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As distributed IoT applications become larger and more complex, the pure processing

of raw sensor and actuation data streams becomes impractical. Instead, data streams
must be fused into tangible facts and these pieces of information must be combined

with a background knowledge to infer new pieces of knowledge. And since many IoT

applications require almost real-time reactivity to stimulus of the environment, such in-
formation inference process has to be performed in a continuous, on-line manner. This

paper proposes a new semantic model for data stream processing and real-time reasoning
based on the concepts of Semantic Stream and Fact Stream, as a natural extension of
Complex Event Processing (CEP) and RDF (graph-based knowledge model). The main

advantages of our approach are that: (a) it considers time as a key relation between

pieces of information; (b) the processing of streams can be implemented using CEP; (c)
it is general enough to be applied to any Data Stream Management System (DSMS).

We describe a scenario about patients flux monitoring in a hospital as an example of
prospective application. Last, we will present challenges and prospects on using ma-

chine learning and induction algorithms to learn abstractions and reasoning rules from
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a continuous data stream.

Keywords: Internet of Things (IoT); sensors; data streams; complex event processing

(CEP); semantic reasoning; inference; machine learning.

1. Introduction

Several complex IoT applications, such as manufacturing industry, transportation

systems and healthcare, put hard real time requirements on the acquisition and

processing of sensor data for identifying situations and extracting information from

systems’ operations and its environment. These typically require on-line process-

ing of continuous streams of sensor data (Data Stream Processing), sensor fusion

techniques, pattern recognition and timely and autonomous systems control.

However, so far in current IoT systems, sensing and actuation is mostly done

at the bare bones data level, whereas many IoT applications demand higher level

situation awareness of – and reasoning about – the systems’ states and the physical

environment where they operate. For this to be possible, it is necessary to have

comprehensive semantic models for data stream analysis and actuation. Semantic

models are formally defined concepts and relations on which reasoning engines can

operate to derive new bits of information and knowledge about a system and its

environment. The main problem is that current semantic models (designed for the

Semantic Web) are not suitable for efficient and real-time reasoning. Current data

analysis for IoT systems is either done off-line or lacks any semantic-based reasoning.

For example, consider a production plant in the near future, where several –

mobile or stationary – robots operate in a product assembly and interact with each

other to hand over parts and tools of the assembly line. Suddenly, there is a short

power outage and the assembly line stops for a few seconds, so that some robots go

back to their consistent initial states, while others continue their activity (e.g., on

battery power) and only stop when their sensors notice that the production line is

not advancing. In this case, the robots have to “understand” what has happened,

and have to “know” which of the machinery (and robots) are in which state when

activity is resumed, as well as the assembly stage of items being produced. And like

magic, only a few seconds after energy is back, the robots synchronize with each

other, identify missed steps in the assembly process of each item, and resume coop-

erating again. Such knowledge and understanding is only possible because all robots

have not only a semantic model of their own state, but also situational awareness,

i.e. a comprehensive model of the production process as a whole and their role in

the entire process. The semantic model furthermore describes possible localized and

global problems of the entire production process, as well as individual and specific

actuation plans for some situations. As all possible situations cannot be represented

in a model, the robots have to classify features, combine situational patterns and

combine parts of specific action plans. In the aforementioned IoT scenario, the

robots would be capable of such fast recovery of the manufacturing process because

their situational understanding (i.e. semantic-centered inference/reasoning process)
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is executed very fast, with almost no delay, as soon as each robot’s operational

capability is back.

With the goal of finding a suitable semantic model for IoT, this paper proposes

a novel approach for real-time symbolic reasoning based on the concepts of Seman-

tic Stream and Fact Stream, as natural extensions of Complex Event Processing

(CEP) [19] and RDF (graph-based knowledge model) [10]. The main advantages

of our approach are that: (a) it uses the timestamp and co-location information

to correlate actions/events happening at different real-world entities (i.e. objects

and subjects); (b) the online processing of semantic streams can be implemented

using conventional CEP technology and semantic reasoning approaches; (c) using

ontology-based reasoning over a knowledge base, it is possible not only to deduce

future or indirect events that would not be detected through CEP, but also to gen-

erate new CEP rules for the stream analysis; (d) the approach is generic enough

to be applied to many Data Stream Management Systems (DSMS). This research

is being carried out in the scope of the ESMOCYP cooperation project between

PUC-Rio, Federal University of Maranhão and University of Stuttgart. We are cur-

rently developing a prototype of the semantic stream reasoning using ContextNet,

our distributed and scalable middleware for the Internet of Mobile Things [22].

It is a mobile-cloud architecture where several interconnected CEP agents can be

deployed both in a cloud/cluster [5], as well as on Android mobile devices [21].

The paper is structured as follows. In Section 2, we explain the basic concepts of

Complex Event Processing and list some common approaches for modeling knowl-

edge and performing reasoning. Section 3 explains the two steps of semantic stream

reasoning. In Section 4, we present a scenario to explain how our reasoning process

would be performed using Bluetooth beacon sensors wearable by patients into a

hospital emergency environment. Section 5 discusses related work. In Section 6, we

discuss the benefits of our approach and prospects. Section 7 presents an initial

analysis of how machine learning and induction algorithms could help in automati-

cally or semi-automatically extracting stream analysis patterns and rules. Section 8

then concludes the paper.

2. Fundamentals

2.1. Complex Event Processing

Complex Event Processing (CEP) [19] provides a rich set of concepts and operators

for processing events, which include the CQL-like (Continuous Query Language)

[4] queries, rules, primitive functions (aggregation, filtering, transformation, etc.)

and production of derived events. A CEP workflow continuously processes incom-

ing events, analyses and manipulates them, and outputs derived events that are

delivered to event consumers. These output usually represent notifications about

detected situations of interest to the applications.

The processing of events is described by CEP rules, which are Event-Condition-

Actions that combine continuous query primitives with context operators (e.g., tem-
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poral, logical, quantifiers) on received events, checking for correlations among these

events, and generating complex (or composite) events that summarize the correla-

tion of the input events. For example, a split rule takes an input event and creates

a set of events, while a filter rule only outputs events that satisfy a given criteria.

Rules can also operate on a collection of events, for example, an aggregate rule

outputs a single event by executing a function on the grouped events, while a join

transformation tries to correlate events from various data streams. Another impor-

tant concept in CEP is that of sliding time and event windows. A time window is

a temporal context that subdivides the stream of events into intervals, where CEP

rules and operators are applied only to the events within each window. CEP sup-

ports three sorts of windows: landmark, sliding and fading, the latter being a sliding

window where a decay factor λ is applied to the events according to their age, i.e.

more recent events have higher importance than older events. Most CEP systems

have the concept of Event Processing Agents (EPAs), which are software modules

that implement one transformation within the event processing workflow. The type

of an EPA is defined by the rules it implements, such as filtering, counting or spe-

cific event pattern detection. Note that rules are hand written by experts. We will

address in Section 7, a preliminary analysis of how machine learning and induction

algorithms could help in, automatically or semi-automatically, constructing rules as

well as extracting patterns.

2.2. Knowledge Representation and Reasoning Approaches

There are plenty of Semantic Models that represent knowledge about a system and

its environment, but almost all of them have problems of scale (i.e. the reasoning has

high computational complexity), and thus are not suitable for real-time reasoning.

The main semantic approaches are (see, e.g., for a survey and comparison in [20]):

• Frame Based Models: A frame is an artificial intelligence data structure

used to divide knowledge into substructures by representing “stereotyped

situations”. They are used in artificial intelligence Frame languages.

• Conceptual Graphs: are a logical formalism that includes classes, re-

lations, individuals and quantifiers. This formalism is based on semantic

networks, but it has direct translation to the language of first order predi-

cate logic, from which it takes its semantics.

• Description Logic: are logics serving primarily for formal description of

concepts and roles (relations). These logics were created from the attempts

to formalize semantic networks and frame based systems. Semantically they

are found on predicate logic,

• Ontologies: An ontology is a semantic/concept network that contains a

body of knowledge describing some domain, typically common sense knowl-

edge relating concepts.

• Semantic Web: RDF, RDFS and OWL: RDF (Resource Description

Framework) is a framework for representing information about resources in
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a graph model, where information is represented by triples (subject, predi-

cate, object). RDFS (RDF Schema) extends RDF vocabulary to allow de-

scribing taxonomies of classes and properties. It also extends definitions for

some of the elements of RDF, for example it sets the domain and range

of properties and relates the RDF classes and properties into taxonomies

using the RDFS vocabulary. Web Ontology Language (OWL) brings the

expressive and reasoning power of Description Logic (DL) to the semantic

web. It is divided into two levels: OWL Lite and OWL DL, which differ in

their expressive power and the deduction complexity. The limitation with

OWL Lite and OWL DL is that reasoning is hardly implemented in an

efficient way, and it also suffers from lack of scalability.

• Contextualized Ontologies: Contextualized Ontologies [9] are logical

structures of the form (Entity, Context, Link), where Entity and Context

are both ontologies and Link is a mapping between the Entity and the Con-

text. A link represents thus an alignment between self-contained ontologies,

describing how an entity can be viewed from within a specific context.

3. General Idea

The general idea of our semantic model and reasoning approach is to define two-

level CEP transformations, each of which transforms one event flow/stream into a

semantically richer one: 1) from annotated preprocessed events to RDF triples; and

2) from RDF triples to a stream of facts. Initially, sensor data received from smart

objects are pre-processed so as to identify: a) the entity type and instance from

the received UUID; and b) what is happening to the entity, e.g., if it is doing some

action, experiencing a state change or any other transformation. This 2nd type of

pre-processing may be performed, e.g., through CEP (by matching a sequence of

data onto a pre-defined temporal pattern identifying a specific pattern of action).

This leads to a stream of semantically annotated data with pairs (subject, predicate)

or (object, predicate). The entity type/instance and predicate identification is per-

formed by CEP agent close to the sensors, (see Figure 1), that in the specific case

of our IoT middleware typically execute on mobile devices. Therefore, we named

them Mobile Event Processing Agents (Mobile EPAs).

Then, in the first stream processing stage, our approach transforms the stream

of annotated data into a stream of RDF statements, and in the second stage, we

transform the stream of RDF-triples into semantically richer facts, i.e combining

RDF statements. The details of each of these stages are explained in the following.

3.1. Mapping Data Events to Semantic Events

Our reasoning approach dictates that each simple annotated event (actually, a data

object with member attributes) represents an action-based predicate (i.e. the event

is the outcome of an action) and has at least one of the other two remaining RDF

elements: the subject or the object. If the event has the ID of the subject and
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Fig. 1. Semantic annotation from raw sensor data.

the object then we have the complete RDF triple (subject, predicate, object), but

otherwise, the missing third RDF element of the triple may be inferred from the

shared context (i.e. the temporal and spatial correlation) of both elements, the

subject and the object when these are received in separate events. For example, if we

consider RDF statement (ball, kicking, in the front-yard), then the event instances

represent the predicate kick. It further carries the ID of either the ball (e.g., when

the ball carries an accelerometer sensor), or else the ID of the yard (e.g. the GPS-

position or the street number of the yard (e.g., lawn sensors detect some kicking

object). And the shared context is defined by the same location (co-location) of

the events and the synchronicity of the events that the sensors on the yard ground

and the sensor in the ball detect the hitting of the ball with the lawn (the kick).

This contextual correlation is performed by CEP rules called Context mappers, that

analyze the streams of events and match Subjects, Objects and Predicates.

Figure 2 shows how Context mappers analyze each pair of events in the sliding

time window (e.g., 60 s.) of Data Event Stream and try to identify common contexts,

based on time proximity or any other data attribute.

3.2. Mapping Semantic Events to Knowledge Facts

The mapping from Semantic Events (i.e. RDF triples) to Facts is achieved by Se-

mantic Event (SEv) rules. These are CEP rules that look out to find causality and

temporal patterns in several Semantic Event sub-Streams, where each stream com-

prises the Semantic events of a given context. This “context-specific splitting” is

possible in most CEP engines by the concept of a stream partition (a.k.a. context).

Then, depending on the SEv rule, it might consume, filter out, modify or even insert

new RDF triples in some SEv streams, a feature that is supported by CEP. This

manipulation is achieved by querying the Knowledge base about all the concepts

and relations pertaining to the sub-streams analyzed. For example, the inference

might deduce that the ”kicking ball with a given ID” has ”Bob” as its owner, and

that the ”yard where the ball is kicking” is the one where Bob lives. By this, the

new piece of knowledge may be derived such as ”someone is kicking Bob’s ball on
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Fig. 2. Mapping data events to semantic events.

his house’s yard”. And maybe with the context information ”Bob has finished his

homework”, it is possible to deduce – with high probability – that ”Bob is kicking

his ball in his house’s yard”.

The Knowledge base is organized as nested contexts [9], which allows a much

more efficient checking of concepts and relations when compared to single-layer (or

flat) ontologies. For example, the ontology of the Knowledge Base may be organized

as the following nested contexts: Spatial nested contexts: ”Green Way district” ⊃
”house at 10 Rodeo Dr.” ⊃ its yard ⊃ its lawn; Temporal nested contexts: ”Bob’s

leisure time” ⊃ ”Thursday” ⊃ ”afternoon” ⊃ ”Bob’s homework finished”; Contain-

ment nested context, such as, ”Bob’s toys” ⊃ balls ⊃ ”Basket ball with ID”, etc.

Figure 3 shows how Semantic Event rules analyze all RDF triples in the sliding

time window (e.g., 180 s.) of sub streams of Semantic Events, trying to find event

patterns, filtering, manipulating or adding RDF triples into “their” main context

sub-stream or also of sub-streams of semantically related contexts, such as, ”the

front yard” and the ”street in front of the yard”.

3.3. Deriving Situations

Using the Facts of the stream and checking them against the Semantic Graph

(Ontology) of the knowledge base, complex situations may be identified such as

”Bob is playing basketball in the front yard, but should be notified that a strong

storm is approaching his house’s yard”. Moreover, some of the complex facts may be

used for expanding, reinforcing or removing some the knowledge about a subject,

an object or a place. For example, after Bob’s pen has finished writing QED on

the page with the exercises of his Math’s homework notebook, the latter has been
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Fig. 3. Mapping semantic events to knowledge facts.

closed, and his Bob house’s main door has been opened and closed, sensing that

someone left the house, then the Knowledge Base will be expanded with the facts

that (Bob, finished, Math homework), (Bob, left, house) and (Bob, stepped into,

yard).

4. An Example Scenario for Hospital 4.0

In this section, we will show how the aforementioned two-phase reasoning could be

done with off-the-shelf components and current wireless WPAN technologies, such

as Bluetooth Low Energy (BLE).

4.1. Sensors and Smart Things Protocol Support

Smart ambient sensors are coming everywhere: houses, offices, hospitals, transporta-

tion. . . and many of these smart devices include a temperature and an accelerom-

eter sensor, have a unique UUID and Bluetooth Low Energy interface. We have

designed an Internet of Things middleware named ContextNet [11, 22] which uses a

smartphone as a bridge between Bluetooth-enabled smart devices/objects/sensors

and IoT application servers executing in a cloud. Our mobile middleware, named

Mobile Hub, periodically issues a BLE scan, discovers nearby BLE devices, con-

nects to them, subscribes to the smart device’s sensors and writes commands to
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the smart objects that have some actuator. Figure 4 shows the Mobile Hub with 4

SensorTags, each with 6 sensors (temperature, accelerometer. . . ).

Fig. 4. ContextNet Mobile Hub with four sensor tags.

4.2. Scenario

Let us consider the emergency sector of a hospital and a future application named

Hospital 4.0 (H4.0). The general organization of H4.0 (various rooms) is presented

at Figure 5. A common problem with an emergency sector of a hospital is to de-

tect bottlenecks within the flow of patients. The detection of bottlenecks can help

improve the quality of service and satisfaction of the patients (and possibly save

lives).

First, the flow of patients starts at the Reception, where each patient registers

his/her entrance. Second, at the Initial Diagnosis Room, a nurse makes a first

evaluation of the patients and classifies them into different risk classes. Each risk

class has a color and a maximum wait time for the patient to wait for a doctor. At the

end of the evaluation, the nurse gives the patient a wrist with his/her corresponding

risk color. Third, the patients wait in the General Waiting Room for a doctor to call

him/her. Finally, after the meeting with the doctor, depending on the diagnosis, he
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patient can be sent to the Medication Room, to some of the Exams Rooms (X-Ray

or Tomography) for further investigation or even sent back home.

Reception Initial 
Diagnosis

General 
Waiting Room

Medication 
Room

Doctor's 
Office 1

Doctor's 
Office 2

Doctor's 
Office 3Waiting 

X-Ray
Waiting 

Tomography

TomographyX-Ray

Fig. 5. Organization of the rooms of the hospital.

4.3. Assumptions

For the sake of this example and to better understand our proposed two-phase

reasoning model, our goal here is to identify bottlenecks with the following charac-

teristics:

A General Waiting Room (GWR) became crowded, in other words, it has

more patients than seats.

B Doctor Ferreira, who is responsible for Doctors Office 1, is exceeding the

average time to attend her patients.

C Doctor Silva did not came to work, so her office (Doctors Office 2) is empty.

Under these circumstances, to infer this complex event, let us summarize and

make some assumptions:

• Each patient receives a BLE device attached to his/her wrist when they

finish initial diagnosis and it is associated with the wrist color.

• Each employee has a smartphone with Bluetooth technology and is respon-

sible for only one hospital room.

• Each room has one beaglebone device attached to a wall running our mobile

middleware (Mobile Hub).
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• Each patients wrist device and employees smartphone can only be con-

nected to only one beaglebone. This is to simplify the problem of determin-

ing in which room the patient or staff is.

• Each patient is waiting on the correct corresponding waiting room. For

instance, if a patient is waiting for a doctor to see him/her, the patient is

waiting at the General Waiting Room.

• Every chair in the waiting room also has a BLE sensor, this will be useful

to detect whenever a room is crowded or not.

4.4. CEP Strategy

With these assumptions, we can develop a CEP strategy to identify our example

bottleneck mentioned above. The CEP strategy (CEP nodes and information flow)

is described at Figure 6, each (blue) node representing a CEP operator. Mainly,

the CEP strategy is to detect if there is a bottleneck. In particular, to identify the

bottlenecks for our example, we need to detect not only when the General Waiting

Room is crowded (A), but also, to identify the causes of the bottleneck, calculate

the average time that Doctor Ferreira is taking to attend her patients (B) and if

Doctor Silva is in the hospital or not (C). First, #1 operator (blue node at Figure 6)

receives the patient identification (PID), staff identification (EID) and the room in

which they are localized (GWR). As a result, it is possible to infer the RDF triple

(EID, treating, PID), which means that the doctor who’s smartphone identification

is EID is treating the patient that is using the beacon with the identification PID.

The treating relation can be deduced, for instance, because the doctor and the

patient are in the same room more than 10 minutes. Furthermore, #2 operator is

now able to calculate during how much time EID doctor has treated PID patient

and can generate the RDF triple (PID, treated in, time value). Finally, #3 operator

is able to compute the average time used by EID doctor for treating his/her patients

and this information can be used to deduce if the doctor is exceeding the time to

attend his/her patients. The time limit to attend a patient depends on the hospital,

so it is better to represent this information in the knowledge base.

The detection when the GWR is crowded is managed by #4 and #6 operators.

#4 operator is responsible for detecting every patient that enters the GWR and

calculate the total of patients. From the information about total number of patients,

#6 operator can decide if the room is overcrowded, based on the total number of

chairs.

Finally, when the RDF triple (GWR, is crowded, true) is generated, #7 oper-

ator detects if a bottleneck exists and sends all the RDF triples produced to the

knowledge base module. The knowledge base module, represented at Figure 6 as

KB Module, is a component that is responsible to store the RDF triples and to

execute the reasoning process.

Now, to give a more detailed example of how these operators are implemented,

Figure 7 is an example implementation of #3 and #5 operators using ESPER
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#1 #2 #3
PID e DOCR1

Label 
PID = Patient ID 
EID = Employee ID 
GWR = General Waiting Room 
DOCR1 = Doctor’s Office Room 1

EID e DOCR1

(EID, treating, PID) (PID, treated_in, time_value) (DOCR1, average_time, time_value)

#4
PID e GWR

#5
(GWR, patient_per_time_in, time_value)

#7
(DOCR1, average_time, time_value)

#6
(GWR, number_of_patients, value) (GWR, is_crowded, boolean)

KB 
Module

“Bottleneck found”
RDF Triples

Fig. 6. CEP nodes and information flow.

[12]. ESPER is an engine developed to address the requirements of applications

that analyze and react to events, commonly used to implement CEP. The query

represented at Figure 7 will retrieve attending times by patients during last one

hour and compute the average attending time.

=  “select average-time(time) from AverageTimeEvent.win:time(1 hour)“#3 #5and

Fig. 7. Implementation of #3 and #5 CEP operators using ESPER.

4.5. Contextualized Ontologies to use

The knowledge base (KB) is represented using contextualized ontologies. First we

list all the ontologies created for this example:

• People information: Contains all the names and smartphone numbers of

the hospital staff.

• Healthcare Staff: The complete list of healthcare roles and specializations

that the hospital are interested.

• Schedule Staff: Which room each staff member is responsible for and which

day they work.
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• Hospital Rooms: Which rooms the hospital have and how they are inter-

connected in terms of flow of patients.

• Hospital Protocols: Maximum time for a doctor to attend a patient.

Second, the contextualized ontologies used in this example are:

(1) People Information (entity) → Schedule Staff (context)

(2) People Information (entity) → Hospital Rooms (context)

(3) People Information (entity) → Hospital Protocols (context)

Finally, to deduce that Doctor Silva did not came to work, we need informa-

tion from the Schedule Staff ontology and from the Hospital Rooms ontology. With

the Schedule Staff ontology it is possible to determine if Doctor Silva is supposed

to be at work and with the Hospital Rooms ontology we can check if the Gen-

eral Waiting Room is the waiting room associated to her office. Therefore, we need

to align both Schedule Staff and Hospital Rooms ontologies by using the entity

People Information ontology. Figure 8 represents this alignment. Within the con-

textualized ontologies model, we call this operation context integration.

Entity
People_Information

Context
Schedule_Staff

Context
Hospital_Rooms

Context
O1

Fig. 8. Context integration between Schedule Staff and Hospital Rooms ontologies mediated by

entity People Information.

Figure 9 gives a more detailed information about the context integration between

the Schedule Staff and Hospital Rooms ontologies. The instances Doctor Ferreira

and Doctor Silva are linked between the entity and context ontologies, therefore

the result ontology (O1) will be the alignment between contexts and the linked

instances at both contexts will collapse into a single one. The instance Doctor Silva

at the Shedule Staff ontology will collapse with the instance Doctor Silva at the

Hospital Rooms ontology, resulting in a new instance that will have information

from both context ontologies.

O1 context (see Figure 10) will have both information about whether Doctor

Silva should be working and if her office is associated with the General Waiting
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Doctor_Silva Doctor_Ferreira

SmartphoneNumber2SmartphoneNumber1

Person

Hospital_Room

Doctor_Office1

Doctor_Office2

Doctor_Office3

General_Waiting_Room

Waiting_Room Office_Room

Doctor_Ferreira

Doctor_Silva

is_
res
pon

sib
le_
for

is_
res
pon

sib
le_
for

connected_toStaff_Member

Doctor_Silva

Doctor_Ferreira

Schedule_Staff

Work_day

Monday

Tuesday

Wednesday

Thursday

Friday

has_work

Context
Schedule_Staff

Context
Hospital_Rooms

Entity
People_Information

Fig. 9. Detailed information about the alignment between Schedule Staff and Hospital Rooms

ontologies.

Hospital_Room

Doctor_Office1

Doctor_Office2

Doctor_Office3

General_Waiting_Room

Waiting_Room Office_Room

Doctor_Ferreira

Doctor_Silva

is_
res
pon

sab
le_
for

is_
res
pon

sab
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Fig. 10. Resulting ontology from the context integration between Schedule Staff and Hospi-
tal Rooms ontologies.

Room. So, if we add the RDF triple that came from the CEP layer, that says if

Doctor Silva is at her room, it is possible for the reasoner to deduce that (C) “Doctor

Silva did not came to work, so her office (Doctor’s Office 2) is empty” is one of the
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possible causes of the bottleneck.

Furthermore, O1 context also has information about who is responsible for the

Doctor’s Office 1. If we make the context integration between O1 and the Hospi-

tal Protocol ontology, that contains the maximum time that the hospital allows the

doctor to attend a patient, we will generate ontology O2 (see Figure 11). As a re-

sult, with O2 the reasoner can deduce (B) “Doctor Ferreira, who is responsible for

Doctor’s Office 1, is exceeding the average time to attend her patients” as another

possible cause of the bottleneck.

Entity
People_Information

Context
Hospital_Protocols

Context
O1

Context
O2

Fig. 11. Resulting ontology from the context integration between O1 and Hospital Protocols on-

tologies.

To summarize, by using contextualized ontologies we can reason with a partition

of the knowledge base. It is important to highlight that all the alignments used by

the context integration operations are executed only once, so the application did

not need to execute alignments every time a new fact have to be deduced.

5. Related Work

In an early work, Adi et al. [1] presents abstractions that describe semantic rela-

tionships between events, object and tasks. These are defined as generalizations and

associations and through attributes that may reference events. Their abstractions

are suitable for specification but cannot be computed efficiently. On the other hand,

the work [3] describes a system (ETALIS) that can perform reasoning over stream-

ing events with respect to background knowledge, similar to our Knowledge Base. It

implements two languages for specification of event patterns: the rule based ETALIS

Language for Events (ELA), and Event Processing SPARQL. ETALIS can evaluate

domain knowledge on-the-fly, thereby proving semantic relations among events and

reasoning about them. Their semantic relations among events are time-based, but

don’t have the synchronicity requirement. Another difference is that they do not

generate a RDF Stream which they check against a knowledge base. Thus, their
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inference is much simpler than the one proposed in our project.

Tachmazidis et al. [24] propose a reasoning method over RDF triples based on

defeasible logic (i.e. a non-monotonic logic) which can be implemented in a massively

parallel way. They used Hadoop, an open-source implementation of the MapReduce

paradigm, and a stratified rule set for a more efficient processing of the knowledge

base. Unlike our proposal, they do not handle Stream Processing and do not apply

their method to reasoning for time-critical systems, such as CPS. Moreover, their

choice for defeasible logic limits the sorts of knowledge that can be inferred by

their system, as opposed to temporal logic, which shall have highly parallelizable

implementations.

The following projects CityPulse [16] Star-City [18] and FIESTA-IoT [2] also

present research toward the use of Semantic Stream reasoning. All of these projects

use the knowledge base in order to deduce new context/facts. Also, they use a

single-layer (or flat) ontology model, which differs from our ontology model that is

organized as nested contexts. Moreover, none of these projects focus on the problem

of delivering real-time reasoning.

The FIESTA-IoT project [2] integrates several other projects and one of them

is the CityPulse project [16]. The main goal of these projects is to achieve semantic

interoperability at different levels (hardware, data, model, query, reasoning and

application levels). The StarCity project has a similar idea, but it is aimed at using

semantics to provide interoperability at the data level.

On the other hand, the work by Teymourian et al. [25] has the same focus as

our work. They use a similar idea and combine the use of SCEP rules (semantic

web plus CEP) with a semantic knowledge base to deliver real-time reasoning. The

difference is that our work uses an ontology model organized as nested context to

represent context information, rather then a flat ontology model. As a result, it

is more efficient on query processing, because when we execute a query, the query

will be processed only using a sub-set of the knowledge base (a partition of the

knowledge base). Furthermore, another difference is that we plan to insert new

SCEP rules on-the-fly, based on new facts generated by the reasoning over the

knowledge base. Consequently, it will give the application a more efficient approach

to adapt to different situations. For example, in a monitoring application, we only

need a CEP rule that triggers an action based on an altitude situation only if the

monitored person is in a high altitude, until then this rule does not need to be there.

6. Discussion

Combining symbolic reasoning based on ontologies with Complex Event Processing

has several advantages. Firstly, it allows to leverage CEP’s efficient processing of

dense flows of simple events, not just over raw sensor events but also over RDF

triples. Secondly, CEP’s ability to produce complex events is also necessary for the

iterative generation of higher level information from lower level bits of information.

On the other hand, while CEP is appropriate for processing data that is carried
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by the incoming events, it is incapable of detecting domain-specific relationships

between events that are produced by distinct entities/objects that apparently have

no relation with each other, or when this relationship cannot be directly encoded

by the (meta-)information carried by the events. Symbolic reasoning using ontolo-

gies, on the other hand, can very well model these “indirect” relationships among

the monitored entities and/or their corresponding events. And hence, by using the

results of a query over a domain-specific ontology during a CEP-based continuous

processing, it becomes possible to generate new sorts of events (i.e., fact events),

which are produced independently by the Semantic Event reasoners in response to

the consumption of some RDF triples. These Fact events, which in some sense em-

body some semantic knowledge that was forked off the knowledge base, can in turn

be further processed by other CEP engines, and may be used to predict events that

actually did not yet happen, but which are a natural consequence of initial events

that have been detected by CEP.

This makes us consider the Semantic Web reasoners as a special kind of CEP

engines, which have access to the knowledge base, consume RDF events and even-

tually produce fact events that are passed on to other CEP engines in the Event

Processing Network. (See Figure 2).

7. Towards Automated Rules and Patterns Induction

In this section, we briefly discuss prospects for using machine learning and induc-

tion techniques to extract useful information from the data stream. At first, let

us mention that although there are known and proven techniques for extracting

information from data, from raw data to structured data and knowledge, most of

them have been designed as off-line techniques and with the assumption of all data

present in the working memory. Therefore, there is a great challenge in adapt-

ing when possible current techniques to on-line stream data processing with huge

volumes of data or designing new techniques. A good review of the issues (continu-

ous data streams flow, unbounded memory requirements, mining changes, avoiding

overfitting. . . ) can be found in [13]. Another good analysis could be found is [23].

Let us start with the raw data produced by the sensors. Unsupervised algo-

rithms, such as sparse autoencoders, may be used to automatically extract higher

level features [17]. The basic idea is to use an autoencoder, a neural network with a

hidden encoding layer and a decoding output layer identical to the input layer. We

add an additional sparsity activation constraint, in order to enforce specialization

of each neuron as a specific feature detector. Training an autoencoder, sometimes

called self-supervised, relies on traditional supervised learning on learning the iden-

tity, as the autoencoder learns to reconstruct its input data on its output. Once

trained, to extract features from an input, one just needs to feed forward the input

data and gather the activations. One may use successive levels (stacks) of autoen-

coders in order to extract more abstract features. Although standard training is

off-line, one may make use it incrementally, with successive rounds of batch train-
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ing.

An interesting end to end approach has been proposed by Ganz et al. in [14].

The first step, named SensorSAX (as for Sensor Symbolic Aggregate Aproximation),

is the discretization of data into qualitative attributes, encoded in some alphabet

words. Then a clusterization step is applied, using a k-means non supervised clus-

terization algorithm, by considering time as one of the criteria, to form patterns,

which are proto-concepts (not yet named concepts). Temporal relations between

these proto-concepts are extracted by constructing a Markov model, a statistical

predictive model of temporal occurrences of proto-concepts. Three kinds of tem-

poral relations are considered: occursAfter, occursBefore and occursSame. The last

step consists in manual labeling, i.e. naming proto-concepts into symbolic concepts

(e.g., ”coldTemperature”). The authors are also considering the possibility of auto-

matic labeling, derived from the labels of the sensors and a common sense ontology.

When starting from RDF triples, one may consider various knowledge extraction

methods based on ontologies (mostly based on OWL), designed for the Semantic

Web. One objective is induction, to be able to construct more abstract knowledge

(concepts/hypotheses) from the facts. Various algorithms exist and aim at both

generalizing examples into concepts, while specializing them in order to uncover

counter examples. Inductive Logic Programming (ILP) is a seminal formalism but

there are many variant (see for instance the DL-Learner framework [8] which in-

cludes various ones), as well as related techniques like decision trees construction

and also exploratory approaches based on genetic algorithms.

An interesting proposal in [7] offers inductive reasoning as well as deductive

reasoning on RDF data streams. Deductive reasoning is performed on queries con-

strained by concepts expressed in OWL. C-SPARQL [6] is the query language used.

It is an extension for continuous queries on RDF streams of the SPARQL RDF

query language. Inductive reasoning is performed on a subset of data in order to

be practically computable. The user defines statistical units (entities, e.g., persons)

as well as a population of these entities (e.g., at a specific institution or location)

on which he wishes to make inductive queries. The inductive engine periodically

updates data matrices representing the features of the population of the statistical

units considered (actually, there are two kinds of matrices, one long term stable

and one short term representing the trends) and conducts a multivariate analysis

of theses matrices. The trained model could then be used to predict relationships

between entities at query time.

Last, it is also important to be able to extract temporal relations. A promising

proposal is by Georgala et al. [15] to efficiently extract all possible temporal rela-

tions (along seminal Allen’s taxonomy and algebra of temporal intervals) from time

stamped RDF streams.

In summary, we could see that there are various interesting directions for intro-

ducing automated machine learning and knowledge extraction techniques into our

framework. One important issue is the dynamicity of the data produced. That is,

because of the continuous stream of data, we need to find good trade-offs between:
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the demand for higher level knowledge, the cost for extracting it (processing cost

as well as memory cost/limitation) and the risk of it being obsolete, depending on:

the usage, the nature of the data and the computing & communicating resources

available. For instance, in the scope of our two stage process, we believe that ma-

chine learning could be effective as a way to consolidate into the knowledge base

the facts which occur very frequently (see Figure 3). An example of such learning

(in that case, inductive) is the identification of two temperature settings, inside a

air-conditioned bus and outside, that will be extracted from repeated facts of pas-

sengers entering and exiting air-conditioned buses. Therefore, one needs to carefully

examine what exact machine learning techniques we will insert into our framework,

and at which stage.

8. Conclusion and Future Work

This paper presented a real-time reasoning approach based on semantic events and

fact streams for IoT systems. The reasoning approach is based on the assumptions

that all objects, people, buildings, places, vehicles, environments, etc. will have

many embedded tiny sensors that will emit simple events whenever some action is

performed with/to it by an actor, and that each event will carry the items’ unique

UUID and an accurate time-stamp. By enforcing the restriction that predicates

in a RDF triple must be action-based, such as ”kick”, ”put”, ”grab”, etc., rather

than state-based, such as ”has”, ”is”, ”belongs to”, etc., we are of course limiting

the amount of information that the data/event streams are capable to express.

However, we believe that the action-based predicates are the really important ones

for reasoning in IoT applications. All the state predicates, on the other hand, should

instead be represented by the nested context-based ontology in the Knowledge Base.

We are aware that this is only a first and initial step towards adding semantics to

real-time reasoning over data streams, and that much more theoretical and practical

research is required to validate our approach, evaluate it under a broader perspective

and show its feasibility for large-scale and distributed IoT applications. However,

we are confident that it is a promising first step. As next steps, we will finish the

development of the Context Mappers and Semantic Event Rules using ESPER EPL

(Event Processing Language) and deploy them on our mobile IoT middleware. In

parallel, we will finalize the implementation of the Hospital 4.0 scenario (described

in Section 4), and start to test it.
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