Effects of motor imagery training on service return accuracy in tennis: The role of imagery ability
Nicolas Robin, Laurent Dominique, Lucette Toussaint, Yannick Blandin, Aymeric Guillot, Michel Le Her

To cite this version:

HAL Id: hal-01529488
https://hal.archives-ouvertes.fr/hal-01529488
Submitted on 6 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effects of motor imagery training on service return accuracy in tennis: the role of imagery ability

Nicolas Robin¹, Laurent Dominique², Lucette Toussaint¹*, Yannick Blandin¹, Aymeric Guillot³, and Michel le Her²

¹Laboratoire “Performance, Motricité & Cognition” ²Laboratoire “Adaptation au Climat Tropical, Exercice & Société” ³Centre de Recherche et d’innovation sur le Sport

Abstract

This study examined how imagery ability could affect motor improvement following motor imagery training in tennis. Skilled tennis players were divided into 3 groups with regard to their MIQ scores (good imager, poor imager and control group). During a pre-test, participants physically performed 15 service returns towards a target. The motor imagery training period was included during physical training for 15 sessions and each session consisted of 2 series of 15 imagined trials and 15 physical trials. Some of the participants were required to use internal visual imagery (good and poor imager groups) while others were given a reading task (control group). Finally, 48 hours after the last training session, participants were submitted to a post-test similar to the pre-test. Results indicated that motor imagery improved service return, and that this improvement was better in good imagers than in poor imagers. The impact of motor imagery practice on motor performance, for skilled tennis players, is discussed.

Keywords: imagery ability, internal visual imagery, motor learning, tennis

In the context of motor action, motor imagery is a conscious process which requires that individuals mentally simulate an action without executing it. According to Paivio (1985), imagery is a frequently used technique in sport that usually benefits performance, although to a lesser extent than physical practice (see Feltz & Landers, 1983 for review). This improvement in performance has been reported in various motor skills sports such as basketball, table tennis, gymnastics and tennis (Féry, 2003; Li-Wei, Qi-Wei, Orlick & Zitzelsberger, 1992). Moreover, the combination of motor imagery and physical practice is the most efficient condition to improve performance compared to physical or motor imagery practice alone (Atienza, Balaguer & Garcia-Merita, 1998; Driskell, Cop- per & Moran, 1994). Furthermore, recent data showed that muscle fatigue induced by prolonged exercise, which can lead to performance impairment, did not alter motor imagery accuracy (Guillot, Haguenauer, Dittmar & Collet, 2005). These overall results underline the need to better understand the impact of mental practice on sport. In the present experiment, we will focus our attention on the effects of motor imagery training on service return accuracy in tennis.
According to Jeannerod (1999), the performance improvement following either physical or motor imagery training suggests that both are functionally similar and share a common system of action representation. Evidence supporting this issue comes from several studies relying on varied experimental paradigms such as chronometric analysis of mentally simulated actions (Decety & Michel, 1989; Papaxanthis, Schieppati, Gen-tili & Pozzo, 2002; Guillot & Collet, 2005 for a review), measurement of autonomic responses (Collet, Guillot, Bollet, Delhomme & Dittmar, 2003) and measurement of cerebral blood flow during imagery (Gerardin et al., 2000; Ingvar & Philipson, 1977). Altogether, results of these experiments strongly suggest that the cognitive mechanisms underlying elaboration, programming, and control of movements were involved both during physical and motor imagery practice (Decety & Grezes, 1999; Gallese & Goldman, 1998; Grezes & Decety, 2001; Jeannerod, 1999, for reviews). This close functional equivalence has been proposed as an important prerequisite for valid and effective mental practice, as well as for a better understanding of the mechanisms involved in motor imagery (see the PETTLEP model, Holmes & Collins, 2001).

However, it has been reported that the beneficial effects of motor imagery on motor performance are modulated by numerous factors (Hall, 2001; Martin, Moritz & Hall, 1999). Some of them will be taken into account in the present study to better understand the importance of motor imagery training on service return accuracy in tennis. Many authors have demonstrated that having optimal motor imagery effects requires sufficient expertise with regard to the simulated task (Hardy & Callow, 1999; Pie et al., 1996). The importance of imagery instructions given to performers as a function of task requirements for the enhancement of motor performance was also outlined by Callow and Hardy (2004). These instructions may encourage participants to use different sensory modalities, such as external/internal visual imagery or kinesthetic imagery. External visual imagery has been found to be more effective than internal visual imagery in tasks that rely heavily on form for their successful execution, such as kata, gymnastics routines, or drawing tasks (Féry, 2003; Hardy & Callow, 1999; White & Hardy, 1995). By contrast, some authors have demonstrated internal visual imagery’s superiority in tasks relying heavily on perceptual information, such as slalom task or racquet sport situations (Callow & Hardy, 2004; Hardy & Callow, 1999; White & Hardy, 1995). Moreover, internal visual imagery was supposed to facilitate the integration of temporal component of motor action (e.g., the rhythm of the motor execution). Finally, kinesthetic imagery has been found to favor the learning of tasks that emphasize inter-segmental coordination (Féry, 2003; Féry & Morizot, 2000, for the tennis serve) but was beneficial only with an adequate degree of expertise at a task (Hardy & Callow, 1999). It effectively appeared that non-expert athletes usually have greater difficulties in feeling the movement (Guillot, Collet & Dittmar, 2004).

Other researchers have investigated imagery ability as another moderating variable of the effectiveness of imagery practice. By means of the Movement Imagery Questionnaire (MIQ), (Hall & Pongrac, 1983), which allows differentiating good from poor imagers, they have demonstrated that good imagers improve at complex motor tasks more than poor imagers (Isaac, 1992), that good imagers acquire simple movements in less trials than poor imagers (Goss, Hall, Buckolz & Fishburne, 1986; Hall, Buckolz & Fishburne, 1989, 1992), and that good imagers are...
able to reproduce more accurate movement patterns (Hall et al., 1989) The authors concluded that good imagery ability facilitates the memory information encoded in the representation of actions that is used during motor imagery. In the same line, by recording autonomic nervous response, Roure et al. (1999) and Guillot et al. (2004) reported that the physiological response recorded after each instruction in good imagers attested to mental work during each trial. Conversely, in poor imagers, weaker physiological responses were recorded during initial trials, which then tended to disappear, attesting that subjects did not perform mental imagery or did not succeed in forming an accurate representation of movement. These works suggest that because athletes are usually required to imagine their movement as accurately as possible, their ability to form accurate images should be taken into consideration when investigating the effect of mental practice on motor performance. In the applied mental imagery model developed by Martin et al. (1999) to guide imagery use in sport, imagery ability effectively appears as a variable moderating the effects of imagery use on sport outcomes. In the present experiment, we tested the relationship between imagery ability and service return accuracy in tennis.

Finally, the effect of the environmental context in which motor imagery is carried out also appears to influence the effectiveness of imagery on motor learning (Hall, 2001; Holmes & Collins, 2001). Guillot, Collet and Dittmar (2005), using a task of service return in table tennis, investigated the effectiveness of motor imagery when performed in a context close to actual practice situations rather than in a neutral environment. They showed that environmental conditions, particularly tactile, proprioceptive and auditory information, helped athletes to visualize and feel sensations elicited by actual practice. Consequently, they suggested that table-tennis players should perform motor imagery in a situation close to the competition context, i.e. while wearing sports clothes, handling their paddle while standing in front of the table and starting mental imagery after the bounce of the ball on the table, such as just before actual serve.

To our knowledge, studies examining the importance of motor imagery in tennis have previously investigated the effects of imagery on the serve, during which the form is the principal component of the motor act (Atienza et al., 1998; Féry & Morizot, 2000). None of these studies investigated service return, during which the perception of the opponent’s action remains the principal component of the task. The goal of this study was then to evaluate whether imagery training could improve the accuracy of the service returns, and whether this improvement may be influenced by athletes’ imagery ability. The use of an internal visual imagery perspective was preferred because of its stronger impact on tasks with high perceptual requirements (Hardy & Callow, 1999; White & Hardy, 1995). Good and poor imagers were distinguished according to the ease or difficulty with which they were able to imagine movements. Tennis players were expected to enhance motor performance accuracy after a motor imagery training process and performance improvement was expected to be dependent upon athletes’ imagery abilities. As previously illustrated for laboratory tasks, we expected that service return accuracy would be better after mental practice for good imagers than for poor imagers.

**Method**
Participants

Eighty self-declared right-handed tennis players who played tennis with the right hand gave their informed consent to participate in the study. All were recruited in the “Académie Cédric Nouvel & Pascal Courtois, les Hauts de Nîmes,” played tennis for more than 7 years, and trained about 15 hours a week (for more than 3 years), competing at a regional or national level.

Material and task

The experiment was conducted in an indoor tennis court (Quick surface). On this ground, a 460 x 460 cm square was drawn with a white chalk (Figure 1). This square was divided into 46 “sub squares” of 10 cm. In the middle of the square, a target was indicated by a plastic red cone (diameter: 20 cm). Participants had to perform service return toward the target, as accurately as possible. Only forehand shots were performed (in a context similar to the one illustrated in Figure 1). When the returns were out of the square, they were considered invalid. The sub squares also allowed the experimenter to collect errors in amplitude (long/short) and direction (left/right) of each valid service return. Each trial was recorded by a video-recorder (type SHARP VLZ800S) located approximately 3 m behind the target. These video-recordings allowed to accurately collect the zone of the ball bounce in the square.

Serves were performed by 3 tennis monitors, who played toward the right serve box of the receiver. The monitors always served to the same place in the service box (see Figure 1). The speed of the serves, recorded by a radar (type R1000, Cordless MPH Radar Gun # R1000), was comprised between 130 and 170 km/h (see Table 1 for more details). Below or above this speed interval, serves were not taken into consideration. To avoid the risk of tiredness and lassitude, servers performed series of 10 serves and then took turns throughout the experimental sessions. Furthermore, all tennis players were required to return the same number of serves of each tennis monitor.

Measures

Before the experiment, participants completed the Movement Imagery Questionnaire (MIQ, Hall & Pongrac, 1983). It consists of 18 items which assess individual visual and proprioceptive imagery abilities. Each item corresponds to a separate movement, which was specifically described so that every person completing the questionnaire mentally simulates the same movements.
A variety of arm, leg, and whole body movements are incorporated in the MIQ and are relatively simple which ensures that most individuals are able to perform them. Completing an item requires several steps: First, the starting position for a movement is assumed. Second, the participant produces the movement. Third, the participant reassumes the starting position, and has to mentally simulate the movement (with either a visual or a proprioceptive imagery). Finally, the participant assigns a value according to a 7-point rating scale regarding the ease/difficulty with which he mentally simulates the movement. A low rating indicates that the movement is easy to imagine, while a high rating indicates a greater difficulty.

**Procedure**

With regard to the MIQ scores, 30 participants were retained (mean age 19 years, SD = 2.5 years). All of them had similar scores with regard to proprioceptive imagery (scores > 26) and were divided into 3 groups as a function of their visual imagery scores: good imager (n = 10; scores < 11), poor imager (n = 10; scores > 26) and control (n = 5 good imagers + n = 5 poor imagers) groups (see Goss et al., 1986 for similar participant selection).

**Week 1 - Pre-test session:** Participants physically performed 15 trials. During a trial, a tennis monitor performed a serve in the right service box and participants had to perform a service return as accurately as possible, in toward the target (Figure 1).

**Week 2 to 9 - Mental and physical training:** Participants were asked (during 15 sessions) to imagine 15 service returns as well as performing 15 actual trials. The 15 imagery trials were always performed before the 15 actual trials. This combination of mental and physical practice...
was performed 2 times per session, in order to have a total of 60 trials (2*15 of imagined trials and 2*15 of actual trials) During motor imagery, performed on the tennis court in front of the experimenter, good and poor imagers were required to perform internal visual imagery (imagining being inside his/her body as if there were looking with their own eyes), by focusing their attention on the ball trajectory and on the target This consign was recalled by the experimenter before each imagery session After each session, athletes were required to describe the content of their mental representation, to check that they had followed the instructions None of them reported having performed something other than external visual imagery Imagery practice was performed in the receiver “ready position” *(i.e. in a position similar to the one used when they physically wait for the serve)*, athletes wearing sport clothes and handling the tennis racket, as recommended by Guillot et al (2005) In the control group, the motor imagery task was replaced by a neutral task (reading a magazine) for a time equivalent to the duration of the 15 imagined trials (about 3 min)

Week 10 - Post-test: forty-eight hours after the end of the last training session, participants were submitted to a post-test, which was similar to the pre-test

Data analysis

For each service return, performed in the pre- and post-tests, the differences in amplitude (long and short) and direction (right and left) between the target and the first ball bounce were measured The mean absolute error (AE) and variable error (VE) for both the amplitude and direction components were computed and retained as dependent variables The serve speed and the number of invalid service returns were also computed for both the pre- and post-test The dependent variables were submitted to a 3 Group (good/poor imagers and control) x 2 Test (pre- and post-test) ANOVA with repeated measures on the second factor All significant main effects and interactions were broken down using the Newman-Keuls technique.

Results

Serve speed And invalid service Returns Analysis

As serve speed and accuracy of service returns are linked, a first statistical analysis was conducted on the mean speed of the 15 services performed in the pre- and post-tests ANOVA did not reveal any significant main effect of group, $F(2,27) = 0.16, p > 0.05$, of test, $F(1,27) = 0.01, p > 0.05$, or group x test interaction, $F(2,27) = 0.16, p > 0.05$ The mean serve speed averaged was 145 km/h Detailed means are illustrated in Table 1.

A second analysis was performed on the mean number of invalid service returns *(i.e. on returns that were out of the squaring)* ANOVA did not reveal any significant main effect of group, $F(2,27) = 0.11, p > 0.05$, of test, $F(1,27) = 0.03, p > 0.05$, or an interaction between these two factors, $F(2,27) = 0.86, p > 0.05$ The number of invalid service returns averaged 3.5 Detailed means are reported in Table 2
Absolute And variable errors analyses

AE and VE analyses for amplitude and direction were performed to examine the role played by imagery ability on improvement of service returns by comparing pre- and post-tests performance

The ANOVA computed on AE and on VE for amplitude revealed a significant main effect of group, $F(2,27) = 58.08$ and 17.25, $p < 0.05$, and of test, $F(1,27) = 8.73$ and 17.81, $p < 0.05$, as well as a significant group x test interaction, $F(2,27) = 6.31$ and 5.57, $p < 0.05$ for AE and VE, respectively. The breakdown of the interaction for AE and VE revealed that the errors decreased from the pre-test to the post-test in good and poor imager groups (Newman-Keuls, $p < 0.05$), while no change was evident for the control group (Newman-Keuls, $p > 0.05$) (See Figure 2). Moreover, for VE, post-hoc analyses revealed that good imagers performed significantly better than poor imagers ($p < 0.05$, Figure 3), whereas there was no significant difference between the groups for AE and for VE at the pre-tests ($p > 0.75$)

The ANOVA on AE and VE for direction also revealed a significant main effect of group, $F(2,27) = 24.66$ and 13.47, $p < 0.05$, and of test, $F(1,27) = 29.53$ and 30.02, $p < 0.05$, as well as a significant interaction between these two factors, $F(2,27) = 10.95$ and 5.94, $p < 0.05$ for AE and VE, respectively. As illustrated by Figure 3, the errors decreased from the pre- to the post-test in good and poor imager groups (Newman-Keuls, $p < 0.05$), while no change was observed in the control group ($p > 0.75$). Moreover, the post-hoc analyses revealed that good imagers were more accurate than poor imagers ($p < 0.05$, for AE), and that good imagers tended to be less variable than poor imagers ($p = 0.06$, for VE)

| Table 1. Mean serve speed (km/h) for all groups across pre-test and post-test (standard deviations). |
|---|---|---|
| Good Imagers | 146.2 (5.5) | 146.6 (6.7) |
| Poor Imagers | 144.7 (5.7) | 146.1 (6.4) |
| Control | 145.1 (5.8) | 144.4 (6.1) |

| Table 2. Number of invalid service returns for all groups across pre-test and post-test (standard deviations). |
|---|---|---|
| Good Imagers | 3.8 (1.2) | 3.4 (0.9) |
| Poor Imagers | 3.5 (1.2) | 3.6 (0.9) |
| Control | 3.4 (1.1) | 3.5 (1.0) |
Discussion

The aim of the study was to evaluate the effect of a motor imagery practice on motor performance of skilled tennis players, as well as the specific influence of participants’ imagery abilities, when using an internal visual imagery perspective.

Present results show that the combination of physical practice and motor imagery significantly improved the accuracy of the service returns in skilled performers. This result is in agreement with Hardy and colleagues’ viewpoint (Callow & Hardy, 2004; Hardy & Callow, 1999; White & Hardy, 1995), who suggested that an internal visual imagery has a positive effect on the acquisition and the performance of tasks that mainly depend on perception for their accurate execution. In such tasks, the mental rehearsal of actions is supposed to allow participants to better anticipate the environmental changes and to envisage their own action in specific conditions.
Note that the previous suggestion does not invalidate the potential effects of others imagery interventions (external visual imagery and/or kinaesthetic imagery) on service return improvement in tennis, the experimental protocol used in the present study being specifically focused on the effects of internal visual imagery practice compared to a no-imagery practice (control group).

More interestingly, the results of the present study indicate that imagery ability influences the impact of motor imagery in enhancing the performance of the service returns. Indeed, after 15 motor imagery sessions, good imagers significantly improved their accuracy for direction and were less variable when compared to poor imagers for amplitude (tendency was observed for direction). Moreover, poor imagers took advantage of imagery practice (when compared to control), although to a lesser extent than good imagers. Such findings agreed with previous research showing that individual imagery ability differences may influence the ease with which simple movement patterns can be learned (Goss et al., 1986), and improve the impact of motor imagery upon the accuracy of complex motor actions (Isaac, 1992). It is therefore postulated that good imagers generate more easily a mental representation of action than poor imagers. As suggested by Guillot et al. (2004), poor imagers doubtlessly encountered greater difficulties to form vivid and accurate images of movement. The results of the present study, showing that for direction accuracy, good imagers were more accurate than poor imagers, support this suggestion. It may be possible that poor imagers had difficulties forming an accurate representation of the localization of the target for the direction, whereas they would have had a correct representation of the amplitude (no difference between good and poor imagers was observed for AE). The latter result could be explained by the fact that skilled tennis players may pay more attention on the amplitude than on the direction of the service return, particularly when the serve is quite fast.

In spite of the limits linked to the use of questionnaires requiring athletes’ self-estimation of imagery ability, this experiment confirmed that the MIQ is a reliable test to evaluate the success of imagery practice in sport situations, as it was previously confirmed in laboratory tasks (Atenzia et al., 1994; Hall, 2001; Hall et al., 1989). According to Paivio (1986), these inter-individual differences would be the product of the interaction between experience and genetic variables. It is thus necessary to further consider the inter-individual differences in imagery ability, which appear to influence the effects of imagery practice on the learning and the performance on sporting skills (Hall, 2001).
The results obtained in this study indicated that the service return performances did not improve for the group who only had physical training (control group). The absence of any significant improvement for the control group may be explained by the fact that skilled players needed more than 15 sessions of 30 physical trials to increase the accuracy of the service returns. The increase of performance should necessitate many thousands of trials or more in order to refine motor action carried out in an automatic way (Schmidt, 1993) or improve environmental information reading (ball trajectory of serve, angle of the elbow or the wrist of the server). In our minds, the improvement of motor performance of high sporting performers could require that practice partly occurs in a non-usual condition, as experimented when physical practice and motor imagery are combined. This argument agrees with works that reported higher motor performance when physical training is combined with motor imagery than when it is not (Atenzia et al., 1998; Driskell et al., 1994).

The imagery ability effect observed in our experiment confirms the role played by motor imagery on the performance of skilled tennis players. The beneficial effect of motor imagery could be due to either its motivational role (Paivio, 1985) or cognitive processes that supplement those induced...
by physical practice. As suggested by Hardy (1997), imagery practice is of interest if it generates images that give complementary information compared with information directly available during physical practice of the task. In the present experiment, instructions given to the two imagery groups required participants to focus their attention on the trajectory of the ball and on the target. However, internal visual imagery perspective focusing participant’s attention on the trajectory of the ball and on the target should be effective only for skilled tennis players, who highly automatized the knowledge of the service returns (Reed, 2002). By contrast, focusing attention on the racket movements should be more relevant for beginners. Indeed, Wulf, McNevin, Fuchs, Ritter & Toole (2000) have shown that the improvement of the chip for golf beginners is better when participants focused their attention on the club (movement of pendulum, way and acceleration during impact) than on the trajectory of the ball. Some experiments are actually undertaken in our laboratory in order to investigate the importance of an attentional adequate focus during motor imagery as a function of the level of expertise of participants.

The imagery ability effect observed in our study could also be due to individual preferences with regard to the specific imagery modality used. The influence of sensory dominance on motor control, which differs across individuals, was reported in various motor tasks (Boulinguez, Toussaint, Abed-Meraïm & Collignon, 2001; Coello, Milleville-Penel & Orliaguet, 2004; Gullaud-Toussaint & Vinter, 2003). Some subjects favored visual control, while others favored proprioceptive control when producing accurate movements. If functional equivalence between physical and imagery practice appears as an important prerequisite for valid and effective mental practice (Holmes & Collins, 2001; Jeannerod, 1999), then it may be possible that modifying the imagery script leads participants from the poor imager group to better improve their performance. For this purpose, imagery script should require participants to image a motor action from their preferred sensory modality. Further research will be conducted in our laboratory to identify how imagery practice can be administered appropriately, with regard to sensory individual preferences, to maximize its potential effect.

**Conclusion**

The results obtained in the present study highlight the effect of the internal visual imagery perspective on the service return accuracy in skilled tennis players, as well as the necessity to take into consideration athletes’ imagery abilities to properly individualize motor imagery and motor learning. Further research will be needed to investigate the effects of motor imagery in poor imagers in greater detail, and to test whether it may be individualized as a function of inter-individual differences and/or expertise level.

**References**

Boulinguez, P, Toussaint, L, Abed-Meraïm, B, & Collignon, F (2001) Nature of the perceptual encoding of hand positions according to subject’s perceptuomotor expertise *Perceptual and Motor Skills*, 93, 24-30


Decety, J, & Grezes, J (1999) Neural mechanisms subserving the perception of human actions *Trends in Cognitive Sciences*, 3, 172-178

Decety, J, & Michel, F (1989) Comparative analysis of actual and mental movement times in two graphics tasks *Brain and Cognition*, 11, 87-97


Hall, C (2001) Measurement imagery abilities and imagery use Advances in sport and exercise psychology measurement *Purdue University Editor, 9*, 165-172


Hall, C, Buckolz, E, & Fishburne, G (1989) Searching for a relationship between imagery ability and memory of movements *Journal of Human Movement Studies, 17*, 89-100


Hardy, L (1997) Three myths about applied consultancy work *Journal of Applied Sport Psychology, 9*, 277-294

Hardy, L, & Callow, N (1999) Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important *Journal of Sport and Exercise Psychology, 21*, 95-112


Li-Wei, Z, Qi-Wei, M, Orlick, T, & Zitzelsberger, L (1992) The effect of mental-imagery training on performance enhancement with 7-10 year-old children *The Sport Psychologist, 6*,
