), and



34 D Arcis and L Paris

€ = 1 otherwise. If azp4o = 1 and by,4o # 1, then € = 0 if (x'2p+1,y2p+2) = (1,1),
and € = 1 otherwise. If as,;» = 1 and by, > = 1,then € = 1.

Suppose that aQ2 € ©. Then af? is written a2 = §9¢ with ¢ > 1, hence a = 09~ (st)*.
On the other hand we write b = s"b’ where b’ # 1 (since p(b) € ©) and o(b') = t.
If r<2(g—1)+1,thenr=2p+1, ayir = gI—1-r £ 1, bypyr = b # 1, and
(V15 X2p42,Y2p12) = (8,5,1), hence € = 1. If r > 2(g — 1) + 1, then a2 = 1,
byy12 # 1 and x’2p+1 =g, hence ¢ = 1.

Suppose that ¢(b) € ©. Then @(b) is written p(b) = 69 with ¢ > 1, hence
b = ((ts)*(s1)*)?. On the other hand we write a = a’s” where either @’ = 1 or 7(d’) = 1.
We necessarily have r = 2p + 1 < 2q, ayp2 = d’ and bypyr = ((ts) (st )P~ (1)K,
hence X/zp L1 =sand xppo =t if d’ # 1, and therefore £ = 1.

Suppose that ¢ € M;. If aspo # 1 and by,in # 1, then xpp40 = ¢ and yyp40 = 5,
hence e = 1. If appy2 # 1 and by, o = 1,then xp,1» =t,hence e = 1. If appyr =1
and bo,1» # 1, then yy,10 = s, hence ¢ = 1. If asp1» = 1 and by,4» = 1, then
e=1.

Part (3): Lete = 1+ €14+ 35 — €1 + €4. By the above we have dpt(c) =
dpt(a) + dpt(b?) — (p + 1)(2k — 1) — ¢, and ¢ is as follows. If az,1» # 1 and
byto # 1, then ¢ = 0 if (x/2p+17x2p+27y2p+2) € {(s,s,9),(@,t,0}, and ¢ = 1
otherwise. If as,1» # 1 and by,4o = 1, then ¢ = 0 if (x’zp L1y Xopt2) = (s,5), and
€ = 1 otherwise. If asp4o = 1 and by,4o # 1, then € = 0 if (x’2p+1,y2p+2) = (1),
and € = 1 otherwise. If as,;» = 1 and by, > = 1,then € = 1.

Suppose that a € ©. Then a is written a = §9 with ¢ > 1. On the other hand we write
b = "D’ whereeither b’ = 1 or o(b’) = 5. We necessarily have r = 2p+1 < 2¢g, hence
a2 = 09777 (st and by ip = b IE B # 1, then (¥, 1, %2542, V2p12) = (1,1, 5),
hence ¢ = 1. If ¥’ = 1, then (x’2p+l,x2p+2) = (t,1), hence ¢ = 1.

Suppose that b2 € ©. Then bS) is written bQ) = §9¢ with ¢ > 1, hence b = #7~(sr)*.
On the other hand we write a = a’t” where @’ # 1 (since a € ©) and 7(d') = 5. If
r>2q—1,thenp=q—1, ayp = 't =1 and by,12 =1, hence x’2p+1 =1t, and
therefore ¢ = 1. If r < 2g— 1, then r = 2p+1, agp1r = d’ and by, 1o = g1—P=1 £ 1,
hence (x’zp L1y Xopt2, Yop+2) = (2,5, 5), and therefore ¢ = 1.

Suppose that ¢ € M. If by,1» # 1 and aspyo # 1, then x40 = ¢ and yyp40 = s,
hence e = 1. If appyr # 1 and by,1o = 1,then xp,1» =t,hence e = 1. If appyn =1
and b,1» # 1, then yy,1» = s, hence ¢ = 1. If asp1» = 1 and by, = 1, then
e=1.
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Part (4): Let € = 1 + €24 + €4p — €2 + €4. By the above we have dpt(c?) =
dpt(af)) + dpt(p(b))) — (p + 1)(2k — 1) — ¢, and ¢ is as follows. If aspin # 1
and by,4o # 1, then: ¢ = 0 if (x’2p+1,X2p+2,y2p+2) € {(s,s,9),(t,t,0}, and ¢ = 1
otherwise. If ay,4 o # 1 and by,4» = 1, then: € = 0 if (x’zp L1y X2p+2) = (8,1), and
€ = 1 otherwise. If as,1» = 1 and by,;» # 1, then: € = 0 if (x’2p+1,y2p+2) = (t,1),
and € = 1 otherwise. If ap,> = 1 and by, > = 1, then e = 0 if x’2p+1 =t,ande =1
otherwise.

Suppose that a2 € ©. Then af) is written a$) = §9¢ with ¢ > 1, hence a = #7~(sr)*.
On the other hand we write b = s"b’ where either ¥’ =1 or o(b') =1t. If r > 2 — 1,
then ay,1» = 1 and x’szrl = s,hence e = 1. If r < 2¢g—1,then r = 2p + 1,
aypir = 04—P=1 and bypyo = b', hence x’zp 41 =S, Xp42 = s and either by, 5 = 1 or
Y2p+2 = t, and therefore € = 1.

Suppose that (b)) € O. Then (b)) is written p(b)2 = 9t with g > 1, hence
b = ((ts)*(s))*)?~(ts)*. On the other hand we write a = a's” where either ¢’ = 1 or
7(@)=1.1f r>2q—1,then by,» = 1 and x’2p+1 =s,hencee=1.If r <2g—1,
then r = 2p + 1, aspior = d and by, 1» = ((ts)*(st))9=P=1, hence x’szrl = s and
Y2p+2 = t, and therefore € = 1. O

Now, the second part of Theorem 6.1 is a direct consequence of the previous two
lemmas.

Proposition 6.11 The pair (H, G;) satisfies Condition B with constant ( = 2k — 1.

Proof We take two unmovable elements a,b € M, and we consider the A-form
ab = c¢AP of ab. We should prove that there exists ¢ € {0, 1} such that dpt(c) =
dpt(a) + dpt(b) — p(2k — 1) — e, and ¢ = 1 if either « € © or b € © or ¢ €
M. Clearly, there exist two Q-unmovable elements a’,b’ € M such that (a,b) €
{(d, 0, (dQ, o)), (d,b'Q),(dQ, pd")V}. Let d'b’ = dA? be the A-form of a’b’.
Then, again, there exists an {2-unmovable element ¢ € M such that d € {c/,/Q}.
Suppose that d = ¢’. Then: ¢ = ¢’ and p = ¢q if (a,b) = (d',b), ¢ = /Q and
p = q if either (a,b) = (d'Q, (b)) or (a,b) = (d’,b'Y),and c = and p = g + 1
if (a,b) = (d'Q, o(b)Q). These four cases are covered by Lemma 6.9. Suppose that
d=cdQ. Then: ¢ = Qand p = ¢ if (a,b) = (d',b)), c = and p = g+ 1
if either (a,b) = (d'Q, (b)) or (a,b) = (d',b'Q), and ¢ = 'Q and p = g + 1 if
(a,b) = (d'Q2, (b )N2). These four cases are covered by Lemma 6.10. O
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