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Abstract. Matrices and the operation of dual interchange are intro-
duced into the study of Dung’s argumentation frameworks. It is showed
that every argumentation framework can be represented by a matrix, and
the basic extensions (such as admissible, stable, complete) can be deter-
mined by sub-blocks of its matrix. In particular, an efficient approach
for determining the basic extensions has been developed using two types
of standard matrix. Furthermore, we develop the topic of matrix reduc-
tion along two different lines. The first one enables to reduce the matrix
into a less order matrix playing the same role for the determination of
extensions.
The second one enables to decompose an extension into several exten-
sions of different sub-argumentation frameworks. It makes us not only
solve the problem of determining grounded and preferred extensions, but
also obtain results about dynamics of argumentation frameworks.

Keywords: matrix, argumentation, extension, reduction, dynamics

1 Introduction

In recent years, the area of argumentation begins to become increasingly central
as a core study within Artificial Intelligence. A number of papers investigated
and compared the properties of different semantics which have been proposed
for abstract argumentation frameworks [1–4, 7, 13, 14, 20, 22, 23].

Directed graphs have been widely used for modeling and analyzing argumen-
tation frameworks (AFs for short) because of the feature of visualization [3, 10,
12, 14]. Furthermore, the labeling and game approach developed by Modgil and
Caminada [7, 8, 18, 19] respectively are two excellent methods for the proof the-
ories and algorithms of AFs. In this paper, we propose another novel idea, that
is, the matrix representation of AFs.

Our aim is to introduce matrices and the operation of dual interchange into
the study of AFs so as to propose new efficient approaches for determining
basic extensions. First, we assign a matrix of order n for each AF with n argu-
ments.This representation enables to establish links between extensions (under
various semantics) of the AF and the internal structure of the matrix, namely
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sub-blocks of the matrix. Moreover, the matrix of an AF can be turned into a
standard form, from which the determination of admissible and complete exten-
sions can be easily achieved through checking some sub-blocks of this standard
form. Furthermore, we propose the reduced matrix wrt conflict-free subsets, by
which the determination of various extensions becomes more efficient. This ap-
proach has not been mentioned in the literature as we know. Finally, we present
the reduced matrix wrt extensions and give the decomposition theory for exten-
sions. It can be used to handle the semantics based on minimality and maximality
criteria, for example, to determine the preferred extensions. It can also be related
to the topic of directionality and enables us to obtain results about dynamics of
AFs, which improve main results by Liao and Koons [17].

The paper is organized as follows. Section 2 recalls the basic definitions on
abstract AFs. Section 3 introduces the matrix representation of AFs and the
operation of dual interchange of matrices. Section 4 describes the characteriza-
tion theorems for stable, admissible and complete extensions. Furthermore, we
integrate these theorems and obtain two kinds of standard forms for matrices
by dual interchanges. Section 5 presents the matrix reductions of AFs based on
contraction and division of AFs, and some applications in AFs and dynamics of
AFs. The proofs can be found in [11].

2 Background on Abstract AFs

In this section, we mainly recall the basic notions of abstract AFs [13, 20].

Definition 1 An abstract AF is a pair AF = (A,R), where A is a finite set of
arguments and R ⊆ A × A represents the attack relation. For any S ⊆ A, we
say that S is conflict-free if there are no a, b ∈ S such that (a, b) ∈ R; a ∈ A
is attacked by S if there is some b ∈ S such that (b, a) ∈ R; a ∈ A attacks S if
there is some b ∈ S such that (a, b) ∈ R; a ∈ A is defended by (or acceptable
wrt) S if for each b ∈ A with (b, a) ∈ R, we have that b is attacked by S.

We use the following notations inspired from graph theory. Let AF = (A,R)
be an AF and S ⊆ A. R+(S) denotes the set of arguments attacked by S. R−(S)
denotes the set of arguments attacking S. IAF denotes the set of arguments which
are not attacked (also called initial arguments of AF ).

An argumentation semantics is the formal definition of a method ruling the
argument evaluation process. Two main styles of semantics can be identified
in the literature: extension-based and labelling-based. Here, we only recall the
common extension-based semantics of AF .

Definition 2 Let AF = (A,R) be an AF and S ⊆ A.

– S is a stable extension of AF if S is conflict-free and each a ∈ A \ S is
attacked by S.

– S is admissible in AF if S is conflict-free and each a ∈ S is defended by S.
Let a(AF ) denote the set of admissible subsets in AF .
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– S is a preferred extension of AF if S ∈ a(AF ) and S is a maximal element
(wrt set-inclusion) of a(AF ).

– S is a complete extension of AF if S ∈ a(AF ) and for each a ∈ A defended
by S, we have a ∈ S.

– S is a grounded extension of AF if S is the least (wrt set-inclusion) complete
extension of AF .

The common extension-based semantics can be characterized in terms of
subsets of attacked/attacking arguments, due to the following results:

Proposition 1 Let AF = (A,R) be an AF and S a subset of A.

– S is conflict-free if and only if (iff for short) S ∩R+(S) = ∅ (or equivalently
R+(S) ⊆ A \ S)

– S is stable iff R+(S) = A \ S
– S is admissible iff R−(S) ⊆ R+(S) ⊆ A \ S

Definition 3 ([23]) Let AF = (A,R) be an AF, S a subset of A. The restric-
tion of AF to S, denoted by AF |S, is the sub-argumentation framework (sub-AF
for short) (S,R ∩ (S × S)).

Remark 1 For any nonempty subset S of A, the set A can be divided into
three disjoint parts: S, R+(S) and A\ (S∪R+(S)). In our discussion on division
of AF , the sub-AF AF |A\(S∪R+(S)) will play an important role. We call it the
remaining sub-AF wrt S, or remaining sub-AF for short.

3 The matrix Representation

Let AF = (A,R) be an AF. It is convenient to put A = {1, 2, ..., n} whenever the
cardinality of A is large. Furthermore, we usually give the set A a permutation,
for example (i1, i2, ..., in), when dealing with the AF practically.

Definition 4 Let AF = (A,R) be an AF with A = {1, 2, ..., n}. The ma-
trix of AF corresponding to the permutation (i1, i2, ..., in) of A, denoted by
M(i1, i2, ..., in)

1, is a boolean matrix of order n, its elements being determined
by the following rules: (1) as,t = 1 iff (is, it) ∈ R (2) as,t = 0 iff (is, it) /∈ R. We
usually denote the matrix M(1, 2, ..., n) by M(AF ).

Example 1 Given AF = (A,R) with A = {1, 2, 3} and R = {(1, 2), (2, 1), (3, 2)},
represented by the following graph:

1 strictly speaking, it should be denoted by MAF (i1, i2, ..., in)
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According to Definition 4, the matrices of AF corresponding to the permuta-
tions (1, 2, 3) and (1, 3, 2) are





0 1 0
1 0 0
0 1 0



 and





0 0 1
0 0 1
1 0 0





Definition 5 Let AF = (A,R) be an AF with A = {1, 2, ..., n}. A dual inter-
change on the matrix M(i1, ..., ik, ..., il, ..., in) between k and l, denoted by k ⇋ l,
consists of two interchanges: interchanging k-th row and l-th row; interchanging
k-th column and l-th column.

Lemma 1 Let AF = (A,R) be an AF with A = {1, 2, ..., n}, then k ⇋ l turns
the matrix M(i1, ..., ik, ..., il, ..., in) into the matrix M(i1, ..., il, ..., ik, ..., in).

The dual interchange k ⇋ l also turns the matrix M(i1, · · · , il, · · · , ik, · · · , in)
into the matrix M(i1, ..., ik, ..., il, ..., in). So, for any two matrices of an AF corre-
sponding to different permutations of A we can turn one matrix into another by
a sequence of dual interchanges. In this sense, we may call them to be equivalent
matrix representations of the AF .

Example 1 (cont’d) By the dual interchange 1 ⇋ 2, we can turn the matrix
M(1, 2, 3) into the matrix M(2, 1, 3).





0 1 0
1 0 0
0 1 0



 1 ⇋ 2





0 1 0
1 0 0
1 0 0





4 Characterizing the Extensions of an AF

In this section, we mainly focus on the characterization of various extensions in
the matrix M(AF ). The idea is to establish the relation between the extensions
(viewed as subsets) of AF = (A,R) and the sub-blocks of M(AF ).

4.1 Characterizing the Conflict-Free Subsets

The basic requirement for extensions is conflict-freeness. So, we will discuss the
matrix condition which insures that a subset of an AF is conflict-free.

Definition 6 Let AF = (A,R) be an AF with A = {1, 2, ..., n}, and S =
{i1, i2, ..., ik} ⊆ A. The k × k sub-block

M i1,i2,...,ik
i1,i2,...,ik

=









ai1,i1 ai1,i2 . . . ai1,ik
ai2,i1 ai2,i2 . . . ai2,ik
. . . . . .

aik,i1 aik,i2 . . . aik,ik









of M(AF ) is called the cf -sub-block of S, and denoted by M cf (S) for short.
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Theorem 1 Given AF = (A,R) with A = {1, 2, ..., n}, S = {i1, i2, ..., ik} ⊆ A
is conflict-free iff the cf -sub-block M cf (S) is zero.

Example 1 (cont’d)M cf ({1, 3}) =

(

0 0
0 0

)

,M cf ({1, 2}) =

(

0 1
1 0

)

, andM cf ({2, 3}) =
(

0 0
1 0

)

. By Theorem 1, {1, 3} is conflict free, {1, 2} and {2, 3} are not.

4.2 Characterizing the Stable Extensions

As shown in Section 2, a subset S of A is stable iff R+(S) = A\S. So, except for
the conflict-freeness of S, we only need to concentrate on whether the arguments
in A \ S are attacked by S. This suggests the following definition:

Definition 7 Let AF = (A,R) be an AF with A = {1, 2, ..., n}, S = {i1, i2, ..., ik} ⊆
A and A \ S = {j1, j2, ..., jh}. The k × h sub-block

M i1,i2,...,ik
j1,j2,...,jh

=









ai1,j1 ai1,j2 . . . ai1,jh
ai2,j1 ai2,j2 . . . ai2,jh
. . . . . .

aik,j1 aik,j2 . . . aik,jh









of M(AF ) is called the s-sub-block of S and denoted by Ms(S) for short.

In other words, we take the elements at the rows i1, i2, ..., ik and the columns
j1, j2, ..., jh in the matrix M(AF ). For any matrix or its sub-block, the i-th row
is called the i-th row vector and denoted by Mi,∗, the j-th column is called j-th
column vector and denoted by M∗,j .

Theorem 2 Given AF = (A,R) with A = {1, 2, ..., n}. A conflict-free subset
S = {i1, i2, ..., ik} ⊆ A is a stable extension iff each column vector of the s-
sub-block Ms(S) = M i1,i2,...,ik

j1,j2,...,jh
of M(AF ) is non-zero, where (j1, j2, ..., jh) is a

permutation of A \ S.

Example 1 (cont’d) We consider the conflict-free subsets {1} and {1, 3}. Since
the second column vector of Ms({1}) =

(

1 0
)

is zero and the only column vector

of Ms({1, 3}) =

(

1
1

)

is non-zero, we claim that {1, 3} is a stable extension of

AF but {1} is not, according to Theorem 2.

4.3 Characterizing the Admissible Subsets

As shown in Section 2, a subset S of A is admissible if and only if R−(S) ⊆
R+(S) ⊆ A \ S. There may be arguments in A \ S which are not attacked by S.
Such arguments should not attack S. This suggests to explore the representation
in M(AF ) of the relation between R−(S) and R+(S).
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Definition 8 Let AF = (A,R) be an AF with A = {1, 2, ..., n}, S = {i1, i2, ..., ik} ⊆
A and A \ S = {j1, j2, ..., jh}. The h× k sub-block

M j1,j2,...,jh
i1,i2,...,ik

=









aj1,i1 aj1,i2 . . . aj1,ik
aj2,i1 aj2,i2 . . . aj2,ik
. . . . . .

ajh,i1 ajh,i2 . . . ajh,ik









of M(AF ) is called the a-sub-block of S and denoted by Ma(S).

In other words, we take the elements at the rows j1, j2, ..., jh and the columns
i1, i2, ..., ik in the matrix M(AF ).

Theorem 3 Given AF = (A,R) with A = {1, 2, ..., n}. A conflict-free subset
S = {i1, i2, ..., ik} ⊆ A is admissible iff any column vector of the s-sub-block
Ms(S) corresponding to a non-zero row vector of the a-sub-block Ma(S) is non-
zero, where (j1, j2, ..., jh) is a permutation of A \ S.

Example 1 (cont’d) We consider the conflict-free subsets {1} and {2}. Since

Ms({1}) =
(

1 0
)

and Ma({1}) =

(

1
0

)

, the column vector Ms
∗,1 of Ms({1})

corresponding to the non-zero row vector Ma
1,∗ of Ma({1}) is non-zero, we claim

that {1} is admissible in AF by Theorem 3.

However, from Ms({2}) =
(

1 0
)

and Ma({2}) =

(

1
1

)

we know that the col-

umn vector Ms
∗,2 of Ms({2}) corresponding to the non-zero row vector Ma

2,∗ of
Ma({2}) is zero. So, {2} is not admissible in AF according to Theorem 3.

4.4 Characterizing the Complete Extensions

From the viewpoint of set theory, every complete extension S separates A into
three disjoint parts: S,R+(S) and A\(S∪R+(S)). Except for the conflict-freeness
of S, we need not only to consider whether S is attacked by the arguments in
A\ (S ∪R+(S)), but also to see if every argument in A\ (S ∪R+(S)) is attacked
by some others in A \ (S ∪R+(S)). This suggests the following definition.

Definition 9 Let AF = (A,R) be an AF with A = {1, 2, ..., n}, S = {i1, i2, ..., ik} ⊆
A and A \ S = {j1, j2, ..., jh}. The h× h sub-block

M j1,j2,...,jh
j1,j2,...,jh

=









aj1,j1 aj1,j2 . . . aj1,jh
aj2,j1 aj2,j2 . . . aj2,jh
. . . . . .

ajh,j1 ajh,j2 . . . ajh,jh









of M(AF ) is called the c-sub-block of S and denoted by M c(S) for short.

In other words, we take the elements at the rows j1, j2, ..., jh and the columns
j1, j2, ..., jh in the matrix M(AF ).
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Theorem 4 Given AF = (A,R) with A = {1, 2, ..., n}. An admissible extension
S = {i1, i2, ..., ik} ⊆ A is complete iff

(1) if some column vector Ms
∗,p of the s-sub-block Ms(S) is zero, then its

corresponding column vector M c
∗,p of the c-sub-block M c(S) is non-zero and

(2) for each non-zero column vector M c
∗,p of the c-sub-block M c(S) appearing

in (1), there is at least one non-zero element ajq,jp of M c
∗,p such that the corre-

sponding column vector Ms
∗,q of the s-sub-block M

s(S) is zero, where {j1, j2, ..., jh} =
A \ S and 1 ≤ q, p ≤ h.

Example 2 Let AF = (A,R) with A = {1, 2, 3, 4, 5} and R = {(2, 5), (3, 4),
(4, 3), (5, 1), (5, 3)}. The matrix and graph of AF are as follows:

M(AF ) =













0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
1 0 1 0 0













By Theorem 3, we have that S = {1, 2} is admissible. Let i1 = 1, i2 =

2, j1 = 3, j2 = 4, j3 = 5. Note that Ms({1, 2}) =

(

0 0 0
0 0 1

)

has two zero column

vectors Ms
∗,1 =

(

0
0

)

and Ms
∗,2 =

(

0
0

)

. Their corresponding column vectors

in M c({1, 2}) =





0 1 0
1 0 0
1 0 0



 are M c
∗,1 =





0
1
1



 and M c
∗,2 =





1
0
0



 respectively,

which are all non-zero. For aj2j1 = a43 = 1 in M c
∗,1, the corresponding column

vector Ms
∗,2 in Ms({1, 2}) is zero. For aj1j2 = a34 = 1 in M c

∗,2, the corresponding
column vector Ms

∗,1 in Ms({1, 2}) is also zero. According to Theorem 4, we claim
that {1, 2} is a complete extension of AF .

By now, we can determine three basic extensions by checking the sub-blocks
of the matrix M(AF ). Note that in each theorem the rules are obtained directly
from the corresponding definition of extensions. So, there is no more advantage
than judging by definitions. In the next subsection, we will improve the rules to
achieve some standard form by which one can determine the extensions easily.

4.5 The Standard Forms of the Matrix M(AF )

In linear algebra, one can reduce the matrix of a system of linear equations into
row echelon form by row transformations in order to find the solution easily.
Similarly, we will use dual interchanges to reduce the matrix of AFs into stan-
dard forms, by which the extensions discussed above can be easily determined.
In the sequel, two standard forms are introduced wrt different semantics.

Theorem 5 Given AF = (A,R) with A = {1, 2, ..., n}, S = {i1, i2, ..., ik} ⊆ A
and A \ S = {j1, ..., jh}. By a sequence of dual interchanges M(AF ) can be
turned into the matrix M(i1, i2, ..., ik, j1, j2, ..., jh), which has the following form
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(

M cf (S) Ms(S)
Ma(S) M c(S)

)

,

where M cf (S),Ms(S),Ma(S), M c(S) are the cf - sub-block, s-sub-block, a-sub-
block, c-sub-block of S respectively.

Corollary 1 Given AF = (A,R) with A = {1, 2, ..., n}, S = {i1, i2, ..., ik}, A \
S = {j1, ..., jh}. Let M(i1, i2, ..., ik, j1, ..., jh) be the matrix of AF corresponding
to the permutation (i1, i2, ..., ik, j1, ..., jh), as in Theorem 5.

1. S is conflict-free iff the cf -sub-block M cf (S) = 0
2. S is stable iff the cf -sub-block M cf (S) = 0 and every column vector of the

s-sub-block Ms(S) is non-zero.

Example 1 (cont’d) S = {1, 3} is a conflict-free subset of AF . By the dual
interchange 2 ⇄ 3, M(AF ) can be turned into the following matrix:

M(1, 3, 2) =





0 0 1
0 0 1
1 0 0



.

Since Ms(S) =

(

1
1

)

, {1, 3} is a stable extension of AF by Corollary 1.

We have obtained a partition matrix of order two, composed by four kinds
of sub-blocks, from which we can determine the conflict-free status and stable
status of S. However, there is no new information about the admissible and
complete status of S. We can go further since, for any conflict-free subset S, A
can be divided into three disjoint subsets: S, R+(S) and A \ (S ∪R+(S)). So we
obtain a new partition of order three.

Theorem 6 Given AF = (A,R) with A = {1, 2, ..., n} and S = {i1, i2, ..., ik} ⊆
A a conflict-free subset. By a sequence of dual interchanges M(AF ) can be turned
into the matrix M(i1, i2, ..., ik, jt1 , ..., jtq , js1 , ..., jsl)

=





0k,k 0k,q Sk,l

Aq,k Cq,q Eq,l

Fl,k Gl,q Hl,l



 =

(

0k,k Ms(S)
Ma(S) M c(S)

)

where A \ S = {jt1 , ..., jtq , js1 , ..., jsl}, k + q + l = k + h = n, and each column
vector of Sk,l is non-zero.

Corollary 2 Given AF = (A,R) with A = {1, 2, ..., n}, S = {i1, i2, ..., ik}, A \
S = {jt1 , ..., jtq , js1 , ..., jsl}. Let M(i1, i2, ..., ik, jt1 , ..., jtq , js1 , ..., jsl) be the ma-
trix of AF corresponding to the permutation (i1, i2, ..., ik, jt1 , ..., jtq , js1 , ..., jsl)
as in Theorem 6.
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1. S is an admissible extension iff Aq,k = 0
2. S is complete iff Aq,k = 0 and each column vector of Cq,q is not zero.

Example 1 (cont’d) S = {1} is conflict-free. By the dual interchange 2 ⇄ 3,
M(AF ) can be turned into the following matrix:

M(1, 3, 2) =





0 0 1
0 0 1
1 0 0



.

Note that here i1 = 1, jt1 = 3 and js1 = 2 with k = 1, q = 1, l = 1. Since
Sk,l = S1,1 =

(

1
)

, Aq,k = A1,1 =
(

0
)

, we claim that {1} is an admissible
extension of AF according to the first item of Corollary 2.

Example 2 (cont’d) S = {1, 2} is conflict-free. Note that M(AF ) has already
the standard form we need for S. Here, i1 = 1, i2 = 2, jt1 = 3, jt2 = 4 and js1 = 5

with k = 2, q = 2, l = 1. Because Sk,l = S2,1 =

(

0
1

)

, Aq,k = A2,2 =

(

0 0
0 0

)

,

and Cq,q = C2,2 =

(

0 1
1 0

)

, we conclude that {1, 2} is a complete extension of

AF according to the second item of Corollary 2.

5 Matrix Reduction

For some purposes or under some conditions, we can simplify the AFs and their
matrices. In this section, we will mainly discuss the matrix reduction wrt conflict-
free subsets and wrt some extensions. Related results can be applied to the
computation of various extensions and to the dynamics of AFs.

5.1 Matrix Reduction Based on Contraction of AFs

In Section 4, we proposed to characterize the stable (admissible, complete) ex-
tensions of an AF by dividing A into two or three parts, and then considering
the interaction between these different parts. This suggests to contract one part
of an AF (namely a conflict-free subset) into a single argument by drawing up
some rules. And thus, the matrix can be reduced into another matrix of less
order which plays the same role for our purpose.

Definition 10 Let M(AF ) be the matrix of an AF. The addition of two rows
of the matrix M(AF ) consists in adding the elements in the same position of the
rows, with the rules 0+ 0 = 0, 0+ 1 = 1, 1+ 1 = 1. The addition of two columns
of the matrix M(AF ) is similar as the addition of two rows.

For a conflict-free subset S = {i1, i2, ..., ik}, we try to contract the sub-block
M cf (S) into a single entry in the matrix and make this entry share the same
status as M cf (S) wrt extension-based semantics. The matrix M(AF ) can be
reduced into another matrix Mr

S(AF ) of order n− k + 1 by the following rules:
Let 1 ≤ t ≤ k. For each s such that 1 ≤ s ≤ k and s 6= t,
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1. adding row is to the row it,
2. adding column is to the column it, then
3. deleting row is and column is.

The matrix Mr
S(AF ) is called the reduced matrix wrt the conflict-free subset S,

or the reduced matrix wrt S for short.
Correspondingly, the original AF can be reduced into a new one with n−k+1

arguments by the following rules:
Let A \ S = {j1, j2, ..., jh} and 1 ≤ t ≤ k. For each s such that 1 ≤ s ≤ k and
s 6= t, and each q such that 1 ≤ q ≤ h,

1. adding (it, jq) to R if (is, jq) ∈ R,
2. adding (jq, it) to R if (jq, is) ∈ R, then
3. deleting all (is, jq) and (jq, is) from R.

Let Rr
S denote the new relation and Ar

S = {it} ∪ (A \ S), then (Ar
S , R

r
S) is a

new AF called the reduced AF wrt S. Obviously, the reduced matrix Mr
S(AF )

is exactly the matrix of (Ar
S , R

r
S).

Theorem 7 Given AF = (A,R) with A = {1, 2, ..., n}. Let S = {i1, i2, ...,
ik} ⊆ A be conflict-free and 1 ≤ t ≤ k. Then S is stable (resp. admissible,
complete, preferred) in AF iff {it} is stable (respectively admissible, complete,
preferred) in the reduced AF (Ar

S , R
r
S).

Example 1 (cont’d) Since S = {1, 3} is conflict-free, M(AF ) can be turned
into the following reduced matrix according to the above rules (S is contracted
into {1}):

Mr
S(AF ) =

(

0 1
1 0

)

.

The corresponding reduced AF is (Ar
S , R

r
S) where Ar

S = {1, 2} and Rr
S =

{(1, 2), (2, 1)}. The graph of (Ar
S , R

r
S) is as follows:

Note that {1} is stable in (Ar
S , R

r
S), and S = {1, 3} is stable in AF .

Furthermore, we can extend the above idea to two disjoint conflict-free sub-
sets and turn the matrix of AF into a reduced matrix of less order.

Let S1 = {i1, i2, ..., ik} and S2 = {j1, j2, ..., jh} be two conflict-free subsets
of A such that S1 ∩ S2 = ∅. We try to contract the sub-block M cf (S1) and
M cf (S2) into two entries in the matrix and make them share the same status
as M cf (S1) and M cf (S2) wrt extension-based semantics. The matrix M(AF )
can be reduced into another matrix Mr

S1,S2
(AF ) of order n − k − h + 2 by the

following rules:
Let 1 ≤ t ≤ k and 1 ≤ s ≤ h. For each p such that 1 ≤ p ≤ k and p 6= t, and
each q such that 1 ≤ q ≤ h and q 6= s,
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1. for S1, adding row ip to the row it, adding column ip to the column it,
2. for S2, adding row jq to the row js, adding column jq to the column js, then
3. deleting row ip and column ip,
4. deleting row jq and column jq.

The matrixMr
S1,S2

(AF ) is called the reduced matrix wrt the disjoint conflict-
free subsets S1 and S2, or the reduced matrix wrt (S1, S2) for short.
Correspondingly, the original AF can be reduced into a new one with n−k−h+2
arguments by the following rules:
Let 1 ≤ t ≤ k and 1 ≤ s ≤ h. For each p such that 1 ≤ p ≤ k and p 6= t, each q
such that 1 ≤ q ≤ h and q 6= s, each i ∈ A \ S1, and each j ∈ A \ S2,

1. adding (it, i) to R if (ip, i) ∈ R, adding (i, it) to R if (i, ip) ∈ R,
2. adding (js, j) to R if (jq, j) ∈ R, adding (j, js) to R if (j, jq) ∈ R,
3. deleting all (ip, i) and (i, ip) from R,
4. deleting all (jq, j) and (j, jq) from R.

Let Rr
S1,S2

denote the new relation and Ar
S1,S2

= {it, js} ∪ (A \ (S1 ∪ S2)),
then (Ar

S1,S2
, Rr

S1,S2
) is a new AF called the reduced AF wrt (S1, S2). Obviously,

Mr
S1,S2

(AF ) is exactly the matrix of (Ar
S1,S2

, Rr
S1,S2

).

Theorem 8 Given AF = (A,R) with A = {1, 2, ..., n}. Let S1 = {i1, i2, ..., ik}
and S2 = {j1, j2, ..., jh} be two conflict-free subsets of AF such that S1 ∩S2 = ∅.
Let 1 ≤ t ≤ k and 1 ≤ s ≤ h, then

– S1 is stable (respectively admissible, complete, preferred) in AF if and only if
{it} is stable (respectively admissible, complete, preferred) in (Ar

S1,S2
, Rr

S1,S2
),

– S2 is stable (respectively admissible, complete, preferred) in AF if and only if
{js} is stable (respectively admissible, complete, preferred) in (Ar

S1,S2
, Rr

S1,S2
).

Example 3 Let AF = (A,R) with A = {1, 2, 3, 4} and R = {(1, 2), (2, 3),
(3, 4), (4, 1)}. The matrix and graph of AF are as follows.

M(AF ) =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









Since S1 = {1, 3} and S2 = {2, 4} are two disjoint conflict-free subsets of
AF , M(AF ) can be turned into the following reduced matrix according to the
above rules(S1 is contracted into {1} and S2 is contracted into {2}):

Mr
S1,S2

(AF ) =

(

0 1
1 0

)

Obviously, {1} and {2} are stable in (Ar
S1,S2

, Rr
S1,S2

). By Theorem 8, S1 =
{1, 3} and S2 = {2, 4} are stable in AF .

Theorem 7 and Theorem 8 make it more efficient for us to determine whether
a conflict-free subset is one of the basic extensions.
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5.2 Matrix Reduction Based on Division of AFs

The division of AFs into sub-AFs has already been considered [17] for handling
dynamics of AFs. Indeed many other issues in AFs can be dealt with by the
division of AFs. For example, the grounded extension can be viewed as the
union of two subsets IAF and E: IAF consists of the initial arguments of AF
and E is the grounded extension of the remaining sub-AF AF |B wrt IAF (where
B = A \ (IAF ∪R+(IAF ))).

According to the maximality criterion, a preferred extension coincides with
an admissible extension E from which the associated remaining sub-AF AF |C
(where C = A \ (E ∪R+(E))) has no nonempty admissible extension.

Building Grounded and Preferred Extensions Let S be an admissible
extension of AF = (A,R), and AF1 be the remaining sub-AF wrt S. The basic
extensions of AF1 can be determined by applying the theorems obtained in
Section 4. So, the matrix M(AF1) becomes the main object of our concentration.
We call it the reduced matrix wrt the extension S.

For each extension T of AF1, the matrix M(AF ) can be turned into a stan-
dard form wrt S ∪ T by a sequence of dual interchanges. Based on the results
obtained in Section 4, we have the following theorem.

Theorem 9 Let AF = (A,R), S ⊆ A be an admissible extension of AF , and
B = A\(S∪R+(S)). If T ⊆ B is an admissible (resp. stable, complete, preferred)
extension of the remaining sub-AF AF |B wrt S, then S ∪ T is an admissible
(resp. stable, complete, preferred) extension of AF .

Example 4 Let AF = (A,R) with A = {1, 2, 3, 4} and R = {(1, 2), (2, 1),
(2, 4), (3, 4)}. The matrix and graph of AF are as follows.

M(AF ) =









0 1 0 0
1 0 0 1
0 0 0 1
0 0 0 0









S = {3} is an admissible extension of AF , R+(S) = {4} and B = A \ (S ∪
R+(S)) = {1, 2}. So, the matrix and graph of the remaining sub-AF wrt S are
as follows:

M(AF |B) =

(

0 1
1 0

)

Since T = {2} is admissible in AF |B, by Theorem 9, we conclude that
S ∪ T = {2, 3} is admissible in AF .

These combination properties of extensions can also be used for computing
related extensions.
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A grounded extension can be built incrementally starting from an admissible
extension. If AF has no initial argument, then the grounded extension S of
AF is empty. Otherwise, let I1 be the set of initial arguments of AF , then
I1 is an admissible extension of AF . Next, we consider the sub-AF AF |B1

where B1 = A \ (I1 ∪ R+(I1)). If it has no initial argument, then the grounded
extension S = I1. Otherwise, let I2 be the set of initial arguments of AF |B1

and B2 = B1 \ (I2 ∪ R+(I2)). By Theorem 9, I1 ∪ I2 is an admissible extension
of AF . This process can be done repeatedly, until some AF |Bt

has no initial
argument, where 1 ≤ t ≤ n. It is easy to verify that S = I1 ∪ ... ∪ It is the
grounded extension of AF .

A preferred extension is defined as a maximal (wrt set inclusion) admissible
extension. So, it can be also built incrementally starting from some admissible
extension. Let S1 be any admissible extension of AF , and B1 = A\(S1∪R

+(S1)).
If B1 = ∅ or the sub-AF AF |B1

does not have nonempty admissible extension,
then S1 is a preferred extension of AF . Otherwise, let S2 be an nonempty ad-
missible extension. Then, S1 ∪ S2 is an admissible extension of AF by Theorem
9. Let B2 = B1 \ (S2 ∪ R+(S2)), then it is a sub-AF of AF |B1

. This process
can be done repeatedly, until some sub-AF AF |Bs

has no nonempty admissible
extension where 1 ≤ s ≤ n. It is easy to verify that S = S1∪ ...∪St is a preferred
extension of AF .

Handling Dynamics of Argumentation Frameworks In recent years,
the research on dynamics of AFs has become more and more active [5, 6, 9,
10, 15, 17, 21]. In [10] Cayrol et al. introduced change operations to describe
the dynamics of AFs, and systematically studied the structural properties for
change operations. Based on these notions, Liao et al.[17] concentrated their
attention on the directionality of AFs and constructed a division-based method
for dynamics of AFs. In the following, we introduce the reduction of a matrix
wrt an extension in an unattacked subset of the AF and give the decomposition
theorem of extensions for dynamics of AFs.

Directionality is a basic principle for extension-based semantics. According
to [1, 3], the following semantics have been proved to satisfy the directionality
criterion: grounded semantics, complete semantics, preferred semantics and ideal
semantics. Directionality is based on the unattacked subsets. So, we recall the
definition of unattacked subset.

Definition 11 Given AF = (A,R), a non-empty set U ∈ A is unattacked if
and only if there is no a ∈ A \ U such that a attacks U .

Let U be an unattacked subset of AF = (A,R). Let E1 be an admissible
extension in the sub-AF AF |U , then we have a remaining sub-AF AF |T with
T = A \ (E1 ∪ R+(E1)). In order to determine the extensions of AF |T , we can
apply the theorems obtained in Section 4. So, the matrix M(AF |T ) becomes
the main object of our concentration. We call it the reduced matrix wrt E1.
For each conflict-free subset E2, we can turn the matrix M(AF ) into one of the
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standard forms wrt E1 ∪ E2 by a sequence of dual interchanges. Based on the
results obtained in Section 4, we derive the following theorem.

Theorem 10 Let AF = (A,R) and U an unattacked subset of AF . E ⊆ A is
an admissible extension of AF iff E1 = E∩U is admissible in the sub-AF AF |U
and E2 = E ∩ T is admissible in the remaining sub-AF AF |T wrt E1 (where
T = A \ (E1 ∪R+(E1))).

Example 4 (cont’d) U = {1, 2} is an unattacked subset of AF , and E1 = {1}
is an admissible extension in the sub-AF AF |U . Since T = A\ (E1∪R+(E1)) =
{3, 4}, the matrix and graph of the remaining sub-AF wrt E1 are as follows:

M(AF |T ) =

(

0 1
0 0

)

Obviously, {3} is admissible in AF |T . According to Theorem 10, {1, 3} is
admissible in AF .

Remark 4 Theorem 10 still holds for other extensions which satisfy the
directionality principle. Namely, we can replace ”admissible” by ”complete, pre-
ferred, grounded or ideal”.

Theorem 10 provides a general result for AFs. However it happens that this
result plays an important role when applied to dynamics of AFs. In order to
describe this application, we need to present basic notions related to dynamics
of AFs. We focus on the work described in [17].

Let Uarg be the universe of arguments. Different kinds of change can be
considered on AF = (A,R). (1) adding (or deleting) a set of interactions between
the arguments in A, we denote this set by IA. (2) adding a set B ⊆ Uarg \ A
of arguments, we can also add some interactions related to it, including a set of
interactions between A and B and a set of interactions between the arguments
in B. The union of these two sets of interactions is denoted by IA:B . (3) deleting
a set B ⊆ A of arguments, we will also delete all the interactions related to it,
including the set of interactions between A\B and B and the set of interactions
between the arguments in B. The union of these two sets of interactions is
denoted by IA\B:B . (4) after deleting the set B ⊆ A of arguments, we can
continue to delete some interactions between the arguments in A \ B. This set
of interactions is denoted by IA\B , similar as in (1).

An addition is represented by a tuple (B, IA:B ∪ IA) with B ⊆ Uarg \A, and
a deletion is represented by a tuple (B, IA\B:B ∪ IA\B) with B ⊆ A.

Definition 12 ([17]) Given AF = (A,R). Let (B, IA:B ∪ IA) be an addition
and (B, IA\B:B ∪ IA\B) be a deletion. The updated AF wrt (B, IA:B ∪ IA) and
(B, IA\B:B ∪ IA\B)) is defined as follows:

AF⊕ = (A,R)⊕ (B, IA:B ∪ IA) = (A ∪B,R ∪ IA:B ∪ IA)
AF⊖ = (A,R)⊖ (B, IA\B:B ∪ IA\B) = (A \B,R \ (IA\B:B ∪ IA\B))
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Now, let us apply Theorem 10 to the study of dynamics of AFs. The following
two corollaries can be obtained directly.

Corollary 3 Let AF = (A,R), AF⊕ be the updated AF wrt an addition and U
an unattacked subset in AF⊕. If E1 is admissible in the sub-AF AF⊕ |U , and
E2 is admissible in the remaining sub-AF wrt E1, then E1 ∪ E2 is admissible
in AF⊕. Conversely, for each admissible extension E of AF⊕, E1 = E ∩ U is
admissible in AF⊕ |U and E2 = E ∩ T is admissible in AF⊕ |T .

Corollary 4 Let AF = (A,R), AF⊖ be the updated AF wrt a deletion and U an
unattacked subset in AF⊖. If E1 is admissible in the sub-AF AF⊖ |U , and E2 is
admissible in the remaining sub-AF AF⊖ |T wrt E1, then E1 ∪E2 is admissible
in AF⊖; Conversely, for each admissible extension E of AF⊖, E1 = E ∩ U is
admissible in AF⊖ |U and E2 = E ∩ T is admissible in AF⊖ |T .

Remark 5 The above two corollaries still hold if we replace ”admissible” by
”complete, preferred, grounded or ideal”.

Since they are based on the division of AF and the directionality principle,
the above two corollaries play a similar role as the main results in [17] when
applied to dynamics of AFs. The basic idea in [17] is to divide an updated
AF into three parts: an unaffected, an affected, and a conditioning part. The
status of arguments in the unaffected sub-framework remains unchanged, while
the status of the affected arguments is computed in a special argumentation
framework (called a conditioned argumentation framework) that is composed of
an affected part and a conditioning part. [17] has proved that under semantics
that satisfy the directionality principle the extensions of the updated framework
can be obtained by combining the extensions of an unaffected subframework and
the extensions of the conditioning part.

However, in our approach, the remaining sub-AF AF⊕ |T (or AF⊖ |T ) has a
simpler structure (and so is easier to compute) than the conditioning subframe-
work of [17].

6 Concluding Remarks and Future Works

The matrix approach of AFs was constructed as a new method for computing
basic extensions of AFs. For any conflict-free subset S, the matrixM(AF ) can be
turned into one of the two standard forms by a series of dual interchanges. And
thus, determining whether S is an extension can be achieved by checking some
sub-blocks related to S. The underlying set A of arguments can be divided into
three parts: the conflict-free set S, the attacked set R+(S) and the remaining
set A \ (S ∪ R+(S)). Deciding whether S is admissible only requires to check
whether the remaining set A \ (S ∪R+(S)) attacks S. In this sense, the matrix
approach is a structural (or integrated) method, which is different from checking
the defended status of every argument of S.

The matrix approach of AFs can be applied to find new theories of AFs. For
any conflict-free subset S of an AF, the matrix M(AF ) can be turned into a
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reduced matrix wrt S. The reduced matrix corresponds to a new AF with less
arguments obtained by contracting the conflict-free subset S into one argument.
This method has not appeared in the literature as we know. Moreover, for any
admissible extension E of an AF, we can turn the matrix M(AF ) into a reduced
matrix wrt E. The reduced matrix wrt extensions, when combining with the
division of AFs, can be used to handle topics related to the maximality and
directionality criteria. For example, we can compute the preferred extensions,
and deal with the dynamics of AFs. It remains to evaluate the computational
complexity of the operations. That is a first direction for further development of
our work.

The matrix approach can be used for other applications. One direction for
further research is to study the structural properties and status-based properties
of dynamics of AFs as defined by [10]. Another topic is related to the matrix
equation of AFs. We plan to find the equational representation of various ex-
tensions, by the solution of which we can obtain all the extensions wrt a fixed
semantics. An interesting attempt has been made in this direction by [16].
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