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ABSTRACT.
In this paper concepts and techniques from system theory are used to obtain state-space 

(Markovian ) models of dynamic economic processes instead of the usual VARMA models. In 
this respect the concept of state is reviewed as are Hankel norm approximations,and balanced 
realizations for stochastic models. We clarify some aspects of the balancing method for state 
space modelling of observed time series. This method may fail to satisfy the so-called positive 
real condition for stochastic processes. We us a state variance factorization algorithm which 
does not require us to solve the algebraic Riccati equation. We relate the Aoki-Havenner 
method to the Arun - Kung method.

1. Introduction.
Linear system approximation has found important applications in model reduction, system 
identification, spectrum estimation, among others. We will consider the problem of 
constructing a state-space model (Markovian representation) for a stochastic process from a 
finite number of estimated covariance lags. The approach is to first obtain a high-order model 
which exactly matches the estimated covariance sequence, and then use balanced model 
reduction techniques to obtain a lower order model which approximates the given sequence. 
The balanced models can then be obtained from a realization algorithm.

The stochastic realization problem deals with the quest for a finite dimensional Markovian 
representation for a stochastic process from the known covariance information. If the 
covariance of the intervening random variables are axactly known, then we deal with the exact 
stochastic realization problem, which has received great attention Akaike (1976), Faurre 
(1976). For many applications the Markovian representation or state space model may be too 
complex owing to its high dimensionality, thus barring efficient computational management.

This partially motivates the search for smaller dimensional Markovian realization which 
approximates the original one in some sense. The high dimensionality of the original state 
space model can, for instance, be caused by the incorporation of weakly coupled superfluous 
state components. These components may mask any tendencies hidden in the dynamics.

Another difficulty with the stochastic realization problem is the necessity of the exact 
covariance information. In most pratical situations, all one has available is an estimate of the 
covariances based on the real data (i.e., sample covariances). Not only would the noise

1 This paper was presented at the Second International Conference on Computing in Economics and Finance, 
Geneva, Switzerland, 26-28 June 1996
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fluctuations in the covariance structure lead to models of high dimensions, but what is more 
essential, the sample covariance sequence may not be positive-real. In such a case, the exact 
realization algorithm applied to inexact data may have no solution at all.
In the second section we present the different representations of a times series model, a link 
with the power density spectral is used. Next we recall, in the third section, the stochastic 
realization problem as background. Finally in the fourth section we clarify some problematic 
aspects of the method proposed by Aoki-Havenner (1991), we propose a factorization 
approach which is not used to solve the Riccati equation, and we relate the Aoki-Havenner 
algorithm to the unweighted principal components algorithm.

2. Different representations of a model
2.1. State-space representation.

Let yt be a weakly stationary multivariate stochastic process which has a zero mean. A state 
space time series model can be written in two matrix equations, the state equation and the 
observation equation:

xt+i = Ax, + u, (1.1)
y, = Cxt + v, (1.2)

where x e Rn, ye Rm, A and C are matrices of appropriate dimensions, v, and u, are zero mean 
white noise with variance-covariance matrix

( n \

v v . y

\

VVs/

Q s
S R

<5ts; Vt,s

(the superscript (‘) indicates the transpose of a vector and matrix and Sts is the kronecker delta 
function).
This model is in fact equivalent to the following innovation model

x t+1 = Ax, +B ,e,

y, = C x ,  + e ,
where x, = E(x, / y,_, ,y,_2>-••), is the optimal prediction estimate of xt, 

e, = yt - E(yt/yt.|,yt-2 ,...) is the innovation process of yt,
B, = E(x,e't )E(e,e't )"' is Kalman gain,
Q, = E(e,e\).

(2)

For large times the Kalman gain Bt and i2t reaches an asymptotic steady-state B = lim,^_ B, 
and Q = l im ^  Q,
In what follows, we consider the stationary case, thus the variance-covariance matrix 
associated with the system is:

*^Be,^ f Be0 f B" f BlE = Q.
. < e . y, e . J

(3)

The innovation model is of considerable practical value because of its statistical properties. It 
can be seen that the innovation model is determined by the same dynamic parameters (A, C) 
as the initial model. However, the triple (Q, R, S) of the initial model is statistically 
equivalent to the double (B, Q.) of the innovation model (see Ratsimalahelo (1994)).
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2.2. ARMA representation.
It is known that there is a one-to-one correspondence between stationary ARMA and state 
space models, any system (1) and (2) can be expressed in ARMA and conversely, cf Hannan 
and Deistler (1988), Aoki and Havenner ( 1991 ).
Let a general vector ARMA(p,q)

a(z) y, = b(z) e, (4)
where a(z) = LA, z'1 and b(z) = Z Bj z’1 are matrix polynomials in the lag operator z '1 of 
degrees p and q respectively, y,is vector of data, t = 1,...,T and et is a random error vector such 
that

E(et) = 0 , E(£t£s ) = ES.S, I  > 0.
In the stationary case, the e, are the innovations if and only if 

det a(z) ^  0 I z I < 1 (stability condition) 
and det b(z) * 0 I z I < 1 (miniphase condition).
Then the ARMA model may be rewritten

y, = g(z) e,

with g(z) = a(z)'1 b(z) is a matrix of rational function, g(z) is said to be the transfer function 
from et to yt.
If e, is the innovation sequence for y, again g(z) is analytic for I z I < 1, (g(z) is analytic within 
the unit disc) det g(z) *  0 I z I < 1.
If we denote the covariance of process y, by Ns = E(ytyt+S ) then the power spectrum is given 
by the doubly infinite summation

S ( z ) = X N ,z -

evaluated at z = exp(iw). Using the definition of the impulse response,

y, = X g j £ H
j=0

g(z) = ZgjZ'J, go = I.
It can be easily seen that the covariance Ns is obtained by

N , = Ë g , I g „  S 2 0
j=0

N.s = Ns
In z-transform language, this translates to 

S(z) = g(z)Sg(z') 
it is known spectral factorization, cf Hannan and Deistler (1988).

2.3. The covariance function, the transfer function and state
Definite the covariances by

P = E(x,x’,) = APA’ +BQ B’
M = E(x,+iy’t) = APC’ + BQ 
Ns = E(y,yt+S ) = CPC’ + Î2 s = 0 

= CBS ‘M s  > 0 
Using the z transform of equation (2), we obtain: 

y(z) = [C(zl - A) 'B + I ]e(z) 
where y(z) et e(z) are respectively the z transform process y, and

■space parameters

(5.1)
(5.2)
(5.3)
(5.4)

of the innovation process e,.
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Matrix T(z) = C(zl - A) ‘B + I is termed the system transfer matrix. Its poles are the 
eigenvalues of A as det (zl - A) = 0 is a pole . It is a rational fraction matrix wherein the 
degree of denominator of each item of the matrix exceeds the degree of the corresponding 
numerator.

2.4. Spectral factorization.
The stochastic realization problem is closely connected with the spectral factorization

Lemma 1. Given a system of the form (2), the spectral density function S(z) of y, is defined 
by

S t z ^ X N . z -

or
S(z) = N0 + C(zl - Ay'M + M’(z 'l  - A T 'C ’ (6)

where P, M and N0 are uniquely determined by eqs (5.1)- (5.3).

The spectral density function S(z) may be expressed as a matrix product
S(z) = T(z)flT(z') (7)

with T(z) = [C(zl - A)'*B + 1], T(z) is the transfer function matrix.
The spectrum is thus factorized as

S(z) = G(z) G ’(z_1) (8)
with G(z) = T(z) £21/2. The poles G(z) which are equal to the eigenvalues of A (asymptotically 
stable by the stationary condition of yt) are within the unit disc, and the zeros are the 
eigenvalues of (A - BC). G(z) is analytical outside the unit circle 
Replacing z by elw gives

S(eiw) = G(eiw) G’(e iw) = T(eiw) Q T(e iw) w € [0, 2n]. (9)

It may be asked what type of information is contained in the spectral density function S(z).The 
spectrum S(z) provides an external representation of the process yt, according to the matrix 
product expression, the spectrum S(z) is determined by the same set of parameters (A, B, C, 
Q) as the innovation model.
S(z) is interpreted as an expression of the form

S(z) = J(z) + J’(z ') (10)

where J(z) = No/2 + C(zl - A) 'M is the transfer matrix of a linear dynamic system, J(z) is 
positive real. A link is then established with the problem of realisation of a transfer function.

Notice that, given a spectral density function of the form (6), if the triple (A, C, M) is a 
minimum system then the parameters A and C can be obtained from equation (6).

To have a minimum system we need the necessary and sufficient conditions provided 
by the following lemma.

Lemma 2. The stochastic dynamic system (2) admits a spectrum- minimal if and only if (A C) 
is observable and there are no solutions x * 0 to the following set of equations:

A’x = zx
(C(zl - A)_IB + I) £2B’x = 0 

The proof of this lemma is based on the relations (5). The second condition is closely related 
to the zeros of the transfer function T(z) = I + C(zl - A) 'B.
The following corollary can thus be established.
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Corollary 3. The stochastic linear dynamic system of the form (2) admits a minimum 
spectrum when (A, C, B£2) is minimum and if

o(A) n  {z '1 / z * 0, z is a zero of T(z)} = 0 .
(a(A) denote the set of eigenvalues of the matrix A)
Lemma 4. Given a system of the form (1), the spectral density function S(z) of y, is the form

S(z) = N0 + C(zl - A)’lM + M ’(z"'l - A’X'C’

where P, M and N0 are uniquely determined by 
P = APA’ + Q 
M = APC’ + S 
N0 = CPC’ + R.

The spectral density function S(z) may be expressed as

S(z) = [C(zl -  A)’1 l £
Q s
S’ R

( z ' ' l - A  )~‘C 
I

The links between the different forms of representation for stochastic linear systems can be 
summarized in the following figure.

Fig 1. The different representations of stochastic processes.

In a stochastic process yt representations in ARMA form, in the form of (spectrum) transfer 
functions, or using the autocorrelation function Ns, are termed external descriptions while a 
state representation is termed an internal description.

3. Stochastic realization problem.

The realization problem consists in determining an internal representation from an 
external representation of a system such that the state model obtained has the same input- 
output behaviour as that specified by the external representation.

5
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Thus, for a deterministic model defined by

x,+i = Ax, + Bu, 
y, = Cx, + Du,

where u is a deterministic command. The realization problem consists in determining a 
quadruple (A, B, C, D) from:

- the transfer function G(z) = C(zl - A)'*B + D
- or Markov parameters Ls = CAs lB s > 0, Lo = D.

Similarly for a stochastic system, realization consists in determining the quadruple (A, C, B, 
Q) or the quintuple (A, C, Q, R, S) from:

- the spectrum S(z) = N0 + C(zl - A) ‘M + M’iz 'l  - A’) ‘C ’
- the autocorrelation function Ns = CAs lM s > 0.

Remarks.
i) The realization problem is also known as the spectrum factorization problem, Lindquist and 
Picci (1979), Caines (1987) i.e. it seeks a transfer function G(z) such that S(z) = G(z)G’(z ').

ii) Notice the similarity between the following problems:
- deterministic case, determining a triple (A, B, C) from Markov parameters

U  = CAslB s > 0,
- stochastic case, determining a triple (A, M, C) from the autocorrelation function

Ns = CAs lM s > 0.
An essential difference is that every triple (A, B, C) describes a corresponding input-output 
system, but that not every (A, M, C) describes a corresponding stochastic process. This is 
expressed by the well-known positive real lemma.

Given the covariance sequence, one forms the (infinite) Hankel matrix which is factorizable 
into an observability matrix O and a controllability matrix K

The time sequence is rational if and only if this Hankel matrix has finite rank (say n). It 
follows then from the deterministic realization theory Faurre (1976) that the order of any 
minimal Markovian representation of y, is precisely n, and a triple (A, M, C) can be 
constructed such that

N, N 2 N 3.
n 2 n 3 n 4
N 3. N 4 N 5

C
CA

CA2 AM A 2M . .] (12)

H = O K

Ns = CAS''M s > 0,

6



7

where in order to have a Markovian representation, (internal representation) the following 
needs to be satisfied

P-A P A ' M -A P C
N0 -  CPC

>0, P > 0
M’-CPA1

this is known as the positive real lemma.
Using the innovation model (2) and from eqs (5.1)-(5.3) we have 

(B’ I)’ Q (B’ I) >0, P > 0  
This positivity condition is equivalent to the spectral factorization theorem, (see section 2.4) 
cf Faurre and al. (1979) Furthore this positive real condition is neglected in the balancing 
method as it does not arise for deterministic systems.
The triple (A, M, C) together with No do not uniquely specify the covariances P, Q and matrix 
B. However, P completely specifies Q and B, and therefore characterizes the Markovian 
representation. Furthermore, note that any minimal realization of the covariance sequence is 
unique, modulo a similarity transformation.
This classical algorithm gives no indication of how a good reduced-order model can be 
obtained if an approximate stochastic realization is desired.

The notion of state.
We first need to define some more notation, denote by

y; =

1 1 i-------------

i

y ,+. y.-i

II (13)

the future and the past, respectively, of y,.
Let S (y,+) and S (yt ) be the Hilbert spaces obtained by taking the closed linear span of the 
random variables in yt+ and y,\ respectively. (In general, S (.) will be the Hilbert space 
generated by the closed linear span of elements of « . ».) The inner product on this space is 
the cross covariance. Orthogonal projection in these Hilbert spaces is equivalent to conditional 
expectation i.e. x \y = E(x \y) denotes the orthogonal projection of x onto S(y). This 
projection is given explicitly by

x \y  = E(xy) {E(yy’)}'*x (14)

where x and y are zero-mean random vectors.
Intuitively, the state of a linear system is a summary of the information in the past input 
history that is both necessary and sufficient to predict the future output. In the stochastic case, 
for the innovations representation, the state can also be interpreted as a as a summary of the 
past output history (instead of past input history) with regards to the prediction of the future 
output.
Construct a system of the following form

xl+i = (A - BC) Xt + By, (15)
e, = - Cx, + y,

7
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this is a formal inverse of the innovations representation and has all zeros within the unit 
circle i.e the eigenvalue of (A - BC) lie within the unit circle. Thus the state process x, as well 
as the input e, can be obtained causally from the output y, using the above filter.
Let A» = A - BC is in linear system terminology the matrix of loop filter. The matrix A. is the 
dynamic matrix in the Kalman filter for (15).

The state transition equation

x, = [B A.B A.2B A .3B •• ]

y.

y.-i

y«-2 (16)

x, = Sy,' (17)

Thus the state of the innovations model is completely reproduceable from the infinite past y,\ 
The state x, of the innovations model (minimum-phase model) is also the state of the Kalman 
filter which is an estimate of the state every other non-minimum phase model with the same 
parameters A and C matrices estimated from the infinite past y \ The state variance of the 
innovations model has to be smaller than the same A and C matrices.
Thus for the innovation model, beginning with the solution of the difference equation for the 
states equation and substituting into the observation equation produces

y+ = Ox, + Let+ (18)

where e,+ is defined the same way as y,+ and L is a block lower triangular matrix containing 
the Markov parameters

Li = CAi lB i > 0 
= I i = 0

and L is given by

■ I 0 0 O'
L 1 I 0 0

l 2 L> I 0

Hence, from eq (17) we can write
y+ = O S y + L e + (19)

Since e,+ is independent of yt'
y+ \ y" = OS y- = Ox (20)

Thus, for the innovations model, we have
x, = Sy,' and y+\ y = O x  (21)

which means that the state of innovations model summarizes the past output history for 
predicting the future output.

8
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The projection yt+ \ y,' defines the state space of a Markovian model of the form (2). Thus this 
projection is central to any stochastic realization algorithm. From (14), it can be seen that this 
projection is given in terms of the following matrices formed from the covariance sequence:

yt+\y t- = H R - y (22)

where H = E[y,+(y,')’] and R = E[y,'(y,')’] are the Hankel and Toeplitz matrices formed from 
the covariance lags of the output. H is given from eq( 12) and R is given by

'N 0 N, n 3 . :

N, N0 N, . .
R = E[yt-(ytT  ] = n 2 N, N0 • • (22)

Since x,= S y ' , in this case the state covariance matrix is 
P = E(x,x,’) = SRS’

A comparison eq (20) with y,+ \ y' = HR'ly indicates that H R 1 must be factorizable into O 
and S , and consequently it must have rank equal to the size of the state vector.
Thus we have

x, = Sy,' and y,+ \ y,' = H R y' = Ox, (23)

The Hankel matrix can be factorised as H = OK, then the state vector as x, = Sy', with 
S = KR'1. Thus S is said to be a matrix aggregation. The state is considered by Aoki et 
Havenner (1991) as sufficient statistics.
In this case the state covariance matrix of the innovations model is

P = SRS’ = K(R'‘)’K’ (24)

The state is in fact the information interface between past and future and its dimension is 
equal to the order of the system. When the system has to be approximated by a lower order 
model, it is a question of compressing this information-interface into a lower dimensional 
which contains most of the information in the full-order state.

4. Stochastic balanced realization.
Balanced realizations originate in deterministic control theory, Moore (1981), this concept is 
well known in the literature. In words one may say that a balanced realization of a system has 
the property that the amount of controllability of a certain component of the state vector is 
equal to the amount of observability of this component. As shown by for instance Glover 
(1984) we can more or less consider the Gramians of a system as a tool to measure the 
controllability and observability of a realization.

4.1. Aoki-Havenner’s Method.
For convenience we summarise Aoki-Havenner’s (1991) method. We wish to predict future 
values of data vector y, from the past values. Let the upper bound on number of lags needed to 
model y, be p and the desired forecast horizon be f. Define the (mf x 1) and (mp x 1) future 
and past data vectors as y,+’ = (y ,\ yt+, \  ..., y,+f.i’) and y,'’ = (y,\ yt.i\...,y t.p+i) and let Ns = 
E(yt+Sy,’), s = 0, 1,2 ...the autocovariance sequence (Ns is a m x m matrix)

9
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Step 1. Calculate the sample autocovariances Ns , s = 0, 1 , 2 , p+f 
Ns = T '1 £ y ,+s y,’ 

where T is the sample size and arrange them in the Hankel matrix

N, N 2 • • N p "

n 2 n 3 . • N p+1
1 JZ 

.

N f+1 ■ • N p+f_,_

H has dimensions mf x mp.

The N0 and Np+f matrices do not appear in H but are used in estimating the A and B matrices.

Step 2. Obtain the singular value decomposition of the estimated Hankel matrix (HSV : 
Hankel Singular Value)

mf

H = U D V = £ < j 1ui,v1
k = l

where G\ > <j2 ^  ^  <Tmf are the singular values of the matrix H and Uk, vk the corresponding 
eigenvectors. The matrices U = (ui,...,umf) and V = (vi,...,v„,p) are orthogonal, and D = diag 
( O i , . . . ,< 7 mf)

Choose the importantly nonzero singular values to be included in the approximation. Since the 
singular values are scale-dependent, the series should be scaled so that the covariances are all 
of approximately the same magnitude. By the well known Kronecker theorem, cf Kailath 
(1980), Aoki (1987, 1990), Kung and Lin (1981) the rank of H is equal to the number of 
states (n) required to summarize the past history of the system. If the covariances that 
comprise H were the actual values rather than estimates , the largest n singular values would 
be nonzero with the remaining mf - n exactly zero, thus directly providing the order 
information critical to time-series modeling. Given the Hankel matrix with rank mf the
problem is to find a Hankel matrix H with r( H ) = n < mf such that

11 H - H || is minimum

An (non-unique ) approximant H„ of H with r(Hn) = n which minimizes the Hankel norm is

Hn = UnDnVn’ = ¿< 7 | tukvk
k=l

By the singular value decomposition theorem we have

I I H - Hn I I h = Ĉn+1 

The matrix Hn is in general not a Hankel matrix.
If the spectral norm of the L2 is used to characterize the approximation we have

II H - Hn 112 = [an+, + a n+2 + -  + a mp]l/2.

10
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The Hankel norm lies between the conventional L2 and L„ norm. These norms provide a 
formal measure of the degree to which the time-series model reproduces the sample 
autocovariances.

Step 3. Estimate the parameters A, C, M by least squares based on the singular value 
decomposition.
Note that the covariance matrix between yt+i+ and yt.i' is

H = OK = OAK (24)
the first submatrix row of H, denoted by Hi*, is

H,. = [N , ,N 2,. . . ,NP] =CK  (25)
and the first submatrix column of H, denoted by H*i, is

H»i = (N,, N2,...,Nf]’ = OM (26)
the system matrices A, C and M must be choosen to satisfy (24) through (26)
These equations can be solved easily by using the singular value decomposition of the Hankel 
matrix. Compare the singular value decomposition 

Hn = UnDnVn’
with the factorization in terms of O and K.(observability-controllability factorization) 

(UnDn,/2)(Dn1/2Vn’) = OK 
Theoretically, the number of positive singular values is equal to the theoretical rank of the 
Hankel matrix.
Choose a coordinate system in which

O = UDI/2 and K = D1/2V’ 
in this coordinate system we have 

O’O = KK’ = D
where O’O and KK’ are, respectively, the observability and controllability gramians. Thus 
these system matrices are said to be balanced. Putting models in balanced representation or 
balanced form uniquely determines the system matrices, i.e., the model is uniquely identified. 
The word « balanced » in the above description comes from the fact that the representation 
balances two sources of errors: one related to the observability , i.e., error in reconstructing 
past state vector values from future observations, and the other errors related to reachability, 
i.e, the error due to past prediction errors.
The solutions:

C = H,*VD1/2 (27)
M = D 1/2U ’H., (28)
A = D ',/2U’ H V D 1/2 (29)

Where VD'I/2 and D '1/2U’are a singular value generalized inverse of O and K respectively 
so that 0 +0 =  (D 1/2U’)(UD 1/2) = I

K K += (D1/2V’)(V D '1/2) = I 
The balanced model representation uses the system matrices computed in eqs (27) - (29). It 
has several useful properties. One is that system matrices A, C and M of any lower
dimensional balanced model than a given one are obtained by merely taking a leading 
principal submatrix of the original dynamical matrix A and the corresponding submatrices C 
and M. Aoki and Havenner call this the nested property or orthogonality property . Another 
property is that these lower-dimensional models are all asymptotically stable if the original 
matrix A is asymptotically stable.

Step 4. Determination of the matrices B and Q requires solving a certain matrix Riccati 
equation. From eqs(5) note the relations

P = APA’ + BHB’ and Q = N0 - CPC’ with Q. > 0

11
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From the definition of the matrix M we have 
B Q  = M - APC’.

From these we obtain the equation for P as

P = APA’ + (M - APC’XNo - CPC’)'(M  - APC’)’ (30)
The smallest positive definite solution of (30), which exists under certain technical conditions 
(see Faurre et al. (1979)), is used to determine B and Q.
Eq (30) can be solved by converting it into a (2nx2n) symplectic matrix O

<D =
'F - Q VF~'D Q 'F’1 

- y ’D »F_l

where VF = A - MN0‘'C, Q = C’No 'C and D = MNo ‘M’. This is a symplectic matrix, i.e., 

<D 1 = J ’<D‘J

with J =
f o n

v - I  Oy
=«► j - 1 = - j  = y

Given No and A, M and C from eqs (27)-(29) then £2 and B are estimated by the following 
equations

Q = N0 -C PC ’ (31)
B = (M - APC’)(N0 - CPC’)’1 (32)

The Aoki - Havenner’s method (called A-H) is summarized by

A-H’s Algorithm.
1) Calculate the sample autocovariance Ns s = 0, 1,2, ...f+p, form the covariance Hankel H
2) Determine approximate rank of Hankel matrix which specifies the number n of states, and 
using the singular value decomposition of the Hankel matrix Hn = UnD„Vn’
3) Factor Hn as Hn = (UnDn1/2)(Dn1/2Vn ) = OK and estimate the parameters A, M, C by least 
squares based on the singular value decomposition

C = Hi*VD'1/2 
M = D-,/2U’H.,
A = D 1/2U ’ H VD 1/2

4) Solve the Ricatti equation for P and determine the parameters B and Q.
B = (M - APC’)(N0 - CPC’)'1 
£2 = No -C PC ’

Hankel norm approximation.
The Hankel norm approximation problem was first shown to be solvable (in discrete time 
domain) by Adamyan, Arov and Krein (1971) and the first reliable state space algorithm was 
developed by Glover (1984, 1989) (in the continuous time domain). Many other authors have 
contribued to this field, among which Kung and Lin (1981), Ball and Ran (1987).
Step 2 concerns the approximation of a high dimensional system by one containing fewer 
states, in such a way that norm of the difference between the corresponding Hankel operators 
is minimal. This involves the approximation of estimated Hankel matrix by Hankel matrix of
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smaller rank n. This « numerical rank » is determined by the number of « dominant » singular 
values of H. In this case the SVD can be pardoned as folllows:

H = [,J U( o  B p .
where D contains the n dominant singular values and the singular vectors are partioned 
accordingly. Then the optimal (in Frobenius norm) rank n approximation to H is 

Hn = Un D„ Vn’ = OK
Hn is not a Hankel matrix in general. Thus the singular value approximation of step 2 is 
simply not optimal in the sense of the Hankel norm for linear systems.
This clarifies the incorrectness of the theorem on specification efficiency in Aoki and Havener 
(1991), as well as the corresponding reply of Havenner to comments of Deistler and Mittnik
(1991) on this point.
A possible modification of the algorithm would be to determine an optimal Hankel norm 
approximation error a„+i while the Hankel structure is preserved. For this modification the 
theorem on specification efficiency would hold true.

We saw in section 3 that stochastic realization must satisfy the positivity condition, this is a 
basic problem in spectrum analysis cf Byrnes and Lindquist (1994). This positivity constraint 
is neglected in Aoki-Havenner’s method and it can cause problems for the algorithm. The 
estimates in step 3 may be such that the positivity condition is not satisfied, in which case no 
model can be determined. This can be checked in terms of the characteristic roots of a 
symplectic matrix arising in the algorithm.

Symplectic matrix and unit root
The eigenvalues of symplectic matrix O are not only symmetric with respect to the real axis 
but also with respect to the unit circle. Thus the algorithm of Vaughan fails only when 0  has a 
unit root i.e., an eigenvalue on the unit circle.

Symplectic Unit Root theorem. (Heij et al. (1992))
If has an eigenvalue at z = exp(iw), then either (A, C, M, N0) does not satisfy the positivity 
condition or spectrum is singular at z = exp(iw)
As shown by Hannan and Poskitt (1988) on the unit circle the spectrum has a rank deficiency 
i.e. singularity, this is related to the existence of deterministic components in the process. For 
stationary ARMA processes singularity on the unit circle is equivalent to unit roots in the MA 
part, i.e., it is equivalent to non-invertibility.
Heij et al (1992) are shown that the symplectic matrix 4> has a unit root if and only if the 
power density spectral S(z) has a zero on the unit circle. Then if this root is + 1 or - 1 this 
corresponds to a deterministic component. If the unit root is not real then the positivity 
condition is violated because S(1)S(-1) < 0. This case causes problems for Aoki-Havenner’s 
algorithm.

4.2. Factorization Approach.
Aoki-Havenner’s algorithm is characterized by the fact that it requires the solution to an 
algebraic Riccati equation. We propose an algorithm which is representative of a class of 
algorithms which do not require a Riccati solution but only a matrix factorization to obtain 
the stochastic balanced realization.
It will be recalled that the state vector of any innovation model must always be a linear 
function of y,' then we have x, = Sy,.f and y,+ \ y,.f = Hn R '1 y,.f = Ox,
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The aggregating matrix S is 
S = K R ‘

In the balanced realization form, the coordinate system is choosen so that O = UDI/2 and 
K = D i/2V \  hence the Hankel norm method summarizes past data in the state vector

xt = D 1/2V’R '‘yt'
The aggregating matrix S = D I/2V’R '', given the model specification, as the aggregating 
matrix has full row rank the information in yt.f  is preserved, and the states are sufficient 
statistics for information in the data.
The state covariance is

P = F’F with F = R-,/2VDi/2 (where R 1 = R 1/2(R 1/2)’)

We propose a method which is not used to solve the Riccati equation to find B and £2 
estimate.

Proposition.
The estimates B and £2 are obtained by choosing the state vector as x, = D ^ V ’R 'V i '.  the 
state covariance matrix is P = F’F with F = R 'I/2VD1/2.

In this proposition the state covariance matrix is specified in terms of the factorization, thus 
no Riccati equation has to be solved, then P can be used directly to find B and £2. This method 
modified step 4 of Aoki- Havenner’s method which can be summarized by

Algorithm factorization or A-H’s modified Algorithm.
1) Calculate the sample autocovariance Ns s = 0, 1,2, ...f+p, form the covariance Hankel H
2) Determine approximate rank of Hankel matrix which specifies the number n of states, and 
using the singular value decomposition of the Hankel matrix Hn = U„DnVn’
3) Factor H„ as Hn = (UnDnl/2)(Dnl/2Vn ) = OK and estimate the parameters A, M, C by least 
squares based on the singular value decomposition
4) Calculate the state covariance matrix P = F’F and estimate £2 and B.

£2 = N0 - CPC’
B = (M - APC’)£2 ‘.

In this approach the state covariance matrix is also specified in terms of factorization. Thus no 
Riccati equation has to be solved, but P can be used directly to determine B and £2.

4.3. Arun-Kung’s Method.

The state vector can be introduced in yet another way. Recall from eq (22) that the state space 
of stochastic realization is spanned by HR 'y t. i . If H is of rank mp, then the dimension of the 
state space is mp. In order to obtain an n-th order model, n < mp , it is necessary to find a 
matrix S such that Syt‘ nearly spans the state space. Arun and Kung (1986) have suggested 
choosing S to minimize the following criterion:

Var [yt+ - yt+ \ xt].
Such a criterion is called the predictive efficiency criterion which was first used by Rao 
(1964) in multivariate statistics for the 2-vector problem.
Noting that

y+ \ x = HS’(SRS’)'1 Sy,'
and

14



15

Var [yt+ - yt+\ x] = R - HS’(SRS’) ‘SH’ (33)
thus we have

min tr [R - HS’(SRS’) ‘SH’] = max tr [(SH’HS’) (SRS’) 1]. (34)
(tr (A) denotes trace A)
The solution to this optimization problem is: the n rows of S must be a basis for the space 

spanned by the n generalized eigenvectors corresponding to the n largest generalized 
eigenvalues of the matrix pencil (X.R - H’H).
The approximation is based on the eigenvalues values of H R 'H ’

H R 'H ’ = [U, U2|
Z] 0
0 z \

U,'
U2'

(35)

where Z] contains the n largest generalized eigenvalues i.e. the principal components, then 
the predictive efficience criterion is optimized by choosing S to be

S = EUi’HR'1 (36)
where E is any nxn invertible matrix. Different choices of E will correspond to different 
coordinate transformations of the state vector. This solution is called the unweighted principal 
components (UPC).
The state vector will be in balanced coordinates by choosing E by Z { m

S = E f 1/2U ,’HR-‘ (37)
which implies that the observability matrix is O = U(I i 1/2 and the observability grammians, 
which is O’O is equal to Si 
The state covariance is

P = SRS’ = Zi (38)

The UPC Algorithm.
Step 1. Perform an eigendecomposition of

r 0HR H = [U, Us j o’
2 

Zi
U,'
U 2'"2.

and retain only the principal components. The aggregating matrix S is 
S = EUi’HR' where E is any nxn invertible matrix.

In balanced coordinates
S = IV ^ U rH R '1 

The observability matrix is
O = U ,L f1/2 

and the observability grammian O’O = E|
Step 2. The parameter estimation step is taken from the deterministic algorithm 

A = 0 , + 0 2
where Oi denotes the first m rows of O and the superscript + stands for the pseudoinverse and
O2 the last m rows of O.

C = first row of O 
B = first column of S 
P = S,
M = N0 - C I |C ’

An advantage of UPC algorithm is that it can be applied to sample covariance sequence that 
are not positive definite. This condition often arises when the covariance sequence is 
estimated from a short data record.

15



16

To relate the UPC algorithm to the Aoki-Havenner’s algorithm , it is necessary to work with 
the « square root »of (35)

HR 1/2 = UZV’ (where R 1 = R 1/2 R 1/2) 
which yields the following factorization of the Hankel matrix:

H = UZV’R '1/2 = OK
The resulting stochastic realization can be obtained from step 3 of the Aoki-Havenner’s 
algorithm.
Note that Step 4 of A-H’s algorithm provides an explicit formula for £2, while the UPC 
algorithm does not.

Comparison to the Canonical Correlations Criterion and Akaike’s Method.
Arun and Kung (1986) point out that canonical realization algorithm is not well suited for 
model reduction due to the smallness of the canonical correlations and the fact that it works 
with unapproximated data.
Akaike (1974) uses Hotelling’s concept of canonical correlations coefficients. This method 
optimizes mutual information in the past and future observations. The method introduces 
canonical variables by normalizing the data vector by the inverse of square root of the 
covariance matrix of the data data vector. The selection of the state vector is based on the 
singular value decomposition of matrix R ',/2 H (R‘l/2)’, where H is the same Hankel matrix of 
the covariances of the future and past observations and the covariance matrix R is expressed 
as R = R1/2(Rl/2)’ where R l/2 is any full-rank factorization R. Thus, this Akaike’s solution is 
different from Arun- Kung’s solution because under perturbations, H will be full rank and the 
principal components of H R ''H \ R '1/2 H (R'l/2 )’, and H will not be same. In addition the 
Akaike’s method use the matrix RI/2 for normalize the data vector by Z* = R '^Y*. This 
indicate that the state vector component by Akaike’s method do not do the best of predicting 
the future. It is inherent normalization in the canonical correlation criterion that causes it to 
ignore the strength of modes in the process. Following C.R. Rao the generalized principal 
component s analysis for studing the association between two randon vectors is different from 
Hotelling’s canonical correlation analysis.

References.

Adamyan, V. M., D. Z. Arov and M. G . Krein (1971). « Analytic properties of Schidt pairs 
for Hankel operator and the generalized Schur-Takagi problem. Math. » USSR 
Sbomik, vol 15, no.l, pp 31-73.

Akaike, H., (1974a) « A New Look at Statistical Model Identification, » IEEE Trans.
Automatic Control, AC-19, 6, pp 716-723.

Akaike, H., (1974b) « Markovian Representation of Stochastic Processes and its Application 
to the Analysis of Autoregressive Moving Average Processes, » Annals of Institute of 
Statistical Mathematics, 26, pp363-387.

Akaike, H., (1976) « Canonical Correlation Analysis of Time Series and Use of an
Information Criterion, » in System Identification : Advances and Case Studies, Chap 2, 
R. K. Mehra and D. G. Lainiotis (Eds.), Academic, New York.

Anderson , B.D.O., and Moore, J. B., (1979) « Optimal Filtering Information and Systems 
Sciences Series, Prentice-Hall, Englewood Cliffs, N. J.

Aoki, M., (1987) « State space modelling of time series », Springer -Verlag, Berlin.
Aoki, M. and Havenner A. (1989) « A method for approximate representation of vector

valued time-series and its relation to two alternatives » Journal of Econometrics, 42, pp 
181-199.

16



17

Aoki, M., (1990) « State space modelling of time series », 2nd edition, Springer Verlag, 
Berlin.

Aoki, M., and Havenner, A., (1991), « State space modeling of multiple time series », 
Econometric Reviews, 10, 1-59, 93-99.

Arun, K. S. and Kung, S. Y., (1986) « Generalized Principal Component Analysis and its 
Application of stochastic Processes, » in Modelling and Application of Stochastic 
Processes, Chap. 4,U. B. Desai (Ed.), Kluwer Academic, Boston.

Ball, J. A. and A. C. M. Ran (1987). Optimal Hankel norm model reductions and Wiener- 
Hopf factorization I: The canonical case. Siam J. contr. and optim. vol 25-2, 362-382.

Byrnes, C. I., and Lindquist A. (1994), « Toward a solution of the minimal partial stochastic 
realization problem », Comptes Rendus des Academies de Sciences t. 319, Série I, pp 
1231-1236

Caines, P. E. (1988): Linear Stochastic Systems, New York: John Wiley and Sons.
Desai, U. B. and Pal, D., (1984) « A Transformation Approach to Stochastic Model 

Reduction, » IEEE Trans. Automatic Control A-C 29, 12, pp. 1097-1099.
Deistler, M. (1989). « Linear system identification- a survey ». In: From Data to Model, J. 

Willems (Ed.). Springer-Verlag, Berlin, 1-25.
Deistler, M., Dorfman, J. H., Mittnik, S. and Zellner, A., (1991) « Comment on state space

modeling of multiple time series », Econometric Reviews, 10, 61-65, 67-73, 75-90, 91- 
92.

Faurre, P. (1976). « Stochastic realization algorithm » in System Identification : Advances 
and Case Studies, R. K. Mehra and D. G. Lainiotis (Eds.), Academic, New York.

Faurre, P., M. Clerget, et F. Germain (1979) « Opérateurs rationnels positifs » Dunod, Paris.
Kailath, T., (1980), « Linear systems » Prentice Hall, Englewood Cliffs, NJ.
Glover, K. (1984). All optimal Hankel norm approximations of linear multivariable systems 

and their L_ - error bound. Int. J. Contr. 39-6, 1115-1193.
Glover, K. (1989). « A tutorial on Hankel-norm Approximation. » In: From Data to Model, J. 

Willems (Ed). Springer-Verlag, Berlin, 26-48.
Hannan, E. J., and Deistler M. (1988). « The statistical theory of linear systems » John Wiley 

New-York.
Kung, S. Y., and Lin, D. (1981) « Optimal Hankel-Norm Model Reduction: Multivariable 

Systems », IEEE Trans. Automatic Control, A-C 26,
Linquist, A. and Picci, G. (1979) « On the stochastic realization problem, » SIAM J. Contr. 

Optimiz, vol 17, pp 365-389.
Mittnik, S. (1989). « Multivariate time series analysis and state space models, » Comp. Math. 

Applications, 17, pp 1189-1201.
Moore, B.C., (1981). « Principal component analysis in linear systems: controllability,

observability, and model reduction ». IEEE Transaction on Automatic Control 26, pp 
17-32.

Rao, C. R. (1964): « The Use and Interpretation of Principal Component Analysis in Applied 
Research » Sankhya Series A, 26, pp 329-358.

Ratsimalahelo Z. (1994) « Théorie de système et Séries Temporelles » Document de travail 
L.AT.E.C. N° 9401.

Vaccaro, R. J., (1985) « Deterministic Balancing and Stochastic Model Reduction, » IEEE 
Transaction on Automatic and Control, Vol AC- 30, n° 9, pp. 921-923.

17


	26046C_C.pdf
	26046_C




