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A Spatial Econometric Analysis of Geographic Spillovers

and Growth for European Regions, 1980-1995

Abstract
The aim of this paper is to consider the geographical dimension of data in the 

estimation of the convergence of European regions and to emphasize geographic spillovers in 

regional economic growth phenomena. In a sample of 138 European regions over the 1980- 

1995 period, we show that the unconditional /? -convergence model is misspecified due to 

spatially autocorrelated errors. Its estimation by Ordinary Least Squares leads to inefficient 

estimators and invalid statistical inference. Using spatial econometric methods and a distance 

based weight matrix we then estimate an alternative specification, which takes into account 

the spatial autocorrelation detected and leads to reliable statistical inference. Moreover this 

specification allows us to highlight a geographic spillover effect: the mean growth rate of a 

region is positively influenced by those of neighboring regions. We finally show by a 

simulation experiment that a random shock affecting a given region propagates to all the 

regions of the sample.

JEL Classification: C51, R ll, R15
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Introduction
New economic geography theories and growth theories have recently been integrated 

in order to show the way interactions between agglomeration and growth processes can lead 

to better explanations in regional growth studies (Baumont and Huriot, 1999). Two important 

results have to be highlighted. First these theories emphasize the role played by geographic 

spillovers in growth mechanisms. Second, most of the analysis point out the dominating 

growth-geographical patterns of Core-Periphery equilibrium and uneven development. 

Moreover, these results have two major implications for empirical studies on regional growth. 

On the one hand they mean that regional data can be spatially ordered since similar regions 

tend to cluster: econometric estimations based on geographical data (i.e. localized data) have 

to take into account the fact that economic phenomena may not be randomly spatially 

distributed on an economic integrated regional space, i.e. may be spatially autocorrelated. On 

the other hand, if  we have good reasons to think that geographic spillovers could influence 

growth processes, it is worth estimating these impacts and the way the economic performance 

of each region interacts with each other.

The aim of this paper is to deal with these empirical issues in the analysis of fi- 

convergence between European regions. More precisely, we want to show that new theoretical 

results about geographic spillovers and advances in spatial econometric methods can produce 

an alternative way of analyzing the ^-convergence process.

From an econometric point of view, spatial dependence between observations leads to 

inefficient Ordinary Least Squares (OLS) estimators and unreliable statistical inference. It is 

then straightforward that models using geographical data should systematically be tested for 

spatial autocorrelation like time series models are systematically tested for serial correlation. 

However just a few empirical studies in the recent literature on growth theories using 

geographical data apply the appropriate spatial econometric tools (see for example Fingleton 

and McCombie, 1998; Rey and Montouri, 1999; Fingleton, 1999).

Moreover, we show that improved results can be obtained when spatial econometric 

tools are used in the estimation of regional growth process. First, we avoid bias in statistical 

inference due to spatial autocorrelation and obtain more reliable estimates of the convergence 

rate. Second, we estimate the magnitude of geographical spillover effects in regional growth 

processes and highlight the underlying spatial diffusion process. Third, we show that spatial 

dependence leads to a minimal but unavoidable specification of conditional fi -convergence. 

What we mean here is that we won’t try to find the determinants of regional differentiation in
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steady states by including additional explanatory variables in a conditional ft -convergence 

model. We will consider instead that spatial dependence will absorb all these effects in the 

context of regional information scarcity and unreliability as suggested by Fingleton (1999).

The empirical study of -convergence for European regions we realize in this paper 

illustrates these three points. Using a sample of 138 European regions over the 1980-1995 

period, we show that the unconditional /? -convergence model is misspecified due to spatially 

autocorrelated errors. We then estimate different specifications integrating these spatial effects 

explicitly using a distance-based weight matrix. Our results indicate that the most appropriate 

specification is the spatially autocorrelated error model and that the convergence process is 

somewhat stronger. But we also show that the mean growth rate of a region is positively 

influenced by those of neighboring regions stressing a spatial spillover effect. Moreover, this 

specification implies a spatial diffusion process of random shocks that we evaluate by 

simulation.

In order to discuss theoretical and empirical results on interactions between 

agglomeration and regional growth processes we present some theoretical principles showing 

that economic phenomena are spatially ordered and that geographic spillovers affect regional 

growth (Section 1). Then we explain how spatial econometric tools can be applied to the 

estimation of /? -convergence models using European regional data (Section 2). Finally 

several estimations are realized and their results are discussed (Section 3).

1. Geography and Regional Growth
New economic geography theories have been developed following Krugman’s 

formalization of inter-regional equilibrium with increasing returns (Krugman, 1991). These 

theories aim at explaining the location behaviors of firms and their agglomeration processes. 

They give several theoretical information and principles, which help us to understand the 

uneven spatial repartition of economic activities between regions (see Fujita, Thisse, 1997 and 

Fujita, Krugman and Venables, 1999 for more details). More precisely, three principles can be 

kept in mind.

First, driven by dominating agglomeration forces, industrial, high tertiary and R&D 

activities tend to concentrate in a few numbers of places in developed nations.

Second, the geographical distribution of areas characterized by high or low densities of 

economic activities is rarely random: the places where agglomerations take place are
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identified by first nature or second nature conditions (Krugman, 1993a). The former refers to 

natural conditions or to random location decisions taken by firms. The latter means that the 

attractiveness of a place for a firm is due to the presence of other firms, which have chosen to 

locate there before. In multi-regional models (Krugman, 1993b), it is shown that two 

agglomerations are separated by a minimum distance because a shadow effect prevents the 

formation of a distinct agglomeration in the neighborhood of another one. This minimum 

distance value increases with the size of the agglomeration.

Third, agglomeration processes are strongly cumulative because the agglomeration 

itself is a component of agglomeration forces. Even if the starting spatial distribution of 

economic activities is uniform (i.e. there is no agglomeration), an exogenous shock, like the 

random decision of a firm to re-locate in another place, can lead to the formation of an 

agglomeration in that place.

The effects of the uneven spatial distribution of economic activities on regional 

economic growth have been pointed out in new economic geography by some theories 

constituting what we named “ geography-growth synthesis” (Baumont and Huriot, 1999). 

The emergence of these theories is based on the fact that several similar economic 

mechanisms are involved both in spatial and dynamic accumulation processes of economic 

activities, which further and support economic growth. These common determinants affect the 

characteristics of production processes (like increasing returns, monopolistic competition, 

externalities, vertical linkage...) and focus on specific factors (like R&D, innovation, producer 

services, high tertiary activities, public infrastructures...). Then an agglomeration as a whole 

can be considered as a growth factor (Baumont, 1997). Several authors have formalized the 

links between agglomeration and growth processes (Englmann and Walz, 1995; Kubo, 1995; 

Martin and Ottaviano, 1996, 1999; Ottaviano, 1998; Pavilos and Wang, 1993; Walz, 1996) 

and they have obtained important results for the analysis of regional growth mechanisms. On 

the one hand, it is shown that the spatial concentration of economic activities favors economic 

growth. As a result, uneven spatial distribution of economic activities is an efficient 

geographic equilibrium for economic growth. On the other hand, economic growth can be 

considered like another agglomeration force, that is to say that growth can reinforce 

polarization processes.

These theoretical approaches allow studying the way economic integration policies 

influence convergence processes between regional economies (Baumont, 1998). Since the 

regional integration process is one of the most developed one in the European Union, these 

results are very important for our purpose. For example, the intensification of economic
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integration processes leads to lower transaction costs, higher labor migrations and the 

widening of market size; each of these factors contributes to agglomeration process and 

uneven regional development. We also know that the effects of vertical linkage and 

geographic spillovers on both firms’ location and productivity reinforce the strength of the 

interactions between agglomeration and growth processes.

If we focus on geographic spillover effects, some theoretical results are especially 

important. Geographic spillovers refer to positive knowledge external effects produced by 

some located firms and affecting the production processes of firms located elsewhere. Local 

and global geographic spillovers must be distinguished. The former means that production 

processes of the firms located in one region only benefit from the knowledge accumulation in 

that region. In this case, uneven spatial distributions of economic activities and regional 

growth divergence are observed. The latter means that knowledge accumulation in one region 

improves productivity of all the firms whatever the region where they are located. A global 

geographic spillover effect doesn’t reinforce agglomeration processes and contributes to 

growth convergence (Englmann and Walz, 1995; Martin and Ottaviano, 1996, 1999). 

Intermediary spatial ranges can be considered if the concentration of firms in one region 

produces both local and global knowledge spillovers of different values (Kubo, 1995). 

Uneven or equilibrium patterns of regional growth appear according to the relative strengths 

of this geographic spillover in a region and between the regions.

All these theoretical results show that geographical patterns can be ordered by 

economic growth processes and that they can orient regional growth patterns. Geographic 

spillovers seem to play an important role in the interaction between geography and growth. 

Applying them to the analysis of an integrated regional space would lead to the following 

observations. 1/ Since economic activities are unevenly distributed over space, cumulative 

agglomeration processes take place and most of the economic activities tend to concentrate in 

a few numbers of regions. 2/ Since economic growth is stimulated by geographic 

concentration of economic activities, patterns of uneven development are observed. 3/ The 

shadow effect (Krugman, 1993) contained in the cumulative agglomeration process and the 

spatial ranges of geographic spillovers can now explain why rich and poor regions are or 

are not regularly distributed. The shadow effect means that cumulative processes of 

concentration in one region empties its surroundings of economic activities. As a result, rich 

regions can be close with each other if geographic spillovers are global and regularly 

distributed among them. On the contrary, the assumption of local spillovers would explain a 

more regular juxtaposition of rich and poor regions. 4/ Finally, since history matters through
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the initial conditions and the cumulative nature of both growth and agglomeration processes, 

the observed geographic distribution of rich and poor regions would be rather stable through 

time.

We can easily observe such spatial orders in European Union regional area. Rich and 

attractive regions, i.e. with per capita GDP above the mean per capita GDP of European 

regions, keep on being geographically concentrated in the south of England, in Benelux, in the 

east of France, in the west of Germany and in the north of Italy along the London-Munich- 

Turin axis. In Spain, Portugal and South-Italy, poor regions are numerous.

These persistent empirical observations lead to three types of issues. The first one 

refers to growth theories and investigates the convergence problem if poor regions don’t catch 

up rich ones. The second one refers to economic geography theories and investigates the 

effect of geographic spillovers on growth processes to explain spatial development patterns. 

The third one refers to econometric methods we can use to estimate economic-geography 

phenomena since data are not spatially randomly distributed. The empirical research we 

present in this paper tries to answer these questions.

2. A spatial econometric approach of /^convergence
The convergence hypothesis based on the neo-classical growth theories (Solow, 1956; 

Swan, 1956) implies that a "poor" region tends to grow more quickly than a "rich" region, so 

that the "poor" region catches up in the long run the level of per capita income or production 

of the "rich" region.

This hypothesis corresponds to the concept of /^-convergence (Barro and Sala-I- 

Martin, 1991, 1992, 1995). /^-convergence may be absolute (unconditional) or conditional. It 

is absolute when it is independent of the initial conditions. It is conditional when, moreover, 

the regions are supposed to be identical in terms of preferences, technologies and economic 

policies. If we assume spatial dependence between regions, then the relative location of a 

region can affect its economic performances. In that case, /^-convergence is conditional to 

regions with similar geographical surroundings. Moreover, if  we want to test the /?- 

convergence hypothesis, we must first test for spatial dependence between regions because 

OLS produces inefficient estimators and unreliable statistical inference when spatial 

autocorrelation is present.
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2.1. /^convergence concepts

The hypothesis of unconditional P-convergence is usually tested on the following 

cross-sectional model:

where y i t is the per capita GDP of the region i (z = at the date t , T  is the length of

the period, a  and J3 are unknown parameters to be estimated and s i an error term.

There is ¡3 -convergence when ¡3 is negative and statistically significant since in this 

case the average growth rate of per capita GDP between dates 0 and T is negatively

fill half of the variation, which separates them from the stationary state, is called the half-life: 

r  = - ln (2  )/ln (l + 0 ) .

The test of the hypothesis of conditional /? -convergence is based on the estimation 

of the following model where some variables, which differentiate the regions, are isolated:

X t is a vector of variables, maintaining constant the stationary-state of region i , including

some state variables, like the stock of physical or human capital, and control or environment 

variables, like the ratio of public consumption to GDP, the ratio of domestic investment to 

GDP, the modification of terms of trade, the fertility rate, the degree of political instability 

etc. (Barro and Sala-I-Martin, 1995). We can note that another way of testing the assumption 

of conditional convergence is still based on the equation (1), which is estimated on 

subsamples of regions for which the assumption of similar stationary-states seems acceptable 

and which leads to the construction of convergence clubs (see for example Baumol, 1986; 

Jean-Pierre, 1999).

Two effects on economic growth are estimated in the conditional ¡3 -convergence 

model. The first one is an expected negative effect of the initial per capita GDP through the 

estimated value of (3 in order to capture the convergence phenomenon. The second one

corresponds to all other effects on growth of each explanatory variable introduced in X t . As a 

result, estimating equation (2) provides information on a more general growth process than in

(1)

correlated with the initial level of per capita GDP. The estimate of f3 makes it possible to 

compute the speed of convergence: 9 = - ln (1 + Tf3)/T. The time necessary for the regions to

(2)
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equation (1). Nevertheless, the appropriate choice of these explanatory variables is 

problematic because we can’t be sure conceptually to include all the variables differentiating 

steady states. Even in this case data on some of these variables may not be easily accessible 

and/or reliable for international comparisons (Caselli, Esquivel and Lefort, 1996; Fingleton 

1999). In addition, some of these variables, including the initial per capita GDP, can be 

correlated with the error term invalidating estimation by OLS and associated statistical 

inference (Quah, 1993; Evans, 1996).

Let us finally underline that in the -convergence tests presented, the analysis relates

to regions observed in cross-sections by supposing implicitly that each one of them is a 

geographically independent entity and by neglecting the possibility of spatial interactions. 

Indeed the independence hypothesis on the error may be very restrictive and should be tested 

since if it is rejected the statistical inference provided by OLS will not be reliable. The spatial 

dimension of the data should then be carefully integrated in the study and estimation of 

convergence processes.

2.2. Spatial dependence and econometric tools
Spatial dependence is defined as the coincidence of value similarity and locational 

similarity (Anselin, 2000). There is positive spatial autocorrelation when high or low values 

of a random variable tend to cluster in space and there is negative spatial autocorrelation when 

geographical areas tend to be surrounded by neighbors with very dissimilar values.

Spatial dependence means that observations are geographically correlated due to some 

processes, which connect different areas: for example diffusion or trade processes, transfers or 

other social and economic interactions. Several economic factors, like labor force mobility, 

capital mobility, technology and knowledge diffusion, transportation or transaction costs may 

be particularly important because they directly affect regional interactions. However, the 

problem we want to stress in this paper is that these various processes induce a particular 

organization of economic activity in space whatever the underlying explanatory variables. 

Hence, we focus on the spatial dependence induced by these processes given a purely spatial 

pattern exogenously introduced in the weight matrix defined below. Therefore we will not try 

to include these economic factors in this weight matrix nor as explanatory variables in the 

model. We will consider that spatial dependence will catch these effects altogether in the 

context of regional information scarcity and unreliability as Fingleton (1999) suggested it.
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The spatial weight matrix
The weight matrix W of dimension (n x n) contains the exogenous information about 

the relative spatial connections between the n regions i . The elements wu on the diagonal are 

set to zero whereas the elements Wy indicate the way the region i is spatially connected to the 

region j . In order to normalize the outside influence upon each region, the weight matrix is 

standardized such that the elements of a row sum up to one w*. = wyQT w(j. For a variable x ,

this transformation means that the expression Wx, defined as a spatial lag variable, is simply 

the weighted average of the neighboring observations.

Two principal ways are used to evaluate geographical connections: a contiguity 

indicator or a distance indicator. In the first case, we assume that interactions can only exist if 

two regions share a common border: then wtj = 1 if regions i and j  have a common border

and Wy = 0 otherwise. This contiguity indicator can be refined by taking into account the

length of this common border assuming that the intensity of interactions cannot be identical 

between regions sharing a border of 10 miles and those sharing a border of 100 miles. 

However, the contiguity indicator can imply a block-diagonal pattern for the weight matrix if 

some regions don’t share a common border with any other region in the sample considered (it 

is indeed the case of Great-Britain and Greece). Therefore it doesn’t seem to be really 

appropriate for an exhaustive sample of European regions.

In the second case, we assume that the intensity of interactions depends on the distance 

between the centroids of these regions or between the regional capitals. Various indicators can 

be used depending on the definition of the distance dy (great circle distance, distance by roads

etc.) and depending on the functional form we choose (the inverse of the distance: wy = ]fdy or

the inverse of the squared distance: wy = \jd y ...). We can also define a distance-cutoff above

which Wy = 0 assuming that above that distance-cutoff the interactions are negligible.

Defined this way, we exclude from this matrix all economic factors that could explain 

these spatial connections and we focus on the pure spatial pattern. Moreover, we think that 

this is the only way that we can consider this matrix as really exogenous.

Econometric models

Three kinds of econometric models can be used to deal with spatial dependence of 

observations (Anselin, 1988a; Anselin and Bera, 1995): the spatial autoregressive model, the
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spatial cross-regressive model and the spatial error model. Let us examine now the way they 

can be applied to the ^-convergence model.

The spatial autoregressive model
In this model, spatial correlation of observations is handled by the endogenous spatial 

lag variable W[( 1 / T) ln(z)]:

(l/T ) ln(z) = a S  + /3 ln(>>0) + pW[(\. / T) ln(z)] + u w~N(0,o-27) (3)

where z is the (n x 1) vector of the dependent variable in the unconditional fi -convergence 

model, i.e. the vector of per capita GDP ratios for each region i between dates T and 0, 

( l/r ) ln (z )  is then the vector of average growth rates for each region i between dates T

andO; y 0 is the (« x 1) vector of per capita GDP level for each region i at date 0 and u 

the(nx l) vector of normal i.i.d. error terms; S is the sum vector; a ,  (3 and p  are the 

unknown parameters to be estimated, p  is the spatial autoregressive parameter indicating the

extent of interaction between the observations according to the spatial pattern exogenously 

introduced in the standardized weight matrix. The endogenous spatial lag variable 

W[(\ / T) ln(z)] is then a vector containing the growth rates premultiplied by the weight 

matrix: for a region i of the vector ( l /r ) ln (z ) , the corresponding line of the spatial lag vector 

contains the spatially weighted average of the growth rates of the neighboring regions.

Estimation of this model by OLS produces inconsistent estimators due to the presence 

of a stochastic regressor Wy, which is always correlated with u , even if the residuals are 

identically and independently distributed (Anselin, 1988a, chap 6). Hence it has to be 

estimated by the Maximum Likelihood Method (ML) or the Instrumental Variables Method 

(IV).

This specification can be interpreted in two ways. From the convergence perspective, 

it yields some information on the nature of convergence through the ¡3 parameter once spatial 

effects are controlled for. From the economic geography perspective, it may help to highlight 

a spatial spillover effect since it indicates how the growth rate of per capita GDP in a region is 

affected by those of neighboring regions through the p  parameter after conditioning on the 

initial per capita GDP levels.
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Moreover, let us stress also that this model can be rewritten as following:

( /  -  pW )[( 1 / T) ln(z)] = a S  + /3\n(y0)+ u  (4)

[(1 / T )ln(z)] = a (I  -  pW )~1 S + f i ( I -  pW)~l In(y0) + ( /  -  p W \ xu (5)

This expression indicates that, on average, the growth rate of a given region is not only 

affected by its own per capita GDP initial level but also by those o f all other regions through 

the inverse spatial transformation (I -  pW)~x. However, this interpretation is rather disturbing 

when we consider this specification from the pure convergence perspective: it is hard to say if 

it is really consistent with the basic ¡3 -convergence concept. For the least, we think that this 

specification should be interpreted carefully in terms of convergence processes. Concerning 

the error process this expression means that a random shock in a specific region does not only 

affect the growth rate of this region, but also has an impact on the growth rates of all other 

regions through the same inverse spatial transformation.

The spatial cross-regressive model
Another way to deal with spatial dependence is to introduce exogenous spatial lag 

variables:

(1/7’) ln(z) = aS  + fi ln(,y0) + WZy + u m~N(0,<t2/) (6)

Here, the influence of h spatially lagged exogenous variables contained in the 

(n x h) matrix Z is reflected by the parameter vector y . This general specification allows 

handling of spatial spillover effects explicitly and can be interpreted like a conditional 

convergence model integrating spatial environment variables possibly affecting growth rates. 

The set of explanatory variables in Z can include or not ln(jv0) . This model can be estimated 

by OLS.

An interesting special case appears when Z includes only ln(y0), we have then:

(l/r ) ln (z )  = aS  + j01nO/o) + ̂ ln O > o) + w m~ N (0 ,ct27) (7)

in which only the spatially lagged initial per capita GDP levels affect growth rates. This 

model can be interpreted as the minimal specification allowing a spatially lagged exogenous 

effect in a conditional -convergence model. It gives estimates of both a direct effect and a 

spatially lagged effect of initial per capita GDP levels on the growth rates.
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The spatial error model

This specification is accurate when we think that spatial dependence works through 

omitted variables. It is then handled by the error process with errors from different regions 

displaying spatial covariance. When the errors follow a first order process, the model is:

(1 / T) ln(z) = a S  + /3 ln(y0) + s  s  = A W s+u  w~N(0,o-2/) (8)

where A is the scalar parameter expressing the intensity of spatial correlation between 

regression residuals. Use of OLS in the presence of non-spherical errors yields unbiased but 

inefficient estimators. In addition inference based on OLS may be misleading due to biased 

estimate of the parameter’s variance. Therefore this model should be estimated by ML or 

General Methods of Moments (GMM).

This model has two interesting properties.

The first one refers to the spatial diffusion effect of random shocks we’ve highlighted 

in equation (5) as it appears here by noting that since: e  = AWs + u , then s  = ( I -  AW)~X u and 

the model (8) can be rewritten as following:

(1 / T) ln(z) = a S  + /? ln(y0) + ( /  -  AW)~X u (9)

Second, this model can be rewritten in another form, which can be interpreted like a 

minimal model of conditional /? -convergence integrating two spatial environment variables.

Indeed, let us note that premultiplying equation (8) by ( /  -  AW) we get:

( /  -  AW)( 1 / T) ln(z) = a (I  -  AW)S + J3(I -  AW) ln(^0)+  u (10) 

then:

(1 / T) ln(z) -  AW[( 1 / T) ln(z)] = a (I  -  AW)S + ¡3 ln(>>0) -  A/3W ]n(y0) + u (11)

(1 / T) ln(z) = a (I  -  AW)S + /3 ln(y0) + AW[( 1 / T) ln(z)] + yW  ln(y0) + u (12)

with the restriction y  = -Af3 (13)

This model (12) is the so-called spatial Durbin model and can be estimated by ML. 

The restriction (13) can be tested by the common factor test (Burridge, 1981). If the restriction 

y  + Afi = 0 cannot be rejected then model (12) reduces to model (8).

It should be stressed that model (12) encompasses model (3) and (7) in the sense that it 

incorporates either the spatially lagged endogenous and exogenous variables: W[(l / T) ln(z)]

and W ln(jy0). It reveals two types of spatial spillover effects. Indeed, the growth rate of a

region i may be influenced by the growth rate of neighboring regions, by the means of the
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endogenous spatial lag variable. It may be as well influenced by the initial per capita GDP of 

neighboring regions, by the means of the exogenous spatial lag variable.

Spatial econometric models appear thus useful to highlight spatial spillover effects. 

The application of decision rules based on different spatial autocorrelation tests helps us to 

choose the best specification we have to estimate among all available spatial regressions.

Spatial autocorrelation tests

Three spatial autocorrelation tests can be carried out on the absolute ¡5 -convergence 

model (3). The Moran’s /  test adapted to the regression residuals by Cliff and Ord (1981) is 

very powerful against all forms of spatial dependence but it does not allow discriminating 

between them (Anselin and Florax, 1995). In this purpose, we can use two Lagrange 

Multiplier tests (Anselin, 1988b) as well as their robust counterparts (Anselin et al., 1996), 

which allow testing the presence of the two possible forms of autocorrelation: LMLAG for an 

autoregressive spatial lag variable and LMERR for a spatial autocorrelation of errors. The two 

robust tests RLMLAG and RLMERR have a good power against their specific alternative. 

The decision rule suggested by Anselin and Florax (1995) can then be used to decide which 

specification is the more appropriate. If LMLAG is more significant than LMERR and 

RLMLAG is significant but RLMERR is not, then the appropriate model is the spatial 

autoregressive model. Conversely, if LMERR is more significant than LMLAG and 

RLMERR is significant but RLMLAG is not, then the appropriate specification is the spatial 

error model.

3. Estimation results stressing spatial spillover effects
Using Exploratory Spatial Data Analysis and Local Indicators of Spatial Association 

(Anselin, 1995), we have shown in previous work (Le Gallo and Ertur, 2000) that a strong 

positive spatial autocorrelation characterizes both per capita GDP levels and growth rates for 

different samples of European Union regions for the 1980-1995 period.

We use spatial econometrics techniques briefly described above to detect and to treat 

spatial autocorrelation in the model of absolute /? -convergence on the per capita GDP of the 

European regions over the 1980-1995 period. The data are extracted from the EUROSTAT- 

REGIO databank. Our sample includes 138 regions (Denmark, Luxembourg and United
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Kingdom in NUTS1 level and Belgium, France, Germany, Greece, Italy, Netherlands Portugal 

and Spain in NUTS2 level).

We first estimate the model of absolute /^-convergence by OLS and carry out various 

tests aiming at detecting the presence of spatial dependence using a spatial weight matrix 

specified below. We then consider the specifications integrating these spatial effects 

explicitly.

The spatial weight matrix

We choose the great circle distance between regional centroids to compute the spatial 

weight matrix and we define a cutoff using the residual correlogram. The general form of the 

distance weight matrix we use is defined as following:

where dy is the great circle distance between centroids of regions i and j \  D(l) = Q l , 

D(2) = M e , D(3) = Q3 and £>(4) = Max, where Ql, Me, Q3 and Max are respectively the 

lower quartile (321 miles), the median (592 miles), the upper quartile (933 miles) and the 

maximum (2093 miles) of the great circle distance distribution. D (k) is a cutoff parameter for 

k = 1,2,3 above which interactions are assumed negligible. For k = 4 , the distance matrix is 

full without cutoff. The choice of the cutoff can be based on a residual correlogram with 

ranges defined by minimum, lower quartile, median, upper quartile and maximum great circle 

distances (see Table 1).

The determination of the cutoff that maximize the absolute value of significant 

Moran’s I or robust Lagrange Multiplier test statistics for spatial autocorrelation of the errors 

leads to Q l: we retain a cutoff of 321 miles for the distance based weight matrix.

Wy = 0 if i = jlJ J

wij =oif dy >D(k) (14)

[Table 1 about here]
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Econometric results

Let us take as a starting point the following model of absolute ^-convergence:

(1 / T ) ln(z) = S a  + P ln(^19g0) + s  £ ~ N (0 ,a 2£I) (15)

where ( l/r ) ln (z )  is the vector of dimension n = 138 of the average per capita GDP growth 

rates for each region i between 1995 and 1980, T = 1 5 , _y,980 is the vector containing the 

observations of per capita GDP for all the regions in 1980, a  and p  are the unknown 

parameters to be estimated, S is the unit vector and e  is the vector of errors with the usual 

properties. All estimations were carried out using SpaceStat 1.90 software (Anselin, 1999).

The results of the estimation by OLS of this model are given in Table 2. The 

coefficient associated with the initial per capita GDP is significant and negative,

P  = -0,0079, which confirms the hypothesis of convergence for the European regions. The 

speed of convergence associated with this estimation is 0.84% and the half-life is 88 years. 

These results indicate that the process of convergence is weak and are in conformity with 

other empirical studies on the convergence of the European regions (Barro and Sala-I-Martin, 

1995). It is worth mentioning that the Jarque-Bera test (1987) doesn’t reject Normality (p- 

value of 0.011): the reliability of all subsequent testing procedures and the use of Maximum 

Likelihood estimation method are then strengthened. We note however that the White test 

rejects homoskedasticity and that the Breusch-Pagan test (1979) rejects it vs. ln(jy19g0).

Nevertheless further consideration of spatial heterogeneity per se is beyond the scope of this 

paper. We only take into account spatial dependence and consider, as a first approximation, 

that the heteroskedasticity found is implied by spatial autocorrelation (Anselin, 1988a, 

Anselin and Griffith, 1988).

Three tests of spatial autocorrelation are then carried out: Moran’s /  test adapted to 

regression residuals indicates the presence of spatial dependence. To discriminate between the 

two forms of spatial dependence -  endogenous spatial lag or spatial autocorrelation of errors - 

we perform the Lagrange Multiplier tests: respectively LMERR and LMLAG and their robust 

versions. Applying the decision rule suggested by Anselin and Florax (1995) these tests 

indicate the presence of spatial autocorrelation rather than a spatial lag variable: the spatial 

error model appears to be the appropriate specification.

[Table 2 about here]
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Therefore the absolute /^-convergence model is misspecified due to the omission of 

spatial autocorrelation of the errors. Actually, each region is not independent of the others, as 

it is frequently supposed in the previous studies at the regional level. Statistical inference 

based on OLS estimators is not reliable. The model of absolute /^-convergence must thus be 

modified to integrate this form of spatial dependence explicitly.

The estimation results by ML for the spatial error model are given in Table 2. The
A

coefficients are all strongly significant. /? is higher than in the absolute /^-convergence model

estimated by OLS and a positive spatial autocorrelation of the errors X = 0,783 is found. The 

LMLAG* test does not reject the null hypothesis of the absence of an additional 

autoregressive lag variable. The spatially adjusted Breusch-Pagan test is no more significant 

at the 5% significance level, indicating absence of heteroskedasticity vs. ln(y1980). Therefore

heteroskedasticity found in the absolute /2-convergence estimated by OLS can be interpreted 

as entirely due to spatial autocorrelation and is no more a problem. The common factor test 

indicates that the restriction y  + Xfi = 0 cannot be rejected so the spatial error model can be 

rewritten as the constrained spatial Durbin model:

(1 / T) ln(z ) = <*(/- AW)S + ln(y1980) + AW[(l / T) ln(z )]+yW  ln(y1980 ) + u (16)

with y = - X p , but this coefficient is not significant at the 5% significance level. According to 

information criteria this model seems to perform better than the preceding one (Akaike, 1974; 

Schwarz, 1978). Moreover estimation of this model by iterated GMM (Kelejian and Prucha, 

1999) leads exactly to the same results on the convergence parameter p .  It is worth 

mentioning that all of our results are quite robust to the choice of the spatial weight matrix 

(results for Q2, Q3 and full distance based matrices are available from the authors).

To check for the decision rule applied, we also estimate the spatial autoregressive 

model including the endogenous lag variable and the special case of the spatial cross- 

regressive model with only the spatially lagged initial per capita GDP level. The estimation 

results are given in Table 2. In the spatial autoregressive model, we note that the convergence 

process appears to be even weaker and that a spatial spillover effect is still found: the growth 

rate of per capita GDP in a given region is influenced by those of neighboring regions. 

However the spatially adjusted Breusch-Pagan test is significant indicating heteroskedasticity 

and this model does not perform better than the previous one in terms of information criteria. 

Finally, estimation of the spatial cross-regressive model shows that there’s no spatial spillover 

effect associated with the exogenous lag variable. Moreover, there are some problems with
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normality, heteroskedasticity and spatial dependence tests, which still indicate the presence of 

spatial error autocorrelation. This latter model seems therefore to be strongly misspecified and 

is also the worst in terms of information criteria. Indeed, the spatial error model appears as the 

most appropriate specification as the decision rule suggested by Anselin and Florax (1995) 

showed us previously.

Economic implications of the spatial error model

This model has three economic implications:

First, from the convergence perspective, the speed of convergence in the model with 

spatial autocorrelation is 1.23 % and is thus bigger than that of the initial model; the half-life 

reduces to 62 years once the spatial effects are controlled for. The convergence process 

appears then to be a little stronger but it remains actually weak. This first implication may 

seem qualitatively negligible, but we must underline that this is the only proper way of 

estimating a f3 -convergence model once spatially autocorrelated errors are detected and the 

only proper way of drawing reliable statistical inference.

Second, from the New Economic Geography perspective, this model highlights a 

spatial spillover effect, when reformulated as the constrained spatial Durbin model, in that the 

mean growth rate of a region / is positively influenced by the mean growth rate of neighboring 

regions, through the endogenous spatial lag variable W[(MT) ln(z)]. But it doesn’t seem to be 

influenced by the initial per capita GDP of neighboring regions, through the exogenous spatial 

lag variable W]n(yi9S0). This spillover effect indicates that the spatial association patterns are

not neutral for the economic performances of European regions. The more a region is 

surrounded by dynamic regions with high growth rates, the higher will be its growth rate. In 

other words, the geographical environment has an influence on growth processes. This 

corroborates the theoretical results highlighted by the New Economic Geography.

The third implication is even more attractive. We saw that this specification has an 

interesting property concerning the diffusion of a random shock. We present some simulation 

results to illustrate this property with a random shock, set equal to two times the residual 

standard-error of the estimated spatial error model, affecting lie de France. This shock has the 

largest relative impact on lie de France where the estimated mean growth rate is 22.2% higher 

than the estimated mean growth rate without the shock. Nevertheless we observe a clear 

spatial diffusion pattern of this shock to all other regions of the sample. The magnitude of the 

impact of this shock is between 1.6% and 3.7% for the regions neighboring lie de France and
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gradually decreases when we move to peripheral regions (Figure 1). Therefore the spatially 

autocorrelated errors specification underlines that the geographical diffusion of shocks are at 

least as important as the dynamic diffusion of these shocks in the analysis of convergence 

processes.

[Figure 1 about here]

Conclusion
In this paper, we analyze the consequences of spatial dependence on regional growth 

and convergence processes. Indeed spatial error autocorrelation is detected in the 

unconditional /2-convergence model estimated for a sample of 138 European regions over the 

1980-1995 period leading to inefficient OLS estimators and unreliable statistical inference. 

Therefore, we have to find the most appropriate specification taking into account the spatial 

autocorrelation detected and estimate it with the appropriate econometric method. Among all 

the specifications integrating spatial autocorrelation, the spatial error model is the best one 

according to the decision rule suggested by Anselin and Florax (1995) and to information 

criteria. We interpret this specification as the minimal conditional /^-convergence model in 

the sense that it captures the effects of all other variables that could explain differentiated 

steady states along the lines of Fingleton (1999). This specification reveals that the 

convergence process is somewhat stronger. Moreover, it reveals spatial spillover effects in 

that the mean growth rate of per capita GDP of a region is affected by the mean growth rate of 

neighboring regions. The spatial diffusion process implied by this model is also highlighted 

by a simulation experiment. Let us finally note that spatial heterogeneity, which may be 

present in the sample and that we discarded here to focus on spatial autocorrelation will be the 

object of further research.
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Data Appendix

The data are extracted from the EUROSTAT-REGIO databank: 
series E2GDP measured in Ecu hab units
Our sample includes 138 regions: Denmark, Luxembourg and United Kingdom in NUTS1 
level and Belgium, France, Germany, Greece, Italy, Netherlands Portugal and Spain in 
NUTS2 level.
We use Eurostat 1995 nomenclature of statistical territorial units, which is referred to as 
NUTS: NUTS1 means European Community Regions while NUTS2 means Basic 
Administrative Units.
We exclude Groningen in the Netherlands from the sample due to some anomalies related to 
North Sea Oil revenues, which increase notably its per capita GDP. We also exclude Canary 
Islands and Ceuta y Mellila, which are geographically isolated. Corse, Austria, Finland, 
Ireland and Sweden are excluded due to data non-availability over the 1980-1995 period in 
the EUROSTAT-REGIO databank. Berlin and East Germany are also excluded due to well- 
known historical and political reasons.
All computations are carried out using SpaceStat 1.90 software by Anselin (1999).

22



Range (Km) [Min;Ql [ 

[8; 321 [
[Ql;Me[ 
[321 ;592[

[Me;Q3[
[592;933[

[Q3;Max[
[933;2093[

Moran’s I 15.54 -3.07 -13.52 11.26
p-value 0.000 0.002 0.000 0.000
LMERR 157.50 8.94 108.58 33.05
p-value 0.000 0.002 0.000 0.000

R-LMERR 47.86 0.58 43.80 0.14
p-value 0.000 0.447 0.000 0.708

Table 1: Residual Correlogram
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Note Table 1: Q l, Me, Q3 and Max are respectively the lower quartile (321 miles), the 
median (592 miles), the upper quartile (933 miles) and the maximum (2093 miles) of the great 
circle distance distribution between centroids of each region. For each range, we estimate the 
absolute p  -convergence model and we perform the Moran’s /  test, the Lagrange multiplier 
test and its robust version for residual spatial autocorrelation based on the contiguity matrix 
computed for that range.
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Model
P -convergence 

(D
Spatial error 

(ii)
Spatial lag-dep 

(HI)
Spatial lag-ex 

(IV)
Estimation OLS-White ML ML OLS-White

0.129 0.158 0.053 0.123a (0.000) (0.000) (0.001) (0.000)
-0.0079 -0.0112 -0.0044 -0.0109

p (0.000) (0.000) (0.005) (0.006)
conv. speed 0.84% 1.23% 0.46% 1.19%

(0.000) (0.000) (0.002) (0.021)
half-life 88 62 157 64

X
- 0.783

(0.000)
- -

J0
- - 0.769

(0.000)
-

f - - - -0.0037
(0.437)

R2 or Sq.- Corr.* 0.13 0.13’ 0.54* 0.14
LIK 456.14 494.32 491.78 456.44
AIC -908.27 -984.65 -977.57 -906.90
BIC -902.42 -978.80 -968.79 -898.11
<T2 7.996. lO'5 4.088.10'5 4.263.10'5 8.019.10'5

Tests
JB 8.976

(0.011)
- - 9.821

(0.007)
BP or BP-S* or 14.786 3.324* 6.972* 8.849**

KB" vs. ln(_y,980) (0.000) (0.068) (0.008) (0.003)
White 29.903

(0.000)
- - 37.41

(0.000)
Moran’s I (error) 13.425

(0.000)
- - 13.310

(0.000)
LMERR 151.683

(0.000)
- - 149.247

(0.000)
R-LMERR 18.102

(0.000)
- - 1.448

(0.228)
LMERR* " - 2.198

(0.138)
-

LMLAG 134.199
(0.000)

- - 150.828
(0.000)

R-LMLAG 0.618
(0.432)

- - 3.029
(0.0818)

LMLAG* - 0.705
(0.401)

- -

LR-com-fac 0.151
(0.697)

- -

II 1 “ 0.01
(0.869)

- -

Table 2 : Q1 distance based weight matrix
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Note Table 2: The data are extracted from the EUROSTAT-REGIO databank: 138 regions 
(Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, France, Germany, 
Greece Italy, Netherlands, Portugal and Spain in NUTS2 level).
P-values are in parentheses. OLS-White indicates the use of the heteroskedasticity consistent 
covariance matrix estimator of White (1980) in the OLS estimation. LIK is value of the maximum 
likelihood function. AIC is the Akaike (1974) information criterion. BIC is the Schwarz information 
criterion (1978). JB is the Jarque-Bera (1980) estimated residuals Normality test. MORAN is the 
Moran’s I  test adapted to estimated residuals (Cliff and Ord, 1981). LMERR is the Lagrange 
multiplier test for residual spatial autocorrelation and R-LMERR is its robust version. LMLAG is 
the Lagrange multiplier test for spatially lagged endogenous variable and R-LMLAG is its robust 
version (Anselin and Florax, 1995; Anselin et al., 1996). LMERR* is the Lagrange multiplier test 
for an additional residual spatial autocorrelation in the spatial autoregressive model; LMLAG* is the 
Lagrange multiplier test for an additional spatially lagged endogenous variable in the spatial error 
model (Anselin 1988a). LR-com-fac is the likelihood ratio common factor test (Burridge, 1981). BP 
is the Breusch-Pagan (1979) test for heteroskedasticity, BP-S is the spatially adjusted version of this 
test (Anselin, 1988a, 1988b) and KB is the Koenker-Bassett (1982) test for heteroskedasticity in 
presence of non-normality.
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