P. M. Wolanin, P. A. Thomason, and J. B. Stock, Histidine protein kinases: key signal 6 transducers outside the animal kingdom, Genome Biol, vol.3, pp.1-8, 2002.

L. E. Ulrich and I. B. Zhulin, The MiST2 database: a comprehensive genomics resource on microbial signal transduction, Nucleic Acids Research, vol.38, issue.suppl_1, pp.401-407, 2010.
DOI : 10.1093/nar/gkp940

Y. Gotoh, Two-component signal transduction as potential drug targets in pathogenic bacteria, Current Opinion in Microbiology, vol.13, issue.2, pp.232-239, 2010.
DOI : 10.1016/j.mib.2010.01.008

B. Lasarre and M. J. Federle, Exploiting Quorum Sensing To Confuse Bacterial Pathogens, Microbiology and Molecular Biology Reviews, vol.77, issue.1
DOI : 10.1128/MMBR.00046-12

D. A. Rasko and V. Sperandio, Anti-virulence strategies to combat bacteria-mediated disease, Nature Reviews Drug Discovery, vol.188, issue.2
DOI : 10.1038/nrd3013

M. Li and G. L. Hazelbauer, Core unit of chemotaxis signaling complexes, Proceedings of the 20 National Academy of Sciences, pp.9390-9395, 2011.
DOI : 10.1085/jgp.118.6.693

A. A. Pakula and M. I. Simon, Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor., Proceedings of the National Academy of Sciences, vol.89, issue.9, pp.4144-4148, 1992.
DOI : 10.1073/pnas.89.9.4144

K. S. Molnar, Cys-Scanning Disulfide Crosslinking and Bayesian Modeling Probe the 3

J. S. Parkinson, Signaling Mechanisms of HAMP Domains in Chemoreceptors and Sensor Kinases, Annual Review of Microbiology, vol.64, issue.1
DOI : 10.1146/annurev.micro.112408.134215

. Kinases, Annual Review of Microbiology, pp.101-122, 2010.

V. Stewart and L. Chen, The S Helix Mediates Signal Transmission as a HAMP Domain 8

V. Stewart, Nitrate-and nitrite-responsive sensors NarX and NarQ of proteobacteria. 11 Biochemical Society Transactions, pp.1-10, 2003.

J. Cheung and W. A. Hendrickson, Structural Analysis of Ligand Stimulation of the Histidine 13

M. Caffrey, Crystallizing Membrane Proteins for Structure Determination: Use of Lipidic 18

V. Cherezov, Lipidic cubic phase technologies for membrane protein structural studies, Current Opinion in Structural Biology, vol.21, issue.4, pp.559-566, 2011.
DOI : 10.1016/j.sbi.2011.06.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164297

S. Dunin-horkawicz and A. N. Lupas, Comprehensive Analysis of HAMP Domains, p.1

M. D. Hartmann, A soluble mutant of the transmembrane receptor, 1503.

J. S. Parkinson, G. L. Hazelbauer, and J. J. Falke, Signaling and sensory adaptation in 7
DOI : 10.1016/j.tim.2015.03.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417406

V. Anantharaman, S. Balaji, and L. Aravind, The signaling helix: a common functional theme 10 in diverse signaling proteins, Biology Direct, vol.1, issue.1, p.25, 2006.
DOI : 10.1186/1745-6150-1-25

I. Gushchin, V. I. Gordeliy, and S. Grudinin, Role of the HAMP Domain Region of Sensory 12

H. U. Ferris, Mechanism of Regulation of Receptor Histidine Kinases, Structure, vol.20, issue.1, pp.56-66, 2012.
DOI : 10.1016/j.str.2011.11.014

R. S. Vieira-pires and J. H. , helices in channels and other membrane proteins, The Journal of General Physiology, vol.112, issue.6, pp.585-592, 2010.
DOI : 10.1016/j.cell.2010.07.013

F. H. Crick, The packing of ?-helices: simple coiled-coils, Acta Crystallographica, vol.6, issue.8, pp.689-707, 1953.
DOI : 10.1107/S0365110X53001964

R. C. Chiang, R. Cavicchioli, and R. P. Gunsalus, Locked-on " and " locked-off " signal 20 transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX 21 sensors affect nitrate-and nitrite-dependent regulation by NarL and NarP, Mol. Microbiol, vol.22, pp.24-1049, 1997.

E. Lesne, Balance between Coiled-Coil Stability and Dynamics Regulates Activity of 24

E. Saita, A coiled coil switch mediates cold sensing by the thermosensory protein 26

J. O. Moore and W. A. Hendrickson, An Asymmetry-to-Symmetry Switch in Signal 28

M. B. Neiditch, Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing, Cell, vol.126, issue.6, pp.1095-1108, 2006.
DOI : 10.1016/j.cell.2006.07.032

B. Wang, A. Zhao, R. P. Novick, and T. W. Muir, Activation and Inhibition of the Receptor 32

R. Moukhametzianov, Development of the signal in sensory rhodopsin and its transfer to the cognate transducer, Nature, vol.54, issue.7080, pp.115-119, 2006.
DOI : 10.1038/nature04520

S. A. Chervitz and J. J. Falke, Molecular mechanism of transmembrane signaling by the 6

M. Hulko, The HAMP Domain Structure Implies Helix Rotation in Transmembrane 14

H. U. Ferris, The Mechanisms of HAMP-Mediated Signaling in Transmembrane Receptors, Structure, vol.19, issue.3, pp.378-385, 2011.
DOI : 10.1016/j.str.2011.01.006

V. Stewart, The HAMP signal-conversion domain: static two-state or dynamic three-state? 21 Molecular Microbiology, pp.853-857, 2014.

M. Chemoreceptor, A Disulfide Mapping Study, Biochemistry, vol.46, pp.13684-13708, 2007.

I. Gushchin, V. Gordeliy, and S. Grudinin, Two Distinct States of the HAMP Domain from 28

F. W. Studier, Protein production by auto-induction in high-density shaking cultures, Protein Expression and Purification, vol.41, issue.1
DOI : 10.1016/j.pep.2005.01.016

I. Gushchin, Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria, Proceedings of the National Academy of Sciences, vol.8, issue.5, pp.12631-12636, 2013.
DOI : 10.1186/1472-6807-8-49

URL : https://hal.archives-ouvertes.fr/hal-01322330

D. Nurizzo, The ID23-1 structural biology beamline at the ESRF, Journal of Synchrotron Radiation, vol.13, issue.3
DOI : 10.1107/S0909049506004341

P. Evans, Scaling and assessment of data quality, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.1
DOI : 10.1107/S0907444905036693

A. Vagin and A. Teplyakov, Molecular replacement with MOLREP, Acta Crystallographica, vol.9

G. M. Sheldrick, : combining chain tracing with density modification, Acta Crystallographica Section D Biological Crystallography, vol.46, issue.4, pp.479-485, 2010.
DOI : 10.1107/S0907444909038360

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852312

T. Pape and T. R. Schneider, programs, Journal of Applied Crystallography, vol.37, issue.5, pp.843-844, 2004.
DOI : 10.1107/S0021889804018047

G. Langer, S. X. Cohen, V. S. Lamzin, and A. Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7, Nature Protocols, vol.60, issue.7, pp.1171-1187, 2008.
DOI : 10.1038/nprot.2008.91

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582149

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics. Acta 18 Crystallographica Section D Biological Crystallography, pp.2126-2132, 2004.
DOI : 10.1107/s0907444904019158

G. N. Murshudov, 5 for the refinement of macromolecular crystal structures, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.4, pp.355-367, 2011.
DOI : 10.1107/S0907444911001314

M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize, OPM database and 23 PPM web server: resources for positioning of proteins in membranes. Nucleic Acids 24 Research, pp.370-376, 2012.

A. Hoffmann and S. Grudinin, NOLB: Nonlinear Rigid Block Normal-Mode Analysis Method, Journal of Chemical Theory and Computation, vol.13, issue.5, pp.2123-2134, 2017.
DOI : 10.1021/acs.jctc.7b00197

URL : https://hal.archives-ouvertes.fr/hal-01505843