W. J. Mckiver and Z. Neufeld, Resonant plankton patchiness induced by large-scale turbulent flow, Phys. Rev. E, vol.83, p.16303, 2011.

R. Stocker, Marine microbes see a sea of gradients, Science, vol.338, pp.628-633, 2012.

J. R. Taylor and R. Stocker, Trade-offs of chemotactic foraging in turbulent water, Science, vol.338, pp.675-679, 2012.

W. J. Pasciak and J. Gavis, Transport limitation of nutrient uptake in phytoplankton, Limnol. Oceanogr, vol.19, pp.881-888, 1974.

R. Margalef, Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta, vol.1, pp.493-509, 1978.

L. Arin, X. A. Morán, and M. Estrada, Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): short term variability related to mesoscale hydrodynamics, J. Plankton Res, vol.24, pp.1019-1033, 2002.

D. A. Machado, C. L. Marti, and J. Imberger, Influence of microscale turbulence on the phytoplankton of a temperate coastal embayment, Western Australia. Estuar. Coast. Shelf S, vol.145, pp.80-95, 2014.

F. Peters, L. Arin, C. Marrasé, E. Berdalet, and M. M. Sala, Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium, J. Marine Syst, vol.61, pp.134-148, 2006.

E. Romero, F. Peters, and C. Marrasé, Dynamic forcing of coastal plankton by nutrient imbalances and match-mismatch between nutrients and turbulence, Mar. Ecol-Prog. Ser, vol.464, pp.69-87, 2012.

M. Pahlow, U. Riebesell, and D. A. Wolf-gladrow, Impact of cell shape and chain formation on nutrient acquisition by marine diatoms, Limnol. Oceanogr, vol.42, pp.1660-1672, 1997.

, Scientific RepoRts |, vol.7, p.3826

R. Margalef, Turbulence and marine life, Sci. Mar, vol.61, pp.109-123, 1997.

T. Wyatt, Margalef 's mandala and phytoplankton bloom strategies, Deep Sea Res. Pt II, vol.101, pp.32-49, 2014.

L. Karp-boss and P. A. Jumars, Motion of diatom chains in steady shear flow, Limnol. Oceanogr, vol.43, pp.1767-1773, 1998.

A. D. Barton, B. A. Ward, R. G. Williams, and M. J. Follows, The impact of fine-scale turbulence on phytoplankton community structure, Limnol. Oceanogr. Fluids Environ, vol.4, pp.34-49, 2014.

S. C. Doney, M. R. Abbott, J. J. Cullen, D. M. Karl, and L. Rothstein, From genes to ecosystems: the ocean's new frontier, Front. Ecol. Environ, vol.2, pp.457-466, 2004.

X. Giraud, C. Le-quéré, and L. C. Da-cunha, Importance of coastal nutrient supply for global ocean biogeochemistry, Global Biogeochem. Cy, vol.22, p.2025, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00765332

A. Falciatore, M. Ribera-d'-alcalà, P. Croot, and C. Bowler, Perception of environmental signals by a marine diatom, Science, vol.288, pp.2363-2366, 2000.

N. Tuteja and S. Mahajan, Calcium signaling network in plants: an overview, Plant Signal. Behav, vol.2, p.2633903, 2007.

B. Bailleul, An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light, Proc. Natl. Acad. Sci. USA, vol.107, pp.18214-18219, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00587670

S. Coesel, Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity, EMBO Rep, vol.10, pp.655-661, 2009.

F. A. Depauw, A. Rogato, M. Ribera-d'-alcalà, and A. Falciatore, Exploring the molecular basis of response to light in marine diatoms, J. Exp. Bot, vol.63, pp.1575-1591, 2012.

E. Villar, Environmental characteristics of Agulhas rings affect interocean plankton transport, Science, vol.348, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01893637

P. G. Falkowski, R. T. Barber, and V. Smetacek, Biogeochemical controls and feedbacks on ocean primary production, Science, vol.281, pp.200-206, 1998.

C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. G. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components, Science, vol.281, pp.237-240, 1998.

P. Wang, H. Shen, and P. Xie, Can hydrodynamics change phosphorus strategies of diatoms?-Nutrient levels and diatom blooms in lotic and lentic ecosystems, Microb. Ecol, vol.63, pp.369-382, 2012.

P. G. Falkowski, Ocean Science: The power of plankton, Nature, vol.483, pp.17-20, 2012.

I. Lozovatsky, M. Figueroa, E. Roget, H. J. Fernando, and S. Shapovalov, Observations and scaling of the upper mixed layer in the North Atlantic, J. Geophys. Res.-Oceans, vol.110, 2005.

A. Amato, TURBOGEN: Computer-controlled vertically oscillating grid system for small-scale turbulence studies on plankton, Rev. Sci. Instrum, vol.87, p.35119, 2016.

M. Gherardi, Regulation of chain length in two diatoms as a growth-fragmentation process, Phys. Rev. E, vol.94, p.22418, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01528511

C. De-vargas, Eukaryotic plankton diversity in the sunlit ocean, Science, vol.348, 2015.

A. E. Allen, Evolution and metabolic significance of the urea cycle in photosynthetic diatoms, Nature, vol.473, pp.203-207, 2011.

J. Ashworth, Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana, Proc. Natl. Acad. Sci. USA, vol.110, pp.7518-7523, 2013.

S. J. Bender, C. A. Durkin, C. T. Berthiaume, R. L. Morales, and E. V. Armbrust, Transcriptional responses of three model diatoms to nitrate limitation of growth, Front. Mar. Sci, vol.1, 2014.

O. Levitan, Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress, Proc. Natl. Acad. Sci. USA, vol.112, pp.412-417, 2015.

S. Park, G. Jung, Y. Hwang, and E. Jin, Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance, Planta, vol.231, pp.349-360, 2010.

R. N. Carvalho, S. K. Bopp, and T. Lettieri, Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[?]pyrene, PLoS ONE, vol.6, p.26985, 2011.

E. V. Armbrust, The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism, Science, vol.306, pp.79-86, 2004.

C. Bowler, The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.456, pp.239-244, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00910244

V. Di-dato, Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of Nitric Oxide Synthase genes in diatoms, Sci. Rep, vol.5, p.12329, 2015.

P. J. Keeling, The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing, PLoS Biol, vol.12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01109521

G. K. Batchelor, Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity, J. Fluid Mech, vol.5, pp.113-133, 1959.

H. S. Garrison and K. W. Tang, Effects of episodic turbulence on diatom mortality and physiology, with a protocol for the use of Evans Blue stain for live-dead determinations, Hydrobiologia, vol.738, pp.155-170, 2014.

K. R. Iversen, Effects of small-scale turbulence on lower trophic levels under different nutrient conditions, J. Plankton Res, vol.32, pp.197-208, 2010.

J. M. Landeira, Biophysical interactions control the size and abundance of large phytoplankton chains at the Ushant tidal front, PLoS ONE, vol.9, p.90507, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01100871

S. Esposito, V. Botte, D. Iudicone, and M. Ribera-d'-alcalà, Numerical analysis of cumulative impact of phytoplankton photoresponses to light variation on carbon assimilation, J. Theor. Biol, vol.261, pp.361-371, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00559150

J. Bergkvist, P. Thor, H. Jakobsen, S. A. Ngberg, and E. Selander, Grazer-induced chain length plasticity reduces grazing risk in a marine diatom, Limnol. Oceanogr, vol.57, pp.318-324, 2012.

A. B. Diekmann, M. A. Peck, L. Holste, M. A. St-john, and R. W. Campbell, Variation in diatom biochemical composition during a simulated bloom and its effect on copepod production, J. Plankton Res, vol.31, pp.1391-1405, 2009.

V. Stonik and I. Stonik, Low-molecular-weight metabolites from diatoms: Structures, biological roles and biosynthesis, Mar. Drugs, vol.13, pp.3672-3709, 2015.

C. Adams and B. Bugbee, Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon, J. Appl. Phycol, vol.26, pp.1351-1357, 2014.

A. R. Pratiwi, D. Syah, L. Hardjito, L. M. Panggabean, and M. T. Suhartono, Fatty acid synthesis by indonesian marine diatom. Chaetoceros gracilis, HAYATI J. Biosci, vol.16, pp.151-156, 2009.

M. A. Bromke, P. Giavalisco, L. Willmitzer, and H. Hesse, Metabolic analysis of adaptation to short-term changes in culture conditions of the marine diatom Thalassiosira pseudonana, PLoS ONE, vol.8, p.67340, 2013.

G. Dell'-aquila, Nutrient consumption and chain tuning in diatoms exposed to storm-like turbulence, Sci. Rep, vol.7, p.1828, 2017.

, Scientific RepoRts |, vol.7, p.3826

M. Skogen-chauton, P. Winge, T. Brembu, O. Vadstein, and A. M. Bones, Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles, Plant Physiol, vol.161, pp.1034-1048, 2013.

L. Boudière, Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells, Mol. BioSyst, vol.8, pp.2023-2035, 2012.

L. Dolch and E. Maréchal, Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum, Mar. Drugs, vol.13, pp.1317-1339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142057

A. Mosblech, I. Feussner, and I. Heilmann, Oxylipins: Structurally diverse metabolites from fatty acid oxidation, Plant Physiol. Bioch, vol.47, pp.511-517, 2009.

J. T. Hannich, K. Umebayashi, and H. Riezman, Distribution and functions of sterols ands phingolipids, Cold Spring Harb. Perspect. Biol, vol.3, p.4762, 2011.

D. Lingwood and K. Simons, Lipid rafts as a membrane-organizing principle, Science, vol.327, pp.46-50, 2010.

A. Moustafa, Genomic footprints of a cryptic plastid endosymbiosis in diatoms, Science, vol.324, pp.1724-1726, 2009.

H. Nguyen and L. Fauci, Hydrodynamics of diatom chains and semiflexible fibres, J. R. Soc. Interface, vol.11, 2014.

A. M. Young, L. Karp-boss, P. A. Jumars, and E. N. Landis, Quantifying diatom aspirations: Mechanical properties of chain-forming species, Limnol. Oceanogr, vol.57, pp.1789-1801, 2012.

V. K. Bhatia, Amphipathic motifs in BAR domains are essential for membrane curvature sensing, EMBO J, vol.28, pp.3303-3314, 2009.

N. S. Hatzakis, How curved membranes recruit amphipathic helices and protein anchoring motifs, Nat. Chem. Biol, vol.5, pp.835-841, 2009.

K. L. Madsen, V. K. Bhatia, U. Gether, and D. Stamou, BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature, FEBS Lett, vol.584, pp.1848-1855, 2010.

F. Gross and E. Zeuthen, The buoyancy of plankton diatoms: a problem of cell physiology, P. Roy. Soc. Lond. B Bio, vol.135, pp.382-389, 1948.

M. Estrada and E. Berdalet, Phytoplankton in a turbulent world, Sci. Mar, vol.61, pp.125-140, 1997.

R. R. Guillard, Culture of Marine Invertebrate Animals, pp.29-60, 1975.

W. Woelkerling, R. Kowal, and S. Gough, Sedgwick-rafter cell counts: a procedural analysis, Hydrobiologia, vol.48, pp.95-107, 1976.

L. Edler and M. Elbrächter, Microscopic and molecular methods for quantitative phytoplankton analysis, pp.13-20, 2010.

F. Musacchia, S. Basu, G. Petrosino, M. Salvemini, and R. Sanges, Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs, Bioinformatics, vol.31, pp.2199-2201, 2015.

J. Bernardes, G. Zaverucha, C. Vaquero, and A. Carbone, Improvement in protein domain identification is reached by breaking consensus, with the agreement of many profiles and domain co-occurrence, PLoS Comput. Biol, vol.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390566

J. C. Oliveros and . Venny, An interactive tool for comparing lists with Venn's diagrams, 2007.