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I. Introduction 

Jackson, Rogerson, Plane and O hUallachain (1990) present an extension to input-output of the 

causative matrix approach to evaluate the change between two matrices. Denoting A the 

technical coefficient matrix and B the inverse Leontief matrix, B = ( I -A)~ 1 , there are two 

possibilities, working on the direct matrix A or the inverse matrix B. They choose the second 

possibility and they compute Markovian matrices: 

B ' ^ B ' (m'J1 a n d B ^ = B / + 1 (M* 1 ) " 1 

where M is the diagonal matrix whose diagonal element mz/ is the sum of column / of matrix B. 

Then the transition matrix B^ 1 is assumed to be linked to the transition matrix B ^ by the 

formula: 

(1) BS'-CBJ, 

The matrix C is the causative matrix, that explain change between the Markovian matrices Bf 

and B # . One have b%\ = X* cik b'MtJ. 

Matrix C is found by inverting B ^ : 

(2) C = B ^ 1 ( B ^ ) " 1 

Matrix C should be compared to the identity matrix: all diagonal elements should be compared to 

1, and all off-diagonal elements will be compared to 0. This matrix is called the left causative 

matrix by Jackson et alii (1990, p. 261-262). It is linked to the idea of backward linkages. 



This should not be confused with the idea of right causative matrix exposed by Jackson et alii 

This approach that can be qualified as "multiplicative", is one way to compare two matrices of 

column coefficients. An alternative approach to do the same thing consists into calculating the 

difference matrix D = B^ 1 - B ^ (or B ' + 1 - B ' ; and similarly with the direct matrix); this matrix 

should be compared to the null matrix: all elements should be compared to zero. The model can 

be qualified as "additive" because the model is BjJ1 =D + B ^ . Matrix D is also a type of 

causative matrix, but additive. Note that the multiplicative model could have be chosen instead of 

the additive model for the biproportional filter: z ' + 1 =ck(tj, Z ' + 1 j instead of 

Z' + 1 = D + A^Z', Z ' + 1 j , where K denotes the biproportional projector (Mesnard, 1990a and b, 

1997). However, to follow the term chosen by Rogerson and Plane (1984), Plane and Rogerson 

(1986), Jackson, Rogerson, Plane and O hUallachain (1990), the term causative will be reserved 

to the multiplicative model applied to Markovian matrices found from technical coefficient 

matrices (direct or inverse). 

Interpretation of matrix C is not easy because it is completely filled, nor sparse nor diagonal: it 

contains n2 terms. So, to understand the change from one matrix with n2 elements to another 

matrix with n2 elements, this requires to analyze n2 elements, the same number of elements than 

for a simple difference-based method, like the computation of B ^ - B^ 1 or like the biproportional 

filter on two flow matrices Z' and Z / + 1 (Mesnard, 1990a and b, 1997). It is a good idea to try to 

reduce the complexity of the analysis. In the biproportional filtering method, the number of 

(3) 

(1990).» 

Remark. A reverse comparison is possible, t +1 on t instead of t on t + 1: = C B ^ 1 , where 

C is the causative matrix for the reverse analysis. So: 



parameters is decreased by computing systematically only the variability of complete rows or 

columns, i.e., the variability of supplying or demanding sectors (technically, the Frobenius norm of 

row or column vectors of the difference matrix Z,+1-k(Z', Z ' + 1 ) ), that is 2 n elements. In the 

causative method, to reduce complexity, Jackson et alii (1990) focus on only two set of elements: 

the set of the diagonal elements of C and the set of the off-diagonal elements of C, that is 2 n 

elements also. 

Remark. Matrix C may contain negative terms: a positive (negative) c,* implies that the 

probability of transition between state i and state / is increased (reduced). "Remark. Note that 

a right causative matrix can also be defined for sales coefficients and forward linkages: 

Remark. In the causative method, each Markovian matrix should be square, what implies 

additional hypotheses. 

Jackson et alii (1990, p. 268) have proposed a promising idea, that they called the double 

causative model: 

However, as they said themselves, 

The use of a double causative matrix would require both additional data and 

additional consideration of appropriate estimation techniques 

(4) 

This is obviously true but it can be the source of some complementary ideas. First, estimation 

problems are effectively great, because one cannot find directly C matrices by computing the 



inverse of as in equation (2), and the number of parameters to be found is equal to the number 

of known coefficients: 2 n2, so it is too large. 

Second, the interpretation of the two (completely filled) causative matrices CL and CR is more 

complicated than with the simple form of equation (1) because: 

(5) b^ = ±icLllb'MltcRkj 

h=\ hi 

Third, this approach is restricted by the fact that is limits itself to Markovian chains, with matrices 

calculated in column, what involves a clear choice for the demand-driven model, excluding the 

supply-driven model, i.e. what predetermines the sense of causality. Remember that two 

incompatible hypotheses are possible: Leontief (technical coefficients, calculated in columns, are 

constant) or Ghosh (allocation coefficients, calculated in rows, are constant) and the analysis on 

technical coefficient cannot be compared to the analysis on allocation coefficients; this problem 

disappear with the biproportional approach (Mesnard, 1990a, 1990b, 1997). There is a large 

discussion about it (Bon, 1986), (Oosterhaven, 1988, 1989, 1996), (Miller, 1989), (Gruver, 

1989), (Rose and Allison, 1989), etc., and there is a certain contradiction between the fact to 

introduce two causative matrices - the sense of causality seems to be undetermined - and to stay 

with matrices proportional by rows - the sense of causality seems to be determined - . So, it could 

be interesting to keep the idea of causative matrices, without predetermining the sense of 

causality, i.e., without predetermining the role of rows and the role of columns, by an extension of 

the causative-matrices method outside of the Markovian chains view. This is why one can think to 

propose a modification of the double causative model, in which two diagonal matrices L and R 

will replace matrices CL and CR: their interpretation will be more easy because the number of 



II. Computation of bicausative matrices 

The flow matrices are used or computed if necessary: 

(6) Z' = A' <x'> 

(7) Z' + 1 =A' + 1 (x'+1> 

Remark. One can work on direct or on inverse matrices, the choice depending on what one 

wants to study. Direct technical coefficient matrices are close to flow matrices, i.e., 

A = Z (x)"1, when inverse technical coefficient matrices indicate the link between final demand 

y and output x at equilibrium, i.e., x = (I - A)"1 y. • 

Then, the change between these flow matrices is assumed to be of the form: L' Z / R'. This form 

justifies the denomination bicausative by analogy with the concept of biproportion, even if the 

form is not biproportional, despite its likeness: even if L' and R' are diagonal matrices, this is not 

a biproportion as the expression of the terms V and R' will shown it. These terms can be 

obtained by minimizing the sum of squares of the differences between z*1 and / • z\j r j : 

Remark. Matrices 7J and Z'+ 1 do not need to be square: they could be as well as rectangular 

because the above formulas do not imply that n = m. This is a real advantage on the causative 

method because transforming a naturally rectangular matrix into a square matrix requires 

additional hypothesis; this is required for the traditional Leontief model, but not for the Stone 

(8) 

parameters becomes equal to 2 n instead of n2 or2n2. This model will be called the bicausative 

model. The aim of this paper is to examine the pros and the cons of this idea. 



model (Make / Use matrices); the biproportional filter does not require square matrices also 

(Mesnard, 1997). Note that there is not matter of a "left model" and a "right model" as for 

causative matrix model. • 

The result is the following: 

(9) 

l' = S\ , , „ f o r a l l / 

Z f o ) (/!)• 
-, for ally 

This is denoted: 

(10) LS(L', Z'+ 1) = L'Z'R' 

If Z' and Z'+1 are of dimensions («, m), L' is of dimensions (n, n) and R' is of dimensions 

(m, m). 

Change can be also evaluated in reverse form from Z'+1 to Z': 

(11) LS(Z'+1, Z') = L'+ 1 Z'+1 R'+1 

i.e., 

(12) 

7 ' + , = > ! for all i 

/=i for all j 



Unlike with causative matrices, results will be not the same than for the direct form and the 

reverse form with bicausative matrices, but as equation (3) has suggested it, to compare direct 

and reverse results with causative matrices, it is sufficient to inverse matrices hM and R / + 1. 

Matrix LS^Z', Z ' + 1 j =L ' Z' R' is on the space of year when matrix 

LS^Z'+ 1, Z'j = L'+1 Z ' + 1 R'+1 is on the space of year t. So, to compare direct and reverse 

method, that is to say to go from year t to year one should compute 

Ls(z', Z< + 1 ) = L ' Z ' R < and (L ' + 1 ) 'isjz"1, Z'j (R' + ') 1 = Z ' + 1 that is on the space of year 

/ + 1 : matrix R' should be compared to matrix ^ matrix (L'+1 Ĵ should be 

compared to matrix V. 

III. Properties of bicausative matrices 

A. Iterative resolution of the algorithm 

For more generality, the problem is presented in a form that is independent to the choice made on 

the nature of matrices, Markovian or not, and direct or inverse. One consider two matrices 

X(nxm) and Y(rtxw), that can be either Z / or Z / + 1 . The problem is to find two diagonal matrices 

U(«XA) and V(mxw), knowing the two matrices X and Y, with a symmetrical role to rows and 

columns and without specifying if n is greater than m or m is greater than n. The form of the 

model is Y = U X V and one computes matrices U and V by the least squares: 

n m 
(13) min SS;SS=ZX(yiJ-uiXijVJy 

•=ij=i 



By deriving SS with respect of the ut and v7, one obtain: 

(14) 

ILyyXijVj 

ut=^ , for all i 

n 

, = 1 , for ally Vj = n 
E L 2 

x y uj 
1=1 

We denote it: LS(X, Y) = U X V. 

This system cannot be solved analytically: it must be solved recursively. As for the algorithms of 

biproportion, one calculates it recursively, beginning by a set of coefficients vj 0 ) = 1, for all j , for 

example, then repeating the following operations for the step k: 

(15) 

in 

^LyijXijVjik) 

UI(k+\) = -, for all i 

it 

XyijXijUiik+l) 

v,(*+l) = f 
Ex} («,(*+1))' 

r , for ally 

This leads to an equilibrium: 

(16) 

u] = ~ ;——, for all i m / \ 2 ' 
. 2 ( . . * 

v, = — - , for ally 
J H f \1 



The solution exists and is unique because it is found from the minimization of a quadratic 
n m A 2 SS 

function: SS = J^J^(yij-yij) , by denoting pij^UiXyVj. This function, <K"x9?m ->9t, of the 

n x m terms y t j is continuous, derivable, on its interval of variation, what is itself compact. The 

function -SS is convex, so it has a unique maximum on its interval of variation. Finally, SS has a 

unique minimum. 

However, the difficulty lies in the fact that the solution of this minimization program cannot be 

found analytically, but only iteratively. So some problems may occur for the initialization of the 

iterative process and for its convergence. 

S. Non identification of bicausative matrices 

1. Independence by respect to initialization 

Property 1. All terms of matrices U and V are non negative if all terms of matrices X and Y and 

non negative. 

Proof. Consider the expression of u and v terms: 

m 
XytfXijVj(k) 

(17) 

for all / 

ILyyXyUtik+l) 
Vy(*+1) = , for all / 



As the equilibrium is independent to the initialization, initial coefficients can be chosen arbitrarily. 

One can choose them all non negative. If all v , ( 0 ) are non negative, all w7(l) are non negative, and 

then all vy(l) are non negative. By recursion, all Uj(k+1) are non negative and all v/(fc+ 1 ) are 

non negative, so all u* and all vj are non negative. • 

The solutions of the algorithm, u*, for all i and vj9 for all j 9 are independent to the initialization. 

Property 2 . The algorithm may be initialized by any set of identical values, v y ( 0 ) = A,, for ally, 

instead of v , ( 0 ) = 1 , for all j 9 without change anything. 

Proof. The initialization by v / ( 0 ) = X9 for allj9 gives: 

m 
'LyijXijX 

(18) 

«/(D = 4 = £ 5,(1), for alii 

> 1 

ZyyXijUi (i) 
/=1 = A, vy(l), for ally 

and the product u* Xy v* remains unchanged: 

(19) u* Xy V* = u* Xij v*9 for all / and j , 

w,-(l), v/(l), w* and vy* denoting the values obtained after an initialization by v / ( 0 ) = 1 , for a l l7. 

By induction, the dual result is proved: things are unchanged if one initializes by w , ( 0 ) = A, instead 

ofn,-(0)=l for a l l / ." 

Remark. When the computation is initialized by a set of not identical values, i.e. by 

3 j\,J2 I Y/i(0) * v/2(0), for allj9 then result is not predictable. 



The above developments show that the estimators U and V are specified at a coefficient of 

proportionality. For example, if one multiplies the coefficients of U by X9 the symmetrical 

coefficients of V are divided by X. Therefore, the true values are specified at a coefficient of 

proportionality. It looks like a problem of identification, to the sense of econometrics, but as the 

products u* v*, for all /, j , remain fixed, these products are identified. This is the major 

inconvenient of the method: two vectors are searched, but they are not identified}. 

Remark. When projecting a matrix X on the margins of a matrix Y, to compare X to Y, one 

computes AT(X, Y) = D X E, where K is the operator of biproportion (what is a generalization 

ofRAS), with: 

dt = —, for all i 
2 %ij ej 

(20) * 
ej = „ for ally 

ILxijdi 
/ = i 

So, even if with biproportion the same problem of identification (Mesnard, 1994) occurs, it is 

not a difficulty for the biproportional filtering method (Mesnard, 1990a, 1990b, 1997) because 

matrices D and E are not searched for themselves; what is searched is the product matrix 

D X E to be compared to Y: Y - D X E ; but as D X E is identified and fixed, Y - D X E is 

itself identified and fixed. • 

A very simple example will help to understand. 

Example 1. 

" 2 1 4 " " 2 1 3 " 
x = 3 1 2 andY = 3 9 1 

4 5 2 _ _ 4 5 7 



When initializing by y,(0) = 1 for all j , one obtain: 

LS(X, Y) = 
0.485 0 

0.993 
0 1.497 

2 1 4 
3 1 2 
4 5 2 

0.763 0 
0.818 

0 1.725 

0.741 0.397 3.350 
2.271 0.812 3.425 
4.567 6.125 5.165 

with SS = X Z Vytj - ut Xjj v , ] 2 = 80.476. 

The same solution, 

LS(X, Y) = 
1.018 0 

2.081 
0 3.138 

2 1 4 
3 1 2 
4 5 2 

0.364 
0.390 

0 0.823 

0.741 0.397 3.350 
2.271 0.812 3.425 
4.567 6.125 5.165 

is found when one initialize by vi(0) = 0, V2(0) = 0, V3(0) = 1 (remember that U and V are not 

identified, only the product U X V is identified). 

This is denoted: 
0.741 0.397 3.350 
2.271 0.812 3.425 
4.567 6.125 5.165 

— LS(X, Y ) 8 0 4 7 6 

2. Ineffectiveness of a separable modification 

We call separable modification of a matrix, a modification of X that can be reduced to the left 

product by a diagonal matrix *F of size n, and to the right product by another diagonal matrix Q 

ofsize/w:X = ¥ X Q . 

Property 3. A separable modification of X, X = *P X Q, is ineffective: LS^X, Y j = LS(X, Y). 

Proof. One denote LSI (x, Y ] = U X V and LS(X, Y) = U X V; then: 



m / \ 2 ' 

X* 2 v,(*) 
/=1 V / 

by denoting Ui{k+ 1) = \|/, w,(£+ 1) and v7(£) = co, vj(k). 

Similarly, 

(22) *,(*+ 1) = Ç , for ally 
Zxj&(*+1) ) 2 

So, if one initialize by v7(0) = v/(0), for all j 9 then w,(l) = w,(l), for all /, and v) = vj , for all j , 

and by induction, ut(k) = w,(&), for all i and Vj(k) = vy(&), for all y. 

Therefore, u* = w*, for all i and v* = v*, for all j , 

and w* x fy v* = u* \|/, x,y Coy v* = w* x# v* = w* x,y v* and s o U X V = U X V . " 

V 

However, this property does not hold with a separable modification of Y: Y = *F Y Q. and 

Ls(x, Y ) = ÙXV* LS(X, Y) = U X V generally because: 

m m m 

X y y Xij Vj(k) X V, J'y co, Xjj Vj(k) X Xij (ûj Vj(k) 

(23) «,(*+1) = : l

 2 = > 1 . 2 = > 1 . „ for aU / 

X 4 [v,(*)J X* 2 [v,(*)J y , X 4 (vK*)J 

m m m / \ 
X y y Xg Vj(k) X y ij ViXy CO, V , ( £ ) X J'y *</ ( CO, V y ( * ) 1 

(21) «,(*+1) = v = : r i = 7 ^ , for all i 
2} i } (v,(*))2 X V

2 x} co2 (v,(*) J V , Z 4 (û>, Hk) 

m 

XyijXijVjik) 

so ui(k+\)=J=X 



C. Convergence of the solution of the algorithm 

Some problems of convergence may occur: there can be some problems of local equilibrium. 

Example 2. It is again the following of example 1. When initializing by vi(0) = l, V2(0) = 0, 

v3(0) = 0, one obtain another solution but with a lower value of SS: 

LS(X, Y) = 
0.938 

3.172 
0 0.469 

2 1 4 
3 1 2 
4 5 2 

0.408 
2.506 

0.438 

0.765 2.351 1.643 
3.882 7.948 2.778 
0.766 5.882 0.411 

with SS = 64.884. 

This is denoted: 
0.765 2.351 1.643 
3.882 7.948 2.778 
0.766 5.882 0.411 

= LS(X, Y) 6 4 

.884 

and LS(X, Y) 6 4 8 8 4 * LS(X, Y) 
80.476-

As SS is lower, LS(X, Y ) 6 4 8 8 4 is better than for LS(X, Y ) 8 0 4 7 6 : this last solution can be 

considered as a local optimum. To see what happens, let's start from this solution and increase 

progressively V3(0) from 0 to 1. Between V3(0) = 0.436357 and V3(0) = 0.436357, one pass from 

the better solution LS(X, Y ) 6 4 8 8 4 to the other solution LS(X, Y ) 8 0 4 7 6 . Figures 1 to 4 show what 

happens: 

Figure 1 here 

Figure 2 here 



Figure 3 here 

Figure 4 here 

To avoid this, one must be careful, always looking at the value of SS, trying a large (an even 

infinite) set of initializing values and doing repeatedly the computation. 

Remark. Similar problems of convergence may occur in very simple models known as chaotic. 

For example, in the "May equation", JC,+I = axt (1 - * , ) , the solution is given by solving 

x* = a x* (1 -x*), that is x* = ^T^> ^ut w hen a exceeds 3, the solution becomes chaotic. See 

figures 5 and 6. • 

IV. Problems of interpretation 

A . Interpretation of bicausative matrices 

The two diagonal matrices R' and L' are summarizing the information about the change from 

matrices ZT to Zt+i. 

For example, consider a 3x3 case: 

V V R' -
l\ 0 

fi 
0 ft 

¿ 1 1 ¿ 1 2 ¿ 1 3 
J t t 

¿ 2 1 ¿ 2 2 ¿ 2 3 

¿ 3 1 ¿ 3 2 ¿ 3 3 

ri 
l \ z U r \ l \ z \ 2 r 2 h z \ 3 r 3 

h z 2 l r \ h z 2 2 r 2 h z 2 3 r 3 

h ¿31 r \ h z 3 2 r 2 h ¿33 r3 



• The causal diagonal matrix R / is interpreted as a column bicausative matrix: it affects equally 

all terms of a column, i.e. it affects equally the intermediary purchases of a sector: it is formally 

similar to an input (i.e., technical) effect. 

• The causal diagonal matrix L' is interpreted as a row bicausative matrix: it affects equally all 

terms of a row, i.e. it affects equally all the intermediary sales of a sector. It corresponds to an 

allocation or output effect and it is formally similar to a price effect. It is not exactly a price 

because it is possible to remove the effect of price change from 7J to Z ' + 1 by using the same 

price base, for example, the price base of the date t. 

However, the above interpretation is false because the terms /, and r, are not identified. 

Remark. A consequence of this problem of identification is that the method — application of 

least squares on two matrices Z / and Z / + 1 to obtain two vectors V and r'-- cannot be applied 

to the prevision of another matrix Z ' + 2 at a later date /+2 by doing Z ' + 1 + A = 1' Z ' + 2 r'. 

Remark. The same interpretation could be used for the biproportional projection of a matrix to 

the margins of another matrix. When calculating the matrix A^Z', Z' + 1 j = C Z' D' , that is the 
biproportional projection of Z' on the margins of Z ' + 1 , where C and D' are diagonal 

matrices, one can interpret the terms dj as a technical effect and the terms c, as a "price" 

effect. However, C and D are not identified and the similarity stops at this point because Z' is 

projected on the margins of Z ' + 1 and not on ZM itself as it is done with the bicausative 

method. 

Note that Paelinck and Waelbroeck (1963) give a rather different interpretation, because they 

work on technical coefficient matrices instead of flow matrices. Considering two technical 

coefficient matrices, A' and A M , the price effect from the date t to the date / 4 - 1 is given by 

expressing the matrix A' to the prices of the date f + 1 : A / 7 ' + 1 = p A' p" 1 , where p is the price 



vector of the date t+1 with the date t as price base. Then the transformation of A / / / + 1 such a 

this matrix has the same margins than A / + 1 is given by: £(A', A' + 1) = C A' / / + 1 D' . In this case 

the d/s are interpreted as a substitution effect and the C/ 's as a fabrication or transformation 

effect. However, it is partially incorrect to do a biproportional projection on a technical 

coefficient matrix, because the biproportional projection is yet a generalization for both column 

and rows of the computation of column coefficients (Mesnard, 1997). Moreover, as the terms 

C and D are not identified, they cannot be interpreted for themselves as a substitution effect 

and a fabrication effect. • 

fi. Interpretation of the bias 

The causative method is generalized by the bicausative method to eliminate the effect of the 

demand-driven-model hypothesis. The bicausative method allows to detect change in the structure 

by the exhibition of a left diagonal matrix and of a right diagonal matrix, but some problems may 

arise in comparison with other methods as the biproportional filtering method (Mesnard, 1990a 

andb, 1997). 

Remark. Remember that in the biproportional filter method, one calculates Z / + 1 - K\ 7J, Z'+ 

or Z' - K[ZT+1, Z' J, that is in general terms Y - £(X, Y) : as £(X, Y) have the same row and 

column margins than Y, one is able to compare both matrices without the differential growth 

effect of sectors, i.e., with only the structural effect. This generalizes the simple comparison of 

two technical coefficient matrices, A' + 1 - A' (same column margins) or two allocation 

coefficient matrices B ' + 1 - B ' (same row margins), without implying a choice between 

demand-driven and supply-driven models, i.e. this generalizes the "shift-and-share method". 



However, as U and V are diagonal in LS(X, Y) = U X V, because of the properties of 

biproportion (Mesnard, 1994), 

(25) 

(26) 

The bias becomes: 

(27) 

There can be a bias between Y and LS (X, Y): the expression Y - LS (X, Y) can be more or less 

different to 0. The quality of the analysis is depending on the size of this bias. 

Remark. Such a problem does not arise with the biproportional filtering method, because it is 

the difference Y - K(X, Y) that is itself analyzed: this difference is not a bias, it is the subject 

of the analysis." 

However, this manner to calculate the bias in the bicausative method could appear as mixing up 

two phenomenons, the bias caused by the differences in the sector size and the bias caused by the 

real structural effect because both matrices X and Y have not the same margins. So it could seem 

correct to give to both matrices the same margins by a biproportion to eliminate the size effect of 

the differential growth of margins and to found what can be called "the structural bias of the 

bicausative method"; it is logical to choose the last matrix margins of each couple of matrices, 

then: 



what becomes similar to the result of the biproportional filtering method (Mesnard, 1990a and b, 

1997). Then, if one tries to evaluate the structural bias of the bicausative method, one is 

conducted to evaluate the structural change as found by the biproportional filtering method. 

Remark. An additional problem is that this hold for any method, denoted M9 used instead of 

least squares LS, so long as M has a form like M(X, Y) = * F X O , where *F and O are 

diagonal: 

However, the bicausative method does not measure change in margins of matrix X when one tries 

to go to another matrix Y because if a matrix X is transformed so that it has the margins of a 

matrix Y, to obtain the matrix K(X, Y) , the bicausative method applied from X to Y gives the 

same results than the bicausative method applied to K(X, Y), Y : 

Here, K (X, Y) = P X Q have the same margins than Y, but the associated bicausative matrices 

are equivalent to those simply obtained with X. 

Finally, what is the interpretation of the bicausative method? 

Remark. One have even: 

(28) 

(29) LS [K(X, Y), Y ] = LS [ P X Q, Y ] = LS (X, Y) 

(30) LS [M (X, Y), Y ] = LS OF X O, Y) = LS (X, Y) 

where M is the same as above. • 



All these "curious" properties are caused by the fact that both methods are not identified in the 

econometric sense. 

Example 3. It is the following of preceding examples. 

*(X, Y) = 
0.888 0 

2.410 
0 1.326 

1.116 1.341 3.543 
4.548 3.642 4.810 
3.336 10.017 2.647 

2 1 4 
3 1 2 
4 5 2 

0.629 
1.511 

0.998 

LS[K(X, Y), Y ] = 
1.154 0 

1.437 
0 0.387 

1.116 1.341 3.543 
4.548 3.642 4.810 
3.336 10.017 2.647 

1.116 1.341 3.543 
4.548 3.642 4.810 
3.336 10.017 2.647 

0.594 0 
1.519 

0 0.402 

V. "Application" for France 1980-1996 

The bicausative-matrices method will be applied to the period 1980-1996. This is not a true 

application, because the method is deceptive. Price effects are removed as possible by using the 

price base of 1980. To reduce computer time, sectors are regrouped in "10 sectors" tables (in fact, 

9x10 sectors) from the French "40 sectors" tables (in fact, 34x36 sectors), following the rule 

indicated by table 3. 

Remember that sectors T25 (Trade) and T38 (Non Marketable Services) do not appear in row, 

but only in column, in the French national accounting system. So, sector Trade in the "10 sectors" 



Table 1 here 

Table 2 here 

Table 3 here 

After 300 iterations (but convergence was obtained before), the matrices Z5(Z 1 9 8 0 , Z 1 9 9 6 ) and 

I5 (Z 1 9 9 6 , Z 1 9 8 0 ) are indicated by tables 4 and 5.1 and r vectors are not indicated because they are 

not identified. 

Table 4 here 

Table 5 here 

Moreover, the analyze of the bias is deceptive, as shown by table 6. 

Table 6 here 

table contains sector T25 in column but not in row; sector Non Marketable Services do not 

appear in row in the "10 sectors" table. 



VI. Conclusion 

The bicausative-matrices method could appear as a method suitable to analyze the change from 

one flow matrix X to another flow matrix Y, without predetermining the orientation of the data, 

that is to say considering columns as variables and rows as observations, but giving to rows and 

columns the same role. In this sense, it allows to perform the same type of analysis than the 

biproportional filtering method. 

However, the bicausative-matrices method is deceptive. It is based on the calculation of two 

diagonal matrices U and V such that the product U X V is a the nearest as possible of Y in the 

sense of least squares. The searched diagonal matrices U and V, that are calculated iteratively, are 

not identified; the product U X V is identified but this is not useful for the interpretation of the 

method, because the comparison of U X V and Y indicates only the bias of estimation. 

When analyzing this bias, Y - U X V, if one try to give to U X V the same rows and column than 

Y by a biproportion, K(U XV, Y), in order to remove the effect of the differences in sector sizes, 

the resulting bias Y - K(XJ X V, Y) becomes identical to the result of the biproportional filtering 

method applied from X to Y, Y - £(X, Y). 

Moreover, the method does not analyze the differential growth of sectors between X and Y 

because if the margins of Y are given to X, i.e., if X is projected on Y by a biproportion, 

K(X, Y), and if the bicausative-matrices method is applied from the resulting matrix to Y, the 

result, LS(.K(X, Y), Y), is equal to the result of the bicausative method applied from X to Y, 

LS(X, Y). 
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Figure 1. u and v for vi(0) = 1, v2(0) = 0, v3(0) = 0, LS(X, Y) 



Figure 2. u and v for V l (0) = 1, v2(0) = 0, v3(0) = 0.436357, LS(X, Y) 



Figure 3. u and v for vi(0) = 1, v2(0) = 0, v3(0) = 0.436358, LS(X, Y) 



Figure 4. u and v for vi(0) = 1, v2(0) = 0, v3(0) = 1, LS(X, Y) 



Sectors of the "40 sectors table" Regrouped sectors 
T01 Farming, Forestry, Fishing 
T02 Meat and Dairy Products 
T03 Other Agricultural and Food Products 

Agriculture, Forestry, Fishing 

T04 Solid Fuels 
T05 Oil Products, Natural Gas 
T06 Electricity, Gas and Water 

Energy 

T07 Ores and Ferrous Metals 
T08 Ores and non Ferrous Metals 
T09 Building Materials, Miscellaneous Minerals 

Minerals 

T10 Glass 
Tl 1 Basic Chemicals, Synthetic Fibers 
T12 Miscellaneous Chemicals, Pharmaceuticals 
T13 Smelting Works, Metal Works 
T14 Mechanical Engineering 
T15A Electric Industrial Equipment 
T15B Household Appliances 
T16 Motor Vehicles 
T17 Shipping, Aircrafts and Arms 
T18 Textile Industry, Clothing Industry 
T19 Leather and Shoe Industries 
T20 Leather and Wood Industries, Varied Industries 
T21 Paper and Cardboard 
T22 Printing and Publishing 
T23 Rubber, Transformation of Plastics 

Manufacturing 

T24 Building Trade, Civil and Agricultural Engineering Buildings 
T25 Trade 
T29 Automobile Trade and Repair Services 
T30 Hotels, Catering 

Trade 

T31 Transport 
T32 Telecommunications and Mail 

Transport and 
Telecommunications 

T33 Business Services 
T34 Marketable Services to Private Individuals 
T35 Housing Rental and Leasing 
T36 Insurance 

Services 

T37 Financial Services Services of Financial Institutions 
T38 Non Marketable Services Non Marketable Services 

Table 1. Groups of sectors 



Agric. Energy Minerals Manuf. Buildg Trade Transp. 
Telecom. 

Services Financial 
Services 

Non 
Market. 
Services 

Total 

Agric. 270 732 196 63 24 955 0 25 520 233 2 305 0 14 319 338 323 

Energy 18 603 167 784 23 722 48 846 8 091 17 854 28 118 7 129 877 18 031 339 055 

Minerals 1 962 2 303 83 346 72 775 60 063 1 880 493 810 0 2 757 226 389 

Manuf. 50 722 13 485 10 610 439 871 74 100 20 307 13 867 59 304 3 437 53 288 738 991 

Buildings 1 033 6 042 381 2 050 231 957 627 2 917 5 891 19 704 39 833 

Trade 831 263 1 401 2 627 813 8 975 1 866 8 703 823 2 694 28 996 

Transp. 
Telecom. 

5 632 5 985 10 125 36 106 13 034 33 615 24 126 21 715 4 407 10 323 165 068 

Services 18 792 12 857 9 866 83 142 48 570 30 480 15 907 103 334 12 802 35 896 371 646 

Financial 
Services 

1 038 568 829 5 826 5 940 2 074 636 1 796 3 812 410 22 929 

Total 369 345 209 483 140 343 716 198 210 842 141 662 85 873 208 013 32 049 157 422 2 271 230 

Table 2. Table for 1980 



Agric. Energy Minerals Manuf. Buildg Trade Transp. 
Telecom. 

Services Financial 
Services 

Non 
Market. 
Services 

Total 

Agric. 317 085 95 21 25 573 0 29 232 258 2 891 0 20 815 395 970 

Energy 22 142 127 202 17 172 55 509 9 3 1 6 26 834 36 397 11 705 1 196 27 164 334 637 

Minerals 1 859 13 590 67 845 70 881 53 198 1 992 286 1 126 0 3 009 213 786 

Manuf. 64 496 13 435 9 248 600 699 78 175 29 591 21 687 106 933 3 149 82 368 1 009 781 

Buildings 1 238 7 566 300 2 446 213 1 289 763 5 092 11 543 28 037 58 487 

Trade 879 302 942 2 717 641 11 656 2 549 12 557 423 3 515 36 181 

Transp. 
Telecom. 

8 199 7 071 9 439 64 480 15 330 60 468 51 078 58 113 7 949 21 596 303 723 

Services 33 852 26 962 13 209 156 997 64 934 55 163 26 572 214 993 34 087 57 031 683 800 

Financial 
Services 

3 497 2 025 1 755 19 885 14 455 6 751 2 344 5 754 750 831 1 774 809 071 

Total 453 247 198 248 119931 999 187 236 262 222 976 141 934 419 164 809 178 245 309 3 845 436 

Table 3. Table for 1996 



Agric. Energy Minerals Manuf. Buildg Trade Transp. 
Telecom. 

Services Financial 
Services 

Non 
Market. 
Services 

Total 

Agric. 316 438 165 54 29 546 0 31 596 368 4 454 0 21 088 403 709 

Energy 19 756 128 520 18 405 52 547 4 718 20 085 40 308 12 516 9 187 24 128 310414 

Minerals 2 134 1 807 66 226 80 177 35 872 2 166 724 1 456 0 3 778 192 206 

Manuf. 67 507 12 945 10317 593 023 54 156 28 629 24 913 130 483 45 123 89 365 988 954 

Buildings 366 1 545 99 736 45 359 300 1 709 20 595 8 799 34 187 

Trade 687 157 846 2 199 369 7 858 2 082 11 892 6 710 2 806 34 919 

Transp. 
Telecom. 

7 182 5 505 9 433 46 641 9 127 45 408 41 530 45 779 55 438 16 588 275 449 

Services 20 416 10 075 7 831 91 498 28 976 35 077 23 328 185 591 137 197 49 139 568 712 

Financial 
Services 

20 003 7 895 11 672 113 728 62 859 42 337 16 544 57 217 724 646 9 956 1 046 854 

Total 454 489 168 614 124 883 1 010 095 196 122 213 515 150 097 451 097 998 896 225 647 3 538 966 

Table4.LS(Z 1 9 8 0, Z 1 9 9 6 ) 



Agric. Energy Minerals Manuf. Buildg Trade Transp. 
Telecom. 

Services Financial 
Services 

Non 
Market. 
Services 

Total 

Agric. 271 086 112 24 21 666 0 23 380 189 1 991 0 15 950 334 398 

Energy 20 762 164 986 21 539 51 581 11 039 23 540 29 203 8 842 758 22 831 355 081 

Minerals 1 727 17 460 84 293 65 241 62 439 1 731 227 843 0 2 505 236 466 

Manuf. 47 634 13 725 9 136 439 645 72 960 20 445 13 705 63 621 1 572 54 525 736 968 

Buildings 933 7 889 302 1 827 203 909 492 3 092 5 883 18 943 40 473 

Trade 746 354 1 069 2 284 687 9 249 1 850 8 580 243 2 672 27 734 

Transp. 
Telecom. 

4 589 5 474 7 067 35 763 10 842 31 661 24 461 26 202 3 008 10 834 159 901 

Services 19 397 21 370 10 125 89 148 47 018 29 570 13 028 99 241 13 206 29 291 371 394 

Financial 
Services 

30 24 20 167 155 53 17 39 4 298 13 4 816 

Total 366 904 231 394 133 575 707 322 205 343 140 538 83 172 212 451 28 968 157 564 2 267 231 

Table 5. LS(ZM6, Z 1 9 8 0 ) 



Agric. Energy Minerals Manuf. Buildg Trade Transp. 
Telecom. 

Services Financial 
Services 

Non 
Market. 
Services 

Total 

Agric. 311 855 190 47 28 284 0 30 962 321 3 669 0 20 643 395 970 

Energy 19 424 147 094 16 172 50 184 5 493 19 635 35 112 10 286 7 674 23 563 334 637 

Minerals 2 382 2 347 66 056 86 924 47 410 2 404 716 1 359 0 4 189 213 786 

Manuf. 66 919 14 938 9 139 571 017 63 570 28 218 21 880 108 111 38 001 87 988 1 009 781 

Buildings 684 3 359 165 1 335 99 667 496 2 669 32 686 16 327 58 487 

Trade 770 205 847 2 394 490 8 756 2 067 11 140 6 389 3 123 36 181 

Transp. 
Telecom. 

8 329 7 431 9 776 52 536 12 533 52 357 42 668 44 372 54 616 19 105 303 723 

Services 25 931 14 896 8 889 112 886 43 581 44 299 26 251 197 028 148 046 61 992 683 800 

Financial 
Services 

16 953 7 789 8 840 93 626 63 084 35 678 12 423 40 532 521 766 8 381 809 071 

Total 453 247 198 248 119931 999 187 236 262 222 976 141 934 419 164 809 178 245 309 3 845 436 

Table 6. £(80,96) or K[ LS (80,96), 96 




