A Linear-Time Kernel Goodness-of-Fit Test

Abstract : We propose a novel adaptive test of goodness-of-fit, with computational cost linear in the number of samples. We learn the test features that best indicate the differences between observed samples and a reference model, by minimizing the false negative rate. These features are constructed via Stein’s method, meaning that it is not necessary to compute the normalising constant of the model. We analyse the asymptotic Bahadur efficiency of the new test, and prove that under a mean-shift alternative, our test always has greater relative efficiency than a previous linear-time kernel test, regardless of the choice of parameters for that test. In experiments, the performance of our method exceeds that of the earlier linear-time test, and matches or exceeds the power of a quadratic-time kernel test. In high dimensions and where model structure may be exploited, our goodness of fit test performs far better than a quadratic-time two-sample test based on the Maximum Mean Discrepancy, with samples drawn from the model.
Type de document :
Communication dans un congrès
31st Conference on Neural Information Processing Systems (NIPS 2017),, Dec 2017, Long Beach, United States. 2017
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01527717
Contributeur : Zoltan Szabo <>
Soumis le : samedi 21 octobre 2017 - 21:21:19
Dernière modification le : jeudi 26 octobre 2017 - 01:09:51

Fichier

kgof_nips2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01527717, version 2

Citation

Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton. A Linear-Time Kernel Goodness-of-Fit Test. 31st Conference on Neural Information Processing Systems (NIPS 2017),, Dec 2017, Long Beach, United States. 2017. 〈hal-01527717v2〉

Partager

Métriques

Consultations de la notice

41

Téléchargements de fichiers

22