G. R. Longhurst, Tmap7 User Manual, INEEL/EXT- 04-02352 (Idaho National Laboratory (INL)) (https, 2008.

K. Schmid, V. Rieger, and A. Manhard, Comparison of hydrogen retention in W and W/Ta alloys, Journal of Nuclear Materials, vol.426, issue.1-3, p.247
DOI : 10.1016/j.jnucmat.2012.04.003

C. Sang, et al 2014 Modelling of hydrogen isotope retention in the tungsten divertor of EAST during ELMy H-mode Fusion Eng, Des, vol.89, p.2214

E. A. Hodille, Macroscopic rate equation modeling of trapping/detrapping of hydrogen isotopes in tungsten materials, Journal of Nuclear Materials, vol.467, p.424
DOI : 10.1016/j.jnucmat.2015.06.041

URL : https://hal.archives-ouvertes.fr/hal-01230501

O. V. Ogorodnikova, J. Roth, and M. Mayer, 2003 Deuterium retention in tungsten in dependence of the surface conditions, J. Nucl. Mater, pp.313-319

J. Guterl, R. D. Smirnov, S. I. Krasheninnikov, M. Zibrov, and A. A. Pisarev, Theoretical analysis of deuterium retention in tungsten plasma-facing components induced by various traps via thermal desorption spectroscopy, Nuclear Fusion, vol.55, issue.9, p.93017
DOI : 10.1088/0029-5515/55/9/093017

T. Ahlgren, K. Heinola, K. Vörtler, and J. Keinonen, Simulation of irradiation induced deuterium trapping in tungsten, Journal of Nuclear Materials, vol.427, issue.1-3, p.152
DOI : 10.1016/j.jnucmat.2012.04.031

A. Hu and A. Hassanein, Modeling hydrogen isotope behavior in fusion plasma-facing components, Journal of Nuclear Materials, vol.446, issue.1-3, p.56
DOI : 10.1016/j.jnucmat.2013.11.033

E. A. Hodille, et al 2016 Study of hydrogen isotopes behavior in tungsten by a multi trapping macroscopic rate equation model Phys. Scr, p.14011, 2016.

G. Kalinin, R&D: vacuum vessel and in-vessel components: materials development and test Fusion Eng, Des, vol.55, p.231, 2001.
DOI : 10.1016/s0920-3796(01)00213-7

R. Bisson, Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature, Journal of Nuclear Materials, vol.467, p.432, 2015.
DOI : 10.1016/j.jnucmat.2015.07.028

URL : https://hal.archives-ouvertes.fr/hal-01230492

S. Markelj, situ nuclear reaction analysis of D retention in undamaged and self-damaged tungsten under atomic D exposure Phys. Scr, p.14047, 2014.

M. Poon, A. A. Haasz, and J. W. Davis, Modelling deuterium release during thermal desorption of D+-irradiated tungsten, Journal of Nuclear Materials, vol.374, issue.3, p.390, 2008.
DOI : 10.1016/j.jnucmat.2007.09.028

Y. Liu, Vacancy trapping mechanism for hydrogen bubble formation in metal, Physical Review B, vol.390, issue.391, p.172103, 2009.
DOI : 10.1103/PhysRevLett.92.175503

K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen, Hydrogen interaction with point defects in tungsten, Physical Review B, vol.21, issue.9, p.94102, 2010.
DOI : 10.1016/j.jnucmat.2007.01.110

D. F. Johnson, E. A. Carter, K. Ohsawa, J. Goto, M. Yamakami et al., Hydrogen in tungsten: absorption, diffusion, vacancy trapping, and decohesion Trapping of multiple hydrogen atoms in a tungsten monovacancy from first principles Phys, J. Mater. Res. Rev. B, vol.2517, issue.82, pp.315-184117, 2010.

Y. You, et al 2013 Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals AIP Adv, p.12118

N. Fernandez, Y. Ferro, and D. Kato, 2015 Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models Acta Mater, p.307
DOI : 10.1016/j.actamat.2015.04.052

E. A. Hodille, Simulations of atomic deuterium exposure in self-damaged tungsten, Nuclear Fusion, vol.57, issue.5, p.56002
DOI : 10.1088/1741-4326/aa5aa5

URL : https://hal.archives-ouvertes.fr/hal-01528018

W. Xiao and W. T. Geng, Role of grain boundary and dislocation loop in H blistering in W: A density functional theory assessment, Journal of Nuclear Materials, vol.430, issue.1-3, p.132
DOI : 10.1016/j.jnucmat.2012.07.013

H. Zhou, Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism, Nuclear Fusion, vol.50, issue.2, p.25016, 2010.
DOI : 10.1088/0029-5515/50/2/025016

K. Schmid, V. Toussaint, U. Schwarz-selinger, and T. , Transport of hydrogen in metals with occupancy dependent trap energies, Journal of Applied Physics, vol.48, issue.13, p.134901
DOI : 10.1007/978-3-642-73513-4

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM ??? The stopping and range of ions in matter (2010), SRIM?the stopping and range of ions in matter, p.1818, 2010.
DOI : 10.1016/j.nimb.2010.02.091

R. Frauenfelder, Solution and Diffusion of Hydrogen in Tungsten, Journal of Vacuum Science and Technology, vol.6, issue.3, p.388, 1969.
DOI : 10.1116/1.1492699

G. Lu, H. Zhou, and C. S. Becquart, A review of modelling and simulation of hydrogen behaviour in tungsten at different scales, Nuclear Fusion, vol.54, issue.8, p.86001
DOI : 10.1088/0029-5515/54/8/086001

T. Tanabe, 2014 Review of hydrogen retention in tungsten Phys. Scr, p.14044, 2014.

A. Oudriss, et al 2012 Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel Acta Mater, p.6814

T. Engel, H. Niehus, and E. Bauer, 0):I. The p(2 × 1) structure, Adsorption of oxygen on W Surf. Sci, vol.1, issue.52, p.237, 1975.

X. Kong, The role of impurity oxygen in hydrogen bubble nucleation in tungsten, Journal of Nuclear Materials, vol.433, issue.1-3, p.357, 2013.
DOI : 10.1016/j.jnucmat.2012.10.024