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0. INTRODUCTION

This paper is concerned with the use of information. From the 
very beginning, every student of econometrics is taught that efficiency 
in estimation requires the full use of all available information. However, 
in his seminal paper on "Restricted and Unrestricted Reduced Forms", 
Dhrymes [1973] warned us that the relationship between the amount of in­
formation used and the relative efficiency of an estimator is not neces­
sarily a monotonic one. To illustrate his point, consider the following 
simple two equation model of gas demand :

Ft = aNt + bHt + ut

Gt = cFt * dPt + 6 Gt-1 + vt

Where F is total residential fuel demand, N is population, H is housing 
starts, G is residential gas demand and P is the relative price of gas. 
Suppose we are interested in the gas demand equation. In the likely event 
that the two errors u and v are contemporaneously correlated, consis­
tency can be achieved by the 2SLS technique. The first stage of the 
procedure involves the estimation of F. How should this be done ? Since 
the first equation is already in reduced form, the obvious answer to 
this question is to apply OLS directly to it. Alternatively, we might 
think of estimating F from the unrestricted reduced form, i.e. an equation 
involving all predetermined variables (including and Ĝ. ^). Intuitively, 
the first choice appears more efficient since it uses more information 
(the fact that the coefficients of P̂. and Ĝ_ are known a priori to be 
zero in the total fuel equation). However, as in Dhrymes1 case, intui­
tion is not a good guide and the problem deserves a careful analysis.
That is exactly what we propose to do in this paper, in a more general 
framework and going beyond the 2SLS technique.

A situation like the one depicted in our example, in which one 
equation is already in reduced form but does not contain all the prede-
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termined variables, is not uncommon in economic applications : it appears, 
for instance, in the estimation of rational expectation models (see 
Turkington [1985] and Pesaran [1986]). To characterize such a situation, 
we introduce the concept of a "natural constraint", which is presented 
and discussed is section 1 of the present paper. Section 2 is concerned 
with the efficient estimation of the naturally constrained reduced form. 
From it, we derive efficient estimators of the structural parameters 
(by indirect GLS) and propose a simple test of the a priori restrictions. 
In section 3 we discuss estimation by 2SLS. In addition to the results 
obtained by Turkington and Pesaran, we develop a 2SLS-GLS estimator and 
assess its asymptotic properties. Several full information estimators 
of the 3SLS type are presented and compared in section 4 and some effi­
ciency aspects of the instrumental variable method are studied. Finally, 
the major findings of this paper are summarized in section 5.
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1. THE STRUCTURAL FORM

In this section, we specify our model, define the concept 
of a natural constraint, point out the limitations of our approach 
and indicate some possible extensions.

1.1. Specification and Assumptions

We consider the following structural model composed of two 
sets of n^, respectively n^ equations :

(1 .1 ) } W 1  + E1
t = y A + X„1"1 ' "2A2 + E2

where and are two matrices of endogenous variables of order 
T x n̂  and T x n^ ; and are two matrices of exogenous variables 
of order T x m̂  and T x m2 ; and Ê  and E^ are two matrices of errors.

We shall adopt the following set of assumptions :

(i) The T x m matrix X = [X^X^], m = m̂  + m^, is non-stochastic 
and of full rank m < T. Note that this assumption implies 
that X̂  and X^ have no variables in common. Furthermore, the 
matrix X satisfies the following limits :

lim j  X'X = Q

plim jX'E. = 0 i = 1, 2

where Q is a positive definite matrix.

(ii) Each row of the error matrix E = [Ê  E ] is identically and
independently distributed with zero mean and variance-covariance 
matrix Z, a positive definite matrix.
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(iii) < m^. This condition is necessary for the identification
of the structural parameters.

1.2. The Natural Constraints

It is immediately evident that the first set of equations 
are already in reduced form. But they do not contain all the exogenous 
variables. It is as if the coefficients of in the first set of 
equations are set to zero. When in the natural specification of a 
system of simultaneous equations one equation is already in reduced 
form but does not involve all of the exogenous variables, we speak of 
a natural constraint. How this information should be used in the esti­
mation of the parameters of the model is the question we address in 
this paper.

Note that, according to Assumption (i), n = 0. Our pro­
cedure, however, can easily be extended to the case where some exo­
genous variables are present in both sets of equations. The results are 
of the same kind as those given in the sequel, but slightly more 
complicated.

We finally observe that in our specification the coefficient 
matrices , Â  and A^ are full matrices ; no restrictions are imposed 
on their elements. In principle, it is easy to introduce zero restric­
tions on some of the coefficients : the estimation methods would be 
similar in spirit to those developed here, but the simplicity of the 
results would be lost and consequently most of the interest in the 
comparison of the various estimators and in their interpretation 
would disappear. For these reasons, this extension is not pursued 
here.
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2. THE REDUCED FORM

The (full) unconstrained reduced form of our model is :

(2 .1)

The constraints imposed by the a priori restrictions on the parameters 
of the reduced form are of two types :

. the natural constraint : 11^ = 0

. the other constraints :

When the natural constraint is explicitly accounted for in the reduced 
form, we speak of the "naturally constrained reduced form".

naturally constrained reduced form, propose an indirect asymptotically 
efficient estimator of all structural parameters via the naturally 
constrained reduced form and develop a test of the a priori restric­
tions.

2.1. Efficient Estimation of the Naturally Constrained Reduced Form

is a Zellner-type model with the same regressors in the second set of 
equations and with only a subset of the regressors in the first set 
of equations. The GLS principle applied to this model leads to the 
following estimators :

In this section we derive an efficient estimator of the

The naturally constrained reduced form, i.e.

I



where and are the appropriate parts of the matrix ft, the 
variance-covariance matrix associated with the reduced form residuals. 
Formulae (2.3) reveal that for the first set of equations, the (natu­
rally constrained) OLS estimator is obtained, while for the second 
set of equations, the (full) OLS estimator is adjusted by a factor

A
which depends on the estimated errors of the first set, - X^II^, 
and the true covariance, ^he errors in the two sets.

To derive an explicit characterisation of the asymptotic 
distribution of the naturally constrained reduced form estimator (and 
also for future reference), we need some more notation. Calling 
the selection matrix which extracts from X, i.e. = XL^, the 
vector representation of (2.2) is :

or,in compact form :

(2.5) vec Y = (I (x) X) L y + vec U

where y' = [(vec II )', (vec IÎ )'] is the vector of all non-zero 
reduced form parameters and L is the selection matrix
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With this notation, the estimator given in (2.3) takes the following 
form :

(2.6) y = [L'(îT 1 @  X'X)L]—1L'(fl-1 @  X') vec V

and, given our assumptions, it can immediately be established that

(2.7) VT(y - y) -*• N(0, [L'(iT1 0  Q)L ]~1 ).

We are now in position to draw a certain number of conclusions :

(i) The naturally constrained reduced form estimator is more
efficient than the unconstrained estimator. Here, thus, the 
use of (partial) information leads to a gain in efficiency. 
This can be seen in the following way. Call Yp the full set 
of unconstrained reduced form parameters, Yp = (vec H)1, 
and Yp the OLS estimator . We know that the limiting distri­
bution of VT(yf - Yr) is normal with zero mean and covariance 

— 1matrix ft (x) Q . Noting that Y = L'Yp, the part of the cova­
riance matrix corresponding to the unconstrained estimator 
of y is L'(!2 @  Q )L, which is to be compared to the corres­
ponding expression in (2.7). From Lemma 1 in Appendix 1, we 
immediately have

[L’(iT1 @  Q)L]_1 = L'(ft @  Q"1)L - N

where N is a non-negative definite matrix. This proves the 
superiority of the constrained estimator.

(ii) The asymptotic distribution of the full maximum likelihood 
estimator of the naturally constrained reduced form (under 
normality) is the same as the one given in (2.7).

(iii) The expressions (2.3) and (2.6) do not define a proper estima­
tor, since Si is not usually known. It is clear, however, that
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the limiting distribution is the same when ft is replaced by 
a consistent estimate. One such estimate can be obtained from 
the estimated residuals of the naturally constrained reduced 
form by OLS.

(iv) Iteration of the procedure outlined in (iii) gives in the
limit the same numerical solution as the FIML of the naturally 
constrained reduced form (See Oberhofer and Kmenta [1974]).

2.2. Indirect Estimation of the Structural Parameters

Since identification of both and is immediate from the 
reduced form (B̂  = II^ and = II2 2 )> our or,ly concern here is to 
provide an estimate of A^. To do this, we apply the Asymptotic Least- 
Squares method (see Gourieroux, Monfort and Trognon [1985]).

As mentioned earlier, the true relationship involving Â  and 
the reduced form parameters is I ^  = II A . Its empirical counterpart 
is :

(2 .8 ) n21 = n11A1 + v

A A
where 11^ and II are the efficient estimator derived in the preceding 
paragraph and V is a matrix of errors to be shortly specified. (The 
relationship cannot hold exactly except in the just-identified case).

The OLS estimator of A1, ^(OLS) = (1^^  , is
consistent, but not in general efficient. Efficiency can be achieved 
by applying the GLS principle. This requires knowledge of the sta­
tistical properties of V.

Writing II* = [II ^21^ anc' = ^rue rela~
tionship becomes II*D = 0 and, from (2.8), the matrix V can be expressed 
as
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(2 .9 ) v = n*D = (n* - n*)D

or, in vector form :

vec V = (D' @  I) vec(II* - II*) 

= (D' ©  I) F'(y - y)

where F' is the following selection matrix

F' =
n m„ 1 1

I ©  L. n2 ^  1

Consequently, the asymptotic distribution of vec V can be derived 
directly from that of y - y, namely :

(2.10) VT vec V ■+ N(0, G)

with G given by :

(2.11) G = (D* (x) I ) F' [L ’ (<T2_1 (x) Q)L]~1 F (D (x) I ).^  w  

Using again the results of Appendix 1, the matrix G can be shown to 
be equal to :

(2.12) G = D'SD ©  O'] + (G22 - ® Qil°12QolQ21Qil

where Q = plim -1 M =  ̂ •O I L I Z 1 I I I  I

We are now in position to apply the GLS principle to Eq. (2.8).
The resulting estimator is

(2.13) vec (GLS) = [(I © f t ^ G ' ^ I © ! ! ^ ) ]  1( I @ n ^ ) G _1vecn
21



10

Furthermore, we can prove that

(Z.nVfvectA^GLS) - A,] ] - N(0,[(I @  n^)G~1(I @

The expression given in (2.13) involves the unknown matrix 

G. A feasible estimator is obtained by replacing G with a consistent 

estimator and its limiting distribution is again the same one as that 

shown in (2.14). The unknown components of G are ft (which can be con­

sistently estimated from the OLS reduced form residuals), Q (which can-]
be replaced by the sample analog, y  X'X) and Â  (which can be obtained 

by applying OLS to (2.8)).

What are now the efficiency properties of the proposed esti­

mator ? It is remarkable that the asymptotic covariance matrix of 

ft|(GLS) is the same as that of the FIML estimator of the structural 

form. This important result (proved directly in Appendix 2) is a 

special case of a more general theorem established by Gourieroux and 

Monfort [1985, Property 3, Corollary 4].

2.3. Testing the A Priori Restrictions

We extend a procedure originally suggested by Gourieroux, 

Monfort and Renault [1985] in order to construct a test of the a priori 

restriction = H^A.The extension is twofold : first, in our case, 

the restrictions are expressed in terms of matrices of coefficients 

and not of vectors of coefficients ; second, we propose here a new 

characterisation of the null hypothesis which is conceptually simpler 

and does not require the use of generalized inverses.

For the null hypothesis to be true, the case must be that 

the columns of 11^ lie in the space spanned by the columns of 11^ .

We can express this fact in the following way :

( 2 . 1 5 )  p - n 21 = 0
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where P' is any (m  ̂ - n̂  ) x matrix of full rank such that P'n^ = 0. 

The hypothesis to be tested, therefore, is V = 0, with T = P'n^.

Define the following estimator of T :

A  A
(2.16) r = p'n

where II is the efficient naturally constrained reduced form estima-
¿■X *1 *•

tor and P' is a consistent estimator of P such that P *II = 0 

(this matrix, as we shall see shortly, need not be computed). 

Developing, we get successively :

(since P ’ 11̂ = 0) 

(since II*D = 0)

where V is the matrix of errors defined in (2.9).

A
The asymptotic distribution of T may now be obtained directly from 

that of V, namely :

(2.17) VT vec f -* N(0, (I 0  P') G (I @  P))

Consequently, the quantity

(2.18) q = T(vec f)'[(I @  P ’) G (I 0  P)]"1vec f

is asymptotically distributed as a Chi-square variate with (m̂  - n/|)n2

degrees of freedom. It is this quantity (with P and G replacing P and G) 

that is used for the test.

A A
r = p • n21

= P'(iL„ - n a ) 21 11 1
 ̂/>

-  p'n*D

= f5, (n* - n*)D
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What does this quantity represent ? Let us rewrite it in the following 
way :

l q =  (vec n21)'(I0P) [(I0P')G(I©P)]“1(I0P') vec

= (vecn2i) ' {  g“1 - g- 1 (i © n ^ j t d o n ^ 'G ^ a  0 n i1) ] ' 1( i 0 i j l ) ,G'1} vec n2i

where,again, we have used Lemma 1 of Appendix 1 for the inverse of
_  A  /V

(I (x) P’)G(I (x) P). The last form of the above expression reveals 
immediately that the test statistics q is T times the generalized sum 
of squared residuals of the regression model defined in (2.8). In 
conclusion, the indirect method provides an asymptotically efficient 
estimator of the structural parameters and, at the same time, gives 
an easily computed statistics for the test of the a priori restric­
tions.
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3. 2SLS ESTIMATORS

We discuss in this section the estimation of the structural 
parameters by the 2SL5 method (a limited information approach). Given 
that the first set of equations is already in reduced form, the only 
equations of interest in this connection are the ones in the second 
set, namely :

( ?' 1> Y2 = V ,  + X2A2 *  E2

= HA + E2

where H = [Y X ] and A' = [A A ]. Direct estimation of (3.1) by 
OLS (or by GL5, which, in this context, produce the same results) 
is inconsistent, unless E = 0* When Z £ 0, in the spirit of the 
2SLS method, consistency is achieved by replacing Y by an appro- 
priate estimate . The corresponding estimating equation is :

(3.2) Y2 = HA + E2

where H = [Y X ] and

(3.3) E2 = E2 + (Y<) -  Y1)A1 .

Equation (3.2) raises two different types of problems. The first
A

one concerns the choice of Y^. According to whether the information 
contained in the natural constraints is used or not, alternative forms 
of the 2SL5 estimator are obtained. Their statistical properties 
should be assessed and compared. The second one focuses on the choice 
of the estimation method : should one use OLS or GLS ? These questions 
are studied in the following two paragraphs.
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3.1. Choices for Y„

Two obvious choices for Ŷ  (Turkington [1985] and Pesaran
[1986])are :

(ii) Y = X(x 'x )-1x 'y i

corresponding to, respectively, the naturally constrained and uncons­
trained estimation of the reduced form. The first choice has an "error 
in variable" interpretation, while the second represents the usual 
instrumental variables method. In both cases, when OLS is applied 
to (3.2), the resulting estimators -called, respectively, 2SLS-0LS1 
and 2SLS-0LS2- are consistent. Their limiting distribution can be 
shown to be normal with zero mean and variance-covariance matrix :

(3.4) 2SLS-0LS1 : I ©  (S'QS) 1 + ©  (S'QS) 1S'QS(S'QS) -1

(3.5) 2SLS-0LS2 : I ©  (S'QS) -1

where :

= A Z  A + A. 2 + £ A. 
*  1 11 1 1 12 21 1

S =
n.11

o
, Q = > Qo = P11™ T  W 2

Since is not, in general, a definite matrix, the relative efficiency 
of the two estimators cannot be assessed unambiguously ; it depends 
(as Turkington and Pesaran have shown) on the parameter values. 
Obviously, when I = 0, the matrix is non-negative definite, and 
in that case, 2SLS-0LS2 is more efficient than 2SLS-0LS1. But, then,
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when Z ^  = 0, direct OLS estimation of the structural equation is 
more efficient than both.

It appears thus that there is no clear answer to the question whether 
one should use or not the natural constraint in 2SLS estimation.

3.2. A Generalized 2SLS Estimator

As mentioned earlier, the selection of an estimating technique 
for Eq. (3.2) should be guided by the statistical properties of the 
matrix of errors, E^. Writing = I - Z(Z'Z)-1Z', for Z either equal 
to X or equal to X^, (3.3) can be put in the following form :

(3.6) È2 = E2 + MZE1A1

Its vector representation is :

(3.7) vec È2 = [A^ (x) M^]vec Ê  + vec E2 

= [Ai (x) , I] vec E

from which it can easily be established that vec has zero expec­
tation and variance-covariance matrix equal to :

(3.8) V( vec È2) = Z* @  + Z © I

= l 22 ®  (I “ V  + £** ©  MZ

i K

where Z** - Z^ + Z22> a positive definite matrix.
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The above variance-covariance structure has some important implica­
tions :

(i) The estimating set of equations (3.2) is indeed a Zellner 
type model with the same regressors in each equation and non­
zero contemporaneous covariances, but the present covariance 
structure is a sum of two Kronecker products and not simply
a single Kronecker product.

(ii) The particular form of K is similar to the one which appears 
in error components models. Its inverse (see Magnus [1982])is 
readily given by :

K“1 = ©  (I - Mz) * ©  Mz

(iii) It is not true, in general, that OLS and GLS are equal, 
although the regressors are the same in each equation. For 
OLS to be equal to GLS (see MILLIKEN and ALBOHALI [1984]) 
the case must be that :

(I 0  M-)K~1(I 0  H) = 0

A  A Awith M* = I - H(H'H) H'. For the above expression to hold,H
it is necessary and sufficient that

(3.9) MaKLH = 0 hi L

We can prove that condition (3.9) is satisfied in two cases.

. First case : Z = X (the usual 2SLS method).
When Z = X, H = (I - M )H and therefore M^H = 0

. Second case : Z = X^, with m̂  = n̂  (just identification).
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In this case, we can write

H = [X1(X1X1)" ,X1Y1 X2] = [X1 X2]
( V i r 1V i  0

0 I
= XB

where B is non-singular. It then follows that

= M . Furthermore MVM = MVM = Mv. Finally :H X A L A A  ̂ A

M*M H = M M XB = M XB = 0.H Z  X L X

However, in the case of overidentification, the use of the natural 
constraint (Z = ) does not in general guarantee the equality of 
OLS and GLS (condition (3.9) is not satisfied). For this case, a 
gain in efficiency can be achieved by using the GLS principle. The 
corresponding estimator, which we shall call 2SLS-GLS, is

(3.10) vec A2SLS_GLS = [(I @  H)'K 1(I 0  H)] 1(I 0  H)'K~1vec Y2

and its limiting distribution is normal with zero mean and variance- 
covariance matrix given by :

(3.11) ir2l ©  5'OS + (i;l - ©  3 r 1

The 2SLS-GLS estimator has the following properties :

. it is (asymptotically) more efficient than the 2SLS-0L51 
estimator (unless n̂  = m^, in which case they are equal) ;
. its relation with the 2SLS-0L52 estimator depends on the 
parameter values ;
. it is the only 25LS estimator that can be totally efficient 
for one set of parameter values, namely A = - Z Z .
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The last of the above properties can be established as 
follows. For the corresponding parameters, the variance-covariance 
matrix of the limiting distribution of the FIML estimator is :

(3.12) [Z'J 0  S'Q5 + 22 " 222J ©  ̂ ]_1

22 -1  where E is the appropriate block of £ . The comparison of (3.12)
with (3.11) reveals that the FIML estimator is more efficient than

22 -1the 2SLS-GLS estimator whenever £ - is non negative definite
22 -1(or, equivalently £ - (E ) is non negative definite). Now :

Z - (Z22)-1 = Z - Z  + Z Z 1Z**  v ' **  22 21 11 12

A1E11A1 + A1£12 + S21A1 * V l l 1«

which is clearly non negative definite. Furthermore, the equality 
holds iff A/) = - £ ^ £ 12-

The feasible counterpart of the 2SLS-GLS estimator involves the
estimation of the unknown matrices Z„0 and Noting that

¿L * *
£** = ^22’ matrix can consistently estimated from the redu­
ced form residuals. As for ^ 2 ’ ^  can estimated consistently from 
the 2SLS-0LS1 residuals.
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4. 3SLS ESTIMATORS

The simplicity of our model provides a perfect ground for 
discussing some of the issues that arise in connection with the use of 
the instrumental variable (IV) method. We present, at first, three 
alternative 3SLS estimators and compare their asymptotic efficiency ; 
then, we examine in a systematic way the conditions under which the IV 
method produces asymptotically efficient results.

4.1. Three Alternative 3SLS Estimators

The presence of natural constraints suggests the construc­
tion of various types of 3SLS estimators in addition to the usual one. 
Two obvious candidates are proposed below, after having given, for 
ready-made reference, the usual estimator.

(i) The usual estimator : 3SLS-1

Each equation of both sets of equations of the structural form 
is pre-multiplied by the full matrix of instruments, X', and 
then estimation is performed by GLS. Since there are no res­
trictions on the variance-covariance matrix, the resulting 
estimator is asymptotically efficient (its limiting distri­
bution being equal to that of the FIML estimator).

(ii) • A mixed estimator : 3SLS-2

Since the equations of the first set are already in reduced 
form, we may leave them as they are and use the full set of 
instruments only for the equations of the second set. We then 
apply GLS to the whole system. As shown in Appendix 3, the 
3SLS-2 estimator is numerically identical to the 3SLS-1 esti­
mator (and hence fully efficient).
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(iii) A constrained IV estimator : 35L5-3

The first set of equations (already in reduced form) involve only 
a sub-set of the exogenous variables, namely X^. The matrix 
X^, being exogenous, is its own instrument. Therefore, we may 
think of pre-multiplying each equation of the first set byI I

and each equation of the second set by X , before applying 
the GLS principle. Surprisingly, this estimator is consistent 
but not efficient. It can be shown to be numerically identical, 
for the parameters of the second set of equations, to the 
2SLS-0LS2 estimator (see again Appendix 3).

The reason why the 3SLS-3 estimator is not fully efficient deserves 
some consideration.

4.2. Efficient IV estimation

When the variance-covariance structure of the residuals 
is not spherical, several options are available for the definition 
of IV estimators. Bowden and Turkington [1984] distinguish two such 
estimators, which they call, respectively, 0LS-ANAL0G and GLS-ANALOG.
In order to present them, we need some notation.

Our structural system may be written in the following vector form :

(4.1) i Yl = + e/|
( <t==> y = Wa + e

I  *2 = *  e2

where :

*i = vec Yi , £ z i vec E . l i = 1,  2

a 1 = vec , II3™ vec A

W1 = I ©  V «2 = I ©  H

y'
f 1 

= [ y 1 y 2 3 » a! = [ a' ] 1 2 e1 = r e' 
1
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W =
0 W,

and Var(e) = Z ©  I ? V

Let Z be a matrix of instruments. Then, the two IV estimators are :

(4.2) 0L5-ANAL0G a = [W'Z(Z'VZ) 1Z'W] 1W'Z(Z'VZ)"'Z’yv-1.
OLS

(4.3) GLS-ANALOG = [W'V 1Z(Z'V 1Z) 1Z'V 1W]”1W'V_1Z(Z'V 1Z)-1Z'V-1>

Although the superiority of the GLS-ANALOG has been established for 
some particular models (as in the case of 2SLS estimation with non 
spherical disturbances), a general comparison in terms of efficiency 
of the two estimators is not possible, as indicated by Bowden and 
Turkington. They also give examples in which the OLS-ANALOG is consis­
tent, while the GLS-ANALOG is not (1). However, a general result con­
cerning the two estimators has been established by Balestra [1988].
He shows that the OLS-ANALOG and the GLS-ANALOG are equal if and only 
if the following conditions hold :

(4.4) Z'VMZ = 0

where = I - Z(Z'Z) Ẑ'

(1) Our 3SLS-2 estimator can also abusively be put in the form of a 
IV estimator with

[ I© 1 0 1
z = I 0 I © X

The above matrix is not a proper instrumental variable matrix since 
the number of columns of Z increases when the number of observations 
grows. If we use the matrix Z so defined, the OLS-ANALOG is consis­
tent but the GLS-ANALOG is not.
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Now, in the case of our usual 3SLS estimator, Z = I 0  X and 
= I 0  M^. Therefore

Z'VMZ = (I 0  X')(Z Q  I)(I 0  Mx) = 0

and the two estimators are equal (a result that has been often pointed 
out). But in the case of our constrained estimator (3SLS-3),Z and 
take the following form :

I ©  x1 0 I ©  M,

I

o

z = M -
Z "X 

'

0I---------
1

o

I

o

I

I ©  Mx

and consequently

The two estimators are not equal. What happens now if, instead of the 
OLS-ANALOG, we use the GL5-ANAL0G ? The answer is that the resulting 
estimator (see Appendix 3), which we shall call 3SLS-4, is identical 
to the usual 3SLS estimator and therefore fully efficient.
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5. CONCLUSIONS

In this paper we have analyzed in a systematic way the role 
played by the "natural constraints" in the estimation of a system of 
simultaneous equations. Our findings are summarized in Fig. 1, where the 
dominance relationship (in terms of efficiency) among the different 
estimators is portrayed.

Fig. 1 : Dominance Relationship Between the Different 
Estimators of the Structural Parameters

FIML

1
INDIRECT LS

I
3SLS-1

I
3SLS-2

I
3SLS-4

2SLS-GLS 2SLS-0LS1

Although our model is quite simple, we believe that it might 
have some important applications in economics ; furthermore, it sheds some 
light on the problem of the proper use of information in econometric 
analysis.
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Appendix 1 : THE INVERSE OF A’QA

Let Q be a positive definite matrix of order n and let A' 
be an m x n matrix of rank r. Define the m x m matrix B = A'QA, obvious­
ly non-negative definite. In many statistical applications (as in the 
comparison of variance-covariance matrices of different estimators) 
it is useful to evaluate the inverse of B (the proper inverse or the 
generalized inverse) in terms of Q

The following Lemmas address this question.

Lemma 1 The generalized inverse of B is given by :

B+ = A+(Q~1 - Q-1S(S'Q“15)-1S'Q_1)(A+)'

where S' is an (n - r) x n matrix of full rank such that 
S1A = 0.

Corollary 1
(i) If r = m, B is positive definite and therefore B+ = B 
In this case, A+ = (A'A) ^A'.

(ii) If r = n, S is empty and therefore B+ = A+Q \ a+)'.

Proof of Lemma 1

The homogenous system A'h = 0 has exactly n - r linearly independent 
solutions. Let S be the n x (n - r) matrix whose columns are n - r 
linearly independent solutions, A'S = 0. The matrix AA+ is idempotent 
and symmetric of order n and rank r. Therefore AA+S = (A+ )'A'S = 0 
and we have :

AA+ + S(S'S) 1S' = I



Let us compute BB+ and B+B :

BB+ = A'QAA+Q-1(A+ )1 - A'QAA+Q_1S(S'Q_1S)"1S'Q“1(A+ )'

= A'QAA+Q_1(A+ )' - A'Q(I - S(S'S)“1S')Q-15(S'Q"1S)"1S'Q_1(A+)'

= A'QAA+Q-1(A+ )' + A'QS(5'S)"1S'Q"1(A+)'

= A'Q[AA+ + S(S'S)_1S']Q'1(A+)'

= A' ( A+)'

= A+A symmetric and idempotent 

B+B = A+A (in a similar fashion)

Therefore :

B+BB+ = A+AB+ = B+

BB+B = BA+A = BA'(A+)' = B 

and B+ is indeed the Penrose-generalized inverse of B.

(i) We note that when m = r, A+A = I and therefore B+B = I which 
implies B+ = B-^.

(ii) Obvious.
Let us just note that if m > n, we have 
B+ = A'(AA')-1Q“1(AA')"1A.

It is useful to find the conditions under which the generalized
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inverse of B is given by 

B+ = A+ Q~1(A+)'

These conditions are given in Lemma 2.

Lemma 2
The generalized inverse of B is equal to B+ = A+Q \ a+)’ 
if and only if the two matrices AA+ and Q commute.

Corollary 2
When r = n, AA"1" = I and the condition of lemma 2 is always 
satisfied.

From the definition of B and the fact that S’Q S is positive defi­
nite we conclude that B"1" = A+Q ^(A+)f if and only if

A+Q_1S = 0

We therefore have to prove that the condition stated in Lemma 2 is 
equivalent to A^Q = 0 .

a) Sufficiency. Let us suppose that AA* and Q commute :

AA+Q = QAA+

Q"1AA+ = AA+Q-1 

A+Q'1AA+ = A+Q" 1

Post-multiplication by S gives A+Q ^ 5 = 0



b) Necessity, let us suppose that A+Q~^S = 0 : 

A+Q“1S = 0 

A+Q_1S(S,S)"’1S' = 0 

AA+Q~1(I - AA+) = 0 

AA+Q-1 = AA+Q"1AA+

AA+Q-1 = AA+Q“1AA+ + S(S'S)_1S'Q'1(A+)'A' 

AA+Q~1 = Q‘1AA+

QAA+ = AA+Q 

and the two matrices commute.

27
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Appendix 2 : COVARIANCE MATRIX FOR THE ESTIMATORS OF THE FIML

For the constrained model (with the symmetry constraint), the 
likelihood function has the following form :

Y/B1, Ar  A2, Z) = cte - y  In |Z| - 1  tr {Z~1E'E} + X'C1 Vec Z

where A is the (n n̂ ^  x 1) vector of the Lagrange multiplier and C the

, 2 n/n - 1 ^  , ^. ..In x ---- -̂-- ’ selection matrix verifying

(A2.1) Cf C = I

C C' = J  (I - P)

2 2with P the (n x n ) permutation matrix.

The bordered information matrix is

(A2.2)

Z110 Q11 e 12® ° 1 1 B1 î12©»12 i 0 0

Z2 1 © V 1 1 E22® (BiQn Bi + V £22© b ;q 12 I L2Z"1 © Li 0

© Q21 e22© Q 21b , CMCM
czr©CMCM

l 0 0

0 Z " V 2 © L , 0 ; j (e~1 0 z _1) C

0 0 0 1 C' 0
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where - [1^ 0] and - [0 are two selection matrices, and

£1J are the appropriate block of the inverse matrix E~1.

From the inverse of the bordered matrix, the covariance matrix 
of the parameters are obtained as :

©  °,1 Z12 ©  Q„B,  Ï 12 ©  Q12 

z21 ©  e;Ql1 z22 ©  b;q1iBi ï 22 ©  b;q12

Î21 ©  Q21 Z22 ©  Q21B1 z22 ©  q22

A new inversion in partitioned form gives :

(A2.4) Var(Vec B, ) = [ z "  © Q 1 1 -  Z‘] ©  +

+ (z-j -z") ©  Q11b1[b;(q11)-1b1J-1b‘q11] - 1

w i t h  0 11 = [Ql1 - Q 12 q - 1 Q 2 i ]-1

(A2.5) Â  ) = [Z~2 © B ^ Q 11B1 - (z’’ ©  B ^ i l T 1 (Z^

w i t h k = i 22 © » 0 * z 2"2 ©  q2 i q- ; 0i2

(A2.6) Var(Vec A ^  = [Z22 ©  qq + Z’’ ©  Q21[0”J - B ^ Q ^  r 1BJ JQ^]-1

/ Vec ® i \  
(A2.3) Var I Vec 'K. | =

U  t\j

We can now compare the results for different estimators, in 
particular the indirect asymptotic one.
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The expression (A2.5) has to be compared to the covariance 
matrix given by (2.14) with 11^ = Noting that D'Œ D = Z and

22 22Œ = Z , G takes the following form :

(A2.7) G = L22 ©  Q-1 + (Ï22)-1 0  q-1 Q12Q ^ Q 21Q ^

Its inverse is :

(A2.8) G'1 = E-1 ©  Qii - (I-1 0  q i2, {Z-1 ©  Q21Q-I0i2 + ^  © Q ^ 1^  0 O 21 ) 

Finally, we obtain :

(A2.9) Var(Vec ^  GLS) = [Z“J 0  ~ ^  ©  B1Q12)K_1 (Z22 ®  Q21B1)]"1 '

and this expression is identical to (A2.5).
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Appendix 3 : RELATIONSHIPS AMONG THE VARIOUS 
3SLS ESTIMATORS

The three 3SLS estimators presented in section (4.1) can be 
put in the following form :

S3sls-i = [w'VVzj’VwrVz.uVrVy * = 1 , 2 , 3

where W, V and y are the matrices and vector defined in section (4.2). 
The matrices are, respectively :

It is convenient to recall the usual 3SLS estimator, i.e. :

“3SLS-1 = [W’(£"1 ©  X(X'X)"1X')W]_1 W'(Z'1 ©  X(X'X)_1X’)y

and also to observe that for all Z.
1

« ’V z ^ r Y  = w ( i  ©  x ( x 'x r 1x ') .

We are now in position to study the relationships among the various esti­
mators.
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(i) Equality between 35LS-1 and 3SLS-2

From Lemma 1, Appendix 1, we can write :

(Z2VZ2r ' = (z222 r 1 z 2v' 1z2(z2z2r 1  ’  <: 

t
where S2 = [0 1^ ©  C'] with C such that X'C = 0 .

We now compute the following two quantities :

• W,Z2(Z2Z2 )_1Z2V~1S2 = W' (Z_1 0  X(X’ X ) - V ) S 2 = 0

. (I ©  X(X'X)"1X')Z2 (Z2Z2 )_1Z2 = I ©  X(X'X)~1X' 

and conclude that :

W' Z2(Z2VZ2)_1Z2 = W' [Z"1 ©  X(X'X)-1X']Z2(Z;Z2) - 1Z;

= W'[E_1 0  X(X'X)_1X']

Therefore, the two estimators are equal.

(ii) Equality between 3SLS-4 and 3SLS-1

The 3SLS-4 estimator is given in section (4.2), formula (4.3),

3"
From W'Z-j(Z^Z^) Z^ = W'(I (0 X(X'X) X') we obtain successively : 

W Z3(Z3Z3)_1z3V~1 = W '(Z”1 ®  X(X*X)-1X-) 

w 'Z3(Z3Z3)"1z3V"1z3 = W '(Z_1 ®  X(X'X)-1X’)Z

with Z = Z .
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W'Z (Z^Z ) 1Z3V"1Z3 = W'V“1(I 0  X(X'X) 1X')Z3

w z  (z^z ) 1z3v 1z3 = W'V"1Z3

W'V 1Z3 (Z3V 1z3 )"1 = W'Z3 (Z3Z3 )"1

W'V 1Z3 (Z3V 1Z3) 1Z3 = W'(I 0  X(X'X) 1X’) 

W'V-1Z3 (Z3V-1Z3 )"1Z3V- 1 = W '(E-1 0 X ( X ' X ) _1X')

This last expression shows that the two estimators are equal.

(iii) Equality between 3SLS-3 and the Usual 2SLS Estimator For the 
Coefficients of the Second Set of Equations

We first note that

W'Z3 =
I ©  V-, 0 1 ©  V t  0 I 0

0 I 0  H'X 0 I 0 I 0  H'X

d ' '= F F0 1 2

The non-singularity of F̂  enables us to write the 3SLS-3 estimator
in the following form :

V s - r  ( V - V ^ z ^ r V ^ - V ^ r ^ y

The coefficients pertaining to the second set of equations,
which we shall denote by <**3gLg y  can be obtained from “-5 ^ 5   ̂by applying

1 1 _' ]  1

the selection matrix L* = [0 I]. Since L̂ (F,j) = L*, we have :

Aa*3SLS-3 = M F2(Z3VZ3r l F 2r l F 2(Z3VZ3r 1 z i v
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i  i —1 Let us call G = Z^VZ^ and G the blocs of G .We then can
write :

,11 G12(I ©  X'H)

(I ©  H'X)G21 (I ©  H'X)G22(I ©  X'H)

We shall need only the second row of the inverse of the above matrix, 
which is given by

r ' = R^

with

R2 = Z22 ®  (H' X(X'X) 1X'H)“1

R\ ='R2 (I 0  H'X)G2 1(G1 1 )-1

Consequently :

a* -1.
3SLS-3 = R 'F2(Z3VZ3) V

0 R^I ©  H'X)[G22 - G2 1(G1V 1G12](I ©  X')

R2(l ©  H'X) G”2 (I ©  X')y2

= [I ©  (H'X(X'X)"1X'H)"1H'X(X'X)"1X']y,

The equality is established. The interpretation of this result is the 
following. Although the equations of the first set are over-identified
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(they do not contain all the exogenous variables), when each equation is 

multiplied by X̂  (their own instruments) the resulting system of equa­

tions corresponding to the first set is square in the sense that the 

number of parameters is equal to the number of equations. These equa­

tions, then, play the same role as the just-identified equations in the 

usual 3SLS procedure, i.e. the estimation of the other equations (the 
second set) is not affected by them.
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