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1.  Introduction 

 
Among the numerical models which are   used to  investigate 

environmental issues, many rely  on spatially distributed data, such 

as Digital Terrain Models (DTM), soil maps, land use maps, etc. These 

spatially distributed models, or simply spatial models, allow for an 

explicit description of the spatial structures, spatial inter- 

dependencies, and spatial dynamics involved in the physical, bio- 

logical, or anthropogenic processes under study. However, it is now 

well known that all numerical modelsdincluding spatially distrib- 

uted onesdare fraught with uncertainties, which may stem from a 

lack  of  knowledge about the phenomena under study,  from the 

natural variability of the quantities of interest, from measurement 

errors, model assumptions, or  numerical approximations (Walker 

et al., 2003). Hence, when a spatial model is used as a support tool 

for  decision-making, one must remember that “anyone using  un- 

certain informationdmeaning the overwhelming majority of mapped 

data usersdshould consider carefully the  possible  sources of uncer- 

tainty and  how to deal with  them” (Fisher et al., 2005). 

To address this issue, a number of uncertainty analysis (UA) and 

sensitivity analysis (SA) methods, both qualitative and quantitative,



 
 

have been developed over the last decade (Saltelli et al., 2008). They 

study how model outputs react when input variables are  uncertain. 

UA focuses on  the propagation of  uncertainties throughout the 

model and aims to  quantify the resulting variability of the model 

output. SA seeks to study how the uncertainty in  a model output 

can be apportioned to the uncertainties in each of the model inputs. 

It allows input variables to  be  ranked according to their contribu- 

tion to the output variability. SA thus helps to identify the key input 

variables, those that determine the final decision of the model end- 

user, and on which further research should be carried out.  UA and 

SA methods have been gradually adopted by modellers in different 

disciplinary fields, especially in  environmental research (Ascough 

et al.,  2008; Cariboni et  al.,  2007; Tarantola  et al.,  2002), and 

today are  widely recognized as  essential steps in  model building 

(CREM,  2009;  European  Commission, 2009).  One   of  the  most 

common SA approach is variance-based global sensitivity analysis 

(VB-GSA), which widely explores the space of input uncertainties 

(global method), and does not require any  preliminary hypothesis 

(linearity,  regularity) regarding the  model under  study (Saltelli 

et al., 2008). 

However,  partly  because of  the  curse of  dimensionality,  SA 

methods have seldom been applied to environmental models with 

both spatially distributed inputs and outputs. A few  recent works 

have tried to  tackle this issue (Lilburne and Tarantola, 2009, for  a 

review). Both Ruffo et al. (2006) and Saint-Geours et al. (2013) used 

geostatistics to  simulate the uncertainty on  spatially distributed 

model inputs  and  incorporate them  into  a  VB-GSA  approach. 

Moreau et  al.  (2013) investigated  the  sensitivity of  the  agro- 

hydrological TNT2 model to five  different soil-map patterns, mak- 

ing  use  of a fractional factorial design to  carry out  an  analysis of 

variance, while Chen   et al.  (2013) recently discussed sensitivity 

analysis for spatial multi-criteria decision making models. In 

addition, other  authors developed new procedures to compute 

sensitivity indices for a spatial model output, either with respect to 

its spatial average (Lilburne and Tarantola, 2009) or with respect to 

the  values of  the model output at  each point of  a  study area 

(Heuvelink et al.,  2010; Marrel et al.,  2011). A number of  recent 

papers also  deal with the issue of  CPU time expensive environ- 

mental models, for which standard sensitivity analysis techniques 

cannot be  applied; in this case,  the construction of a cheap meta- 

model (emulator) is often necessary, see  (Petropoulos et al., 2013) 

for  a recent illustration on  the SimSphere soilevegetationeatmo- 

sphere-transfer   model.  The   design  of   such  meta-models   for 

expensive computer codes with spatially distributed inputs and 

outputs is still  an  open research question (Marrel et al., 2011). 

Nevertheless, to date, none of these studies has  reported on  a 

key  question: the link   between UA/SA and spatial scale   issues. 

Indeed, in  many environmental models, the end users are  inter- 

ested in the aggregated value of some spatially distributed model 

output over a  given spatial unit v. In  most cases, the aggregated 

value is just the linear average or the sum of model output over v 

(e.g.,  the average porosity of a block,  the total evapotranspiration 

over a plot of land, etc.).  But Heuvelink (1998) observed that under 

a change of spatial support v, the relative contribution of uncertain 

model inputs to the variability of the aggregated model output may 

change. Hence, in a spatial model, the results of UA/SA depend on 

the spatial scale  of the problem. Unfortunately, the notion of spatial 

scaledmade up  of the scale  triplet (Blo€schl  and Sivapalan, 1995): 

spatial extent, support, spacingdis mostly ignored in  the mathe- 

matical frameworks of  SA methods.  Among scale  issues, the so- 

called change of support problem has  long  been discussed in  the 

field of geostatistics: we  know that the variance of an  uncertain 

spatially distributed quantity depends on the spatial support v over 

which it  is  aggregated.  Up  to our  knowledge, only  Saint-Geours 

et al.  (2012) tried to translate this problem into the context of 

variance-based GSA. On  a  simple model, they showed how the 

sensitivity indices of model inputs depend on the spatial support v 

over which the model output is aggregated; denoting with p(v) the 

ratio of sensitivity indices of spatially distributed model inputs vs 

non-spatial inputs, they found a relation of the form p(v)  ¼ vc/jvj, 

with jvj the surface area of v and vc  some critical value. When the 

model output is aggregated on a spatial support of area jvj smaller 

than vc,  the ratio p(v)  is  larger than  1,  which means that the 

sensitivity indices of  spatially distributed inputs are  larger than 

those of non-spatial inputs, and thus that spatially distributed in- 

puts contribute more to  the variance of model output than non- 

spatial  inputs.  On   the  contrary,   if  jvj  is   larger  than  vc,  then 

p(v)      1, and the non-spatial inputs are  key contributors to model 

output variability. However, their work was mainly theoretical, and 

their results only   valid   under restrictive assumptions of  inputs 

stationarity  and  model  additivity.  In   particular,  they  did   not 

examine if their conclusions would hold on  a  real,  complex test 

case. 

The  aim  of this paper is thus to  investigate, on  an  applied case 

study, how the results of  an  uncertainty and sensitivity analysis 

interact with a change of spatial support of the model output. We 

discuss this question through a complete case  study on a model for 

economic assessment of  flood risk  management  policies, named 

NOE (Saint-Geours et al., 2013). The NOE model has  both spatially 

distributed inputs (topography,  map of  water heights, land use 

map, etc.), and spatially distributed outputs (avoided flood damage 

indicators). A number of recent studies already performed UA/SA of 

flood damage assessment models, in whole or in parts (Apel  et al., 

2008). Most of these studies are limited to the forward propagation 

of uncertainty (UA), the perimeter of which can  vary  from a single 

module of the complete modelde.g., land use (Te Linde et al., 2011), 

hydraulic simulation (Bales  and Wagner, 2009), estimation  of 

damages (Koivuma€ki et al., 2010)dup to the entire modelling chain 

(de  Kort  and Booij,  2007; Qi and Altinakar, 2011). Fewer publica- 

tions address the issue of ranking the various sources of uncertainty 

with SA (de  Moel  et al.,  2012). In  particular, Saint-Geours et al. 

(2013) already carried out   VB-GSA on  the NOE model over the 

Orb Delta,  France. However, in this study, they disregarded spatial 

scale  issues: sensitivity indices were only computed with respect to 

the aggregated value of model output over the entire floodplain, 

without examining model behaviour at  finer spatial scales. There 

are at least two motivations for an in-depth study of this issue. First, 

it would bring a better understanding of the behaviour of the NOE 

model, by  identifying the key  input variables at  different spatial 

scales. Next,  analysing the uncertainty and sensitivity of NOE model 

outputs at  different spatial scales would provide the model end- 

users (i.e.,  local  water managers) with a more complete informa- 

tion and may help them in their decision making. 

In order to demonstrate how UA/SA can bring a new insight into 

scaling issues in spatial modelling, we perform a multi-scale VB-GSA 

of the NOE model. Our  idea is to compute variance-based sensi- 

tivity indices with respect to  the NOE outputs aggregated over 

different spatial supports v. We  will  try  to  answer the following 

questions: what is the uncertainty of the NOE output, at  different 

spatial scales? What are  the key  input variables that explain the 

largest fraction of  the variance of  the NOE  output, at  different 

spatial scales? How does the uncertainty of the NOE output, and the 

related sensitivity indices, vary  in space, at a fixed spatial scale? 

The  next section (Section 2)  starts with some relevant back- 

ground information on the selected study site  (the Orb Delta), and 

presents the NOE model. Next,  we  display a brief  introduction to 

the concepts of VB-GSA, and portray into details how we simulated 

the uncertainty sources in the NOE model, propagated them with 

Monte-Carlo simulations, and how we  computed multi-scale vari- 

ance-based  sensitivity indices (Section 3).  The  results  consist of



 

 

 
 

Fig. 1.  The  study site is located in He  rault de partement, south of France. The  Orb  River flows southward.  Flood risk  management plan includes various structural flood mitigation 

measures. 

both  uncertainty  maps  and  sensitivity maps  that  allow us   to 

identify the key  input  variables in  the NOE  model at  different 

spatial scales (Section 4). We discuss the main outcomes and limits 

of our  study in Section 5. 

 
2.  The  NOE model, study site and data 

 
The   NOE  model and  its   implementation on   the Orb   Delta, 

France, were already fully described by Saint-Geours et al. (2013). In 

this section, we only  reproduce the key points that are  necessary to 

the understanding of our  present work. 
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Fig.  2.  Simplified flowchart of the NOE model.

 
2.1.  Study  site:  the  Orb Delta 

 

hydraulic, GIS and economic modules.1 

 

The  main model output is

 
The Orb Delta is a catchment of 63 sq. km located in the south of 

France,  surrounding a  15  km  reach of  the Lower Orb  River  from 

Be ziers city  to the Mediterranean sea  (Fig. 1). It has  a typical Medi- 

terranean subhumid regime, with an  annual maximum discharge 

ranging from 100 to 1800 m3/s from year to year at the main gauging 

station on the Delta (Tabarka gauge, Fig. 1). The Orb Delta includes 

the cities of Be ziers, Portiragnes, Sauvian, Se  rignan, Valras-Plage and 

Villeneuve-le s-Be  ziers. It is covered for one third by cultivated land. 

About 16,000 people live permanently in the flood prone area, which 

also hosts 774 companies and 30 seaside campgrounds, gathering up 

to  100,000 tourists in summertime. In December 1995, a flooding 

event with a peak discharge of 1700 m3/s at Tabarka gauge caused 

around 53 MV in material losses (Erdlenbruch et al., 2008). In 2001, 

local  authorities reacted and launched a  flood risk  management 

project, mainly based on  various structural mitigation measures, 

including dyke strengthening around urban areas, restoration of sea 

outfalls and channel hydraulic improvement (SMVOL, 2011). Avail- 

able data on the area include aerial photographs, a 5 m-cell-size DTM 

built from photogrammetry, the annual maximum flow series from 

1967 to 2009 at the Tabarka gauge (referred to as the AMFS dataset), 

and various spatial datasets on  buildings, cultivated land and eco- 

nomic activities. 

 
2.2.  The NOE model 

 
The NOE model is used to estimate the flood damage reduction 

which will   result from the implementation of  flood mitigation 

measures on  the Orb  Delta.   It  is  a  combination of  hydrological, 

the  Expected  Annual Avoided Damage (DEAD [V/year]) over the 

floodplain, that is, the amount of annual expected flood losses that 

will be reduced thanks to the flood mitigation measures. We briefly 

present here the main processes of the NOE model (Fig. 2). 
 

 
2.2.1.   Flood hazard modelling 

The  DEAD indicator is computed from a range of six  potential 

flood events of various magnitudes, denoted by e1ee6, with 

increasing maximum discharges q1eq6 (Table 1). These flood events 

include both historical floods (e3, e4), and floods which were simu- 

lated with a rainfallerunoff model (e1, e2, e5, e6). Their  annual ex- 

ceedance frequencies f1ef6 were computed from the AMFS dataset, 

which was fitted by a Gumbel dischargeefrequency curve. Next,  for 

each flood event ei, i ¼ 1,…,6, the water flow over the floodplain was 

simulated using Isis  Flow,  a  1D  step-backwater hydraulic model 

(ISIS, 2012). These flow simulations were then combined with the 

DTM, to produce maps of maximum water depths over the Orb Delta. 

These computations were carried out   both before and after the 

enforcement of flood mitigation measures. 
 

 
2.2.2.   Flood exposure modelling 

To carry out  flood exposure analysis, a detailed land use  geo- 

databasedreferred  to  as  the assets mapdof  the entire Orb  Delta 

was built from various data sources (Fig. 3).  Four types of flood- 

 
 

1  
It must be emphasized that the NOE model is just one possible implementation 

of  a wider, more generic framework for  flood damage assessment, that has been 

used by many authors on various floodplains around Europe (Merz et al.,  2010).



 

Table 1 

Main characteristics of flood events e1 to e6: maximum discharge q at Tabarka gauge, 

annual exceedance frequency f, and corresponding return interval T ¼ 1/f. 

Flood event description                 q [m
3
/s]          f                         T [years] 

e1             Smallest event
a                                        

1018               0.2                             5 

e2              10-Year design flood                     1287               0.1                          10 

e3              Historical flood (Dec. 1987)          1696               0.0333              30 

e4              Historical flood (Jan.  1996)           1882               0.02                  50 

e5              Large design flood                        2133               0.01                100 

e6             Extreme flood
b                                        

3000               0.001            1000 

a  
Event e1 is supposed to be the smallest flood event for  which damages occur. 

b  Event e6 would result in an over-topping of all  existing flood-control dykes. 

 
exposed assets are  considered: private housing units (individual 

buildings), plots of cultivated land, campgrounds, and other eco- 

nomic activities. The  assets map describes each asset by  an  indi- 

Table 2 

Content of the assets map. 

Type of assets                                    # objects                 Total surface [sq.  km] 

Private housing                                  16,436                        1.37 

Cultivated land                                       707                      23.36 

Campgrounds                                          111                        1.02 

Other economic activities                       691                        0.62 

 

 
2.2.4.   Computation of the  expected annual avoided damage 

The  expected annual damage (EAD [V/year]) is a common in- 

dicator used to measure  potential  flood damages over a  given 

floodplain  (Arnell, 1989). It  can  be  defined as  the mathematical 

expectation of flood damages D(e) over the space of possible flood 

events e. Using the annual exceedance frequencies f of flood events,

vidual polygonal object in  a GIS vector layer at  the 1:5000 scale 

(Table  2), and each object is further characterized by its subtype, its 

 

we  have: EAD ¼ 

Z 1 

Dðf Þdf  (resp. EAD0  ¼ 
0 

Z 1 

D0 ðf Þdf ). This integral 
0

ground floor elevation, its floor surface area, etc.  Flood  exposure is 

assessed by overlaying the assets map with water depth maps, and 

by   computing the  average  water  depth  over  each  individual 

polygonal object. 

 
2.2.3.   Damage estimation 

In this study, flood damage assessment only  includes direct and 

tangible monetary lossesdMerz et al. (2010) list the other types of 

flood-induced damages that  should be   considered  for   a  more 

complete analysis. For each flood event e1ee6, the total damage cost 

before (resp. after) the enforcement of flood mitigation measures is 

denoted by  Di  (resp. D0 ), and DDi ¼ Di    D0   denotes the damage
 

can  be approximated with a simple trapezoidal ruledamong other 

integration methodsdfrom the range of flood events e1ee6  with 

annual exceedance frequencies f1ef6  and corresponding damages 

D1eD6  (resp.  D0    to  D0  ). In the present study,  the main output of 
1             6 

interest is the reduction of potential flood damages that will  result 

from the enforcement of  flood mitigation measures on  the Orb 

Delta,  i.e., the variation: 
 

DEAD ¼ EAD    EAD
0                                                                                                          

(1) 
 

One  key  point is that the DEAD indicator [V/year] can  be  dis- 

played at different spatial scales. It is first computed for each indi-

i                                                  i                                                                   vidual asset over the floodplain, and mapped, but it  can  also  be
reduction brought by the mitigation measures. Damage estimates 

are  computed for  each flood-exposed asset from flood exposure 

data, using a set  of 94 depthedamage curves, one for each combi- 

nation of  type, subtype of assets and season of flood occurrence 

(SMVOL, 2011). These depthedamage curves link the average water 

depth over the asset with a value of damage per  unit area of floor 

surface [V/sq.m.]dfor cultivated land, private housing, and camp- 

groundsdor with a total value of damage [V]dfor other economic 

activities.  As  a  coarse  approximation,  flood  velocity and  flood 

duration were considered to be homogeneous over the entire study 

area. 

summed up  over any  spatial unit v (e.g., an  administrative district 

within the floodplain), or even aggregated over the entire Orb Delta. 

 

3.  Methods 

 
3.1.  Overview 

 
Multi-scale VB-GSA of  the NOE model aims to  assess the un- 

certainty  of   the  DEAD  indicator,   to  compute  the  associated 

variance-based sensitivity indices, and to investigate: i) how these 

uncertainty and sensitivity measures depend on the spatial support

 

 
 

Fig.  3.  The  assets map describes each asset by  an  individual polygonal object in  a GIS vector layer at the 1:5000 scale.
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Propagating 

uncertainty 

(Monte-Carlo  simulation) 
1 

Table 3 

Sources of uncertainty in the NOE model. A set of nj random realisations is sampled 

for  each uncertain input Xj. 

Model input                  nj
a                      

Model of uncertainty

Modelling 

uncertainty 

on model inputs 

 
- flood frequencies 

- water depth maps 

- assets map 

- depth-damage 

curves 

 
 

 
NOE model 

Inputs                                Outputs 

 

 
 

3 
Estimating 

variance-based 

sensitivity indices 

Resulting 

uncertainty 

on model outputs 

 
- ΔEAD maps 

- aggregated ΔEAD 

over different 

spatial units 

X1                     Exceedance 

frequencies 

 

 
X2                     Water depth 

maps 

1000  Confidence interval on 

the fitted Gumbel 

dischargeefrequency 

curve. 

 

100  Errors in hydraulic 

modelling are not 

taken into account; 

Measurement errors 

in DTM  are modelled 

by  a Gaussian noise 

with spatial 

auto-correlation.

 
Fig.  4.  Flowchart for  multi-scale VB-GSA of the NOE model. 

 
of the DEAD indicator; and ii) how they vary  in  space, for  a fixed 

output scale.  In  the first step of  the analysis (Fig.  4),  sources  of 

uncertainty in  the NOE model are  identified and described in  a 

probabilistic  framework,  and  a   set   of   random  realisations  is 

sampled  for   each  uncertain  model  input  (Section 3.2).   Next, 

pseudo-Monte Carlo  simulations are  used to explore the space of 

 

X3                     Assets map                    1000             Misclassification of 

land use types: confusion 

matrix; 

Variability of ground floor 

elevation of assets: empirical 

pdf from field survey; 

Surface area of polygonal 

objects: random multiplying 

coefficient drawn from uniform 

pdf.

input uncertainty and propagate uncertainty through the  NOE 

model (Section 3.3).  Variance-based sensitivity indices are   then 

computed to rank the uncertain model inputs, depending on  their 

contribution to  the variance of  the DEAD indicator (Section 3.4). 

X4                     Depthedamage 

curves 

1000 For  each depthedamage 

curve, random multiplying 

coefficient εk  drawn from 

uniform pdf U ½0:5; 1:5 ; εk 

are independent.

These steps were already presented in a single-scale VB-GSA of the 

NOE model (Saint-Geours et al., 2013), thus we only  reproduce here 

the key  elements that are  necessary to  the understanding of the 

present work. We then go one step further, by computing sensitivity 

indices in a multi-scale framework (Section 3.5):  sensitivity indices 

are  computed with respect to the aggregated value of  the DEAD 

output indicator over cells  of different sizes.  For each cell  size,  we 

compute both uncertainty maps and sensitivity maps, that allow us 

to discuss the relation between VB-GSA and spatial scale  issues. 

 
3.2.  Modelling sources of uncertainty 

 
The first step of the analysis is to list the uncertainty sources in 

the NOE model, then to  describe and simulate them in a probabi- 

listic   setting,  using  residual  analysis, external  data  or   expert 

opinion. Four uncertain inputs are  considered (Table  3):  the flood 

annual exceedance frequencies (X1), the assets map (X2), the water 

depth maps (X3),  and the depthedamage  curves (X4).  A set   of 

nj  ¼ 100e1000 random realisations is sampled for each of them. 

 
3.2.1.   Uncertainty in flood  annual  exceedance frequencies (X1) 

Uncertainty in  the computation of  flood annual  exceedance 

frequencies fi  may arise from stream gauge measurement errors, 

non-stationarity of hydrologic series due to climate change, but also 

from the  choice of  an   extreme  value distribution  to  fit a  dis- 

chargeefrequency relationship to the AMFS dataset, and from the 

statistical uncertainty of this fit.  Here, only  the latter uncertainty 

was taken into account, which we  acknowledge is only  a small part 

of the overall uncertainty in fi. Empirical confidence bounds (Fig. 5) 

were computed around the nominal Gumbel curve fitted on  the 

AMFS dataset (Maidment, 1993), and a  set  of  n1   ¼ 103  Gumbel 

curves were then randomly sampled from the joint distribution of 

the fitted parameters. From this set  of curves, n1  ¼ 103 exceedance 

frequencies  fi,  and  associated return  intervals  Ti   ¼  1/fi,   were 

generated for each flood event ei, i ¼ 1,…,6  (Fig. 6), with an  addi- 

tional white noise following normal distribution N ð0; s2 Þ with s2
 

the empirical standard deviation of residuals. 

a  
One can note that the number nj of random realisations is not the same for  each 

model input: these numbers were chosen under constraints of CPU time and storage 

space. 

 

 
 
3.2.2.   Uncertainty in water depth maps (X2) 

An  in-depth  investigation of  the uncertainties arising in  hy- 

draulic modelling goes  well  beyond the scope of the present study. 

Following Bales  and Wagner (2009) and Koivuma€ki et al. (2010), 

who suggest that  high-resolution topographic data is  the most 

important input for accurate inundation maps, we  focused on  one 

single source of  uncertainty in  the water depth maps: the mea- 

surement and interpolation errors in the 5 m-cell-size DTM. These 

errors are  spatially auto-correlated and are  modelled by a Gaussian 

2D  random field with an  exponential variogram model, whose 

parameters were determined from a set  of 500  control field points 

(sill  17  cm,  range 500  m,  nugget 0.02).  A set  of n2  ¼ 100  random 

realisations  of  the  random error field is  then  generated using 

SGeMS  software  (Remy et al.,  2009), and added as  noise to  the 

nominal water depth maps. 

 

 
3.2.3.   Uncertainty in the  assets map  (X3) 

Three uncertainty  sources in  the assets map are  considered: 

misclassification of polygonal objects, measurement  errors in  the 

surface area of assets, and variability of the ground floor elevation 

of assets. We  first built a confusion matrix (Fisher, 1991), based on 

expert opinion, to account for  possible misclassifications in  the 

assets map (Table 4). Next,  due to digitalising errorsdabout 0.3 mm 

at the map scale  (Hengl, 2006), the surface area of polygonal objects 

in  the assets map is  uncertain; we  thus multiplied the nominal 

surface of  each asset by  a  corrective random  coefficient in  ±6% 

(uniform pdf).  Third,  the empirical pdf  of ground floor elevation of 

assets was estimated from a field survey (100 sampled assets, de- 

tails  given in  Saint-Geours et al. (2013, Fig. 7)).  A total number of 

n3  ¼ 1000 randomized assets map was sampled, combining these 

three sources of uncertainty.



 

  
 

 

 

 

 

 
        

 
Table 4 

Confusion matrix of the assets map.

 

 
 
 

 
 
 
 
 

 
 

 
Fig.  5.  AMFS dataset from 1967 to 2009 and fitted Gumbel distribution (solid line) 

with 95% confidence bounds (dashed lines). 

 

Land use type Number 

of sub-types 

Probability of confusion 

between sub-types 

Private housing 1 No  confusion. 

Cultivated land 15 25% chance of confusion 

  between durum wheat 

  and bread wheat; 10% 

  chance of confusion 

  between colza, maize, 

barley and sunflower; 

  25% chance of confusion 

  between permanent and 

  temporary grassland. 

Campgrounds 18 No  confusion. 

Other economic 60 0.17%  chance of belonging 

activities  to each other class of economic 

  activities. 

 
 
3.3.  Propagating uncertainty through the  NOE model 

 
Once  each model input has  been sampled, uncertainty is 

propagated through the NOE model using Monte Carlo simulation. 

Numerous  pseudo-Monte  Carlo   sampling schemes  have  been 

suggested in the UA/SA literature to efficiently estimate the share 

of  output  variance that  is  explained by  each uncertain  model 

input. In this study, we  choose to use  the Sobol'  sampling scheme 

(Sobol',  1993), also  referred to as the pick and  freeze  scheme, based 

on  the use  of LP-t quasi-random sequences which are  known to 

increase the convergence rate of  estimates of  high-dimensional 

integrals    (Sobol',     1967).    Total     sample   size     is     equal   to 

N ¼ n $ (p þ 2) ¼ 24,576 where p ¼ 4 is the number of inputs and 

n  ¼ 4096 is  the base size  of  LP-t quasi-random sequences; it  is 

chosen to be large enough to obtain a satisfactory level  of accuracy 

for  the  sensitivity indices estimates. The  four   uncertain model 

inputs X1eX4   are  assumed to  be  mutually uncorrelated. The  ith 

line     of    the   quasi   Monte   Carlo    sample   is    an    input   set

ðX
ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ

 
 
 
 
 

 

 
Fig. 6.  Empirical distributions of return intervals Ti for flood events e1ee6. Sample size 

n1  ¼ 1000. 

 
3.2.4.   Uncertainty in depthedamage curves  (X4) 

Uncertainty in depthedamage curves has  been extensively 

discussed in previous flood damage assessment studies (Koivumaki 

et al., 2010; Merz et al., 2010; de  Moel  and Aerts,  2011). Here, we 

represent the uncertainty on the set of 94 depthedamage curves by 

a  uniform pdf,  defining a     50% to þ50%  range around nominal 

curves (Fig.  7).2   Random depthedamage  curves associated with 

each  land  use   type  and  subtype  are   sampled  independently3
 

(sample size  n4  ¼ 1000). 

 
 
 

2  
The  [   50%, þ50%] uncertainty range is chosen based on expert opinion. It is in 

line with Torterotot (1993) who studied the uncertainty on depthedamage curves 

for  private housing and displayed coefficients of  variation around 40%.  Other au- 

thors could choose a much larger range (Merz et al.,  2010). 
3  Note that this model of uncertainty is different from that of de Moel and Aerts 

(2011), who sampled randomized depthedamage curves collectively for  all types of 

assets, from a single p-value. Saint-Geours (2012,  p.172)  explains how the hy- 

pothesis  of   independence  or  homogeneity of   the depthedamage  curves  over 

different types of  assets will induce more or less cancelling-out effects at aggre- 

gated scales. 

1  
; X

2  
; X

3  
; X

4  
Þ  where X

j     
is  sampled with replacement  from 

the set  of  nj  pre-generated random realisations of  the jth model 

input. Note that with such large value of n, the same realizations of 

a given input Xi can  be  sampled several times during the experi- 

ment. The  NOE model is then run for  the N input sets,  for  a total 

CPU time of 24  h on  a 6-nodes cluster computer. 

 
3.4.  Variance-based sensitivity indices 

 
Variance-based total-order4 sensitivity indices of each uncertain 

model input with respect to any output of interest can be estimated 

from the set  of  N model runs, using ad  hoc  estimators  given by 

Lilburne and Tarantola  (2009).  These sensitivity indices measure 

the contribution of a given model input (and its  interactions with 

other inputs) to the variance of a given model output. More pre- 

cisely,  let  us  consider some model Y  ¼ f(X1,…,Xp) with p  model 

inputs. Model inputs Xj are  treated as  independent random vari- 

ables; hence the model output Y  is  also  a  random  variable. The 

variance-based total-order sensitivity index of Xj, denoted by  STj, 

measures the share of total output variance var(Y) that is explained 

 

 
4  

In  this study, we computed both first-order and total-order sensitivity indices, 

but we deliberately chose to display only total-order  indices for   the following 

reasons: i) preliminary results showed that first-order and total-order indices were 

close, indicating that interactions between model inputs do not contribute much to 

model output  variance, ii)   empirical confidence bounds  of   total-order  indices, 

computed by  bootstrap using 100 replicas, proved to be narrower than that of first- 

order  indices, and  iii)   first-order  and  total-order  indices displayed the  same 

behaviour with respect to change of spatial support, which is the focus of our study.
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with respect to the sum of the DEAD indicator over ck, from the 

set  of N model runs; 

2.  the set  of sensitivity indices fSTa ðc  Þg over all the cells  ck buildsj      k

a grid  map that we  denote by 

size a for the  jth model  input. 

STa  and call sensitivity map  of cell

 

Following this procedure, we obtain 4     4 ¼ 16 sensitivity maps 

STa . Next, in order to compare the sensitivity maps STa obtained for
 

j                                                                                                                             j

-50% various cell sizes a, we  summarize each sensitivity map by a single 

scalar measure. For each cell size  a ¼ 0.04,  0.16,  0.64,  and 2.56  sq. 

km.,  and for the jth model input, we  calculate the average value of 

the sensitivity map STa , and denote it by STa :
0.0                 0.5               1.0                1.5                2.0                2.5 

water depth [m] 

j                                                     j 

 

1    
Ga

 
Fig.  7.  Nominal depthedamage  curve for  private housing (solid line) with a  [   50%; 

þ50%] uncertainty range (dashed lines). 

ST
a 

Ga
 

X 
ST

a 
ðck Þ                                                                                                         (3) 

k¼1

 
by model input Xj and by the interactions of Xj with the other model 

inputs. It is defined as 

h                    i 

in which Ga denotes the total n   umber of cells  ck in the grid  map of 

cell size  a. This average index STa  is scale-dependent: it measures 

the average contribution of the jth model input to the variance of 

the DEAD indicator aggregated over small cells  of area a.
E var Y 

 
X 

j
 

Finally,  to complete the analysis, we  also  compute sensitivity
STj  ¼ 

                     e  
 

varðY Þ 
(2) 

 

indices STj of model inputs X1eX4  with respect to  the aggregated 

value of the DEAD indicator over the entire floodplain (surface area

in which X 
j 

Sensitivity 
e ¼ ðXk Þksj  denotes the set  of all model inputs but Xj. 

x ST 2 [0;1] is the expected residual part of output
 

a ¼ 63 sq. km.).

inde       j

variance if all model inputs but Xj were fixed. The sum of total-order 

sensitivity indices is  always more than 1.  Total-order sensitivity 

indices STj can be used to identify the model inputs that account for 

most of the model output variability, and they may lead to  model 

simplification by identifying model inputs that have little influence 

on the model output variance. Please refer to Saltelli et al. (2008) or 

Plischke (2012) for more details on the definition and estimation of 

variance-based sensitivity indices. 

 
3.5.  Multi-scale VB-GSA 

 
To investigate scale  issues in  the NOE model, we  carry out  a 

multi-scale  analysis  by   computing  sensitivity  indices  STj   with 

respect to the aggregated value of the DEAD indicator over different 

spatial supports of increasing area. 

First,  for  each of the N ¼ 24,576 simulations, the NOE output 

datadi.e., the DEAD indicator computed for  each individual asset 

over the floodplaindis transformed into a number of grid  maps of 

increasing cell sizes: a DEAD grid  map is obtained by computing at 

each cell ck of the grid  the sum of the DEAD indicator over all assets 

(or parts of assets) contained in the cell.5 We consider four  different 

grid  maps with cells of 200  m by 200  m, 400  m by 400  m, 800  m by 

800   m   and  1600 m   by  1600 m,  and  corresponding cell   sizes 

a ¼ 0.04,  0.16,  0.64  and 2.56  sq. km,  respectively. Fig. 8 shows the 

DEAD grid  maps produced using the nominal values of  the NOE 

model inputs. 

Then,    grid    maps  of   sensitivity  indices  are    produced   by 

computing total-order  sensitivity indices STj  with respect to  the 

aggregated value of the DEAD indicator at each cell  of the various 

DEAD grid  maps. More precisely, for  each cell  size  a ¼ 0.04,  0.16, 

0.64,  and 2.56  sq.  km,  and for  each model input Xj, j ¼ 1,…,4,  we 

proceed as follows: 

 

4.  Results 

 
4.1.  Uncertainty analysis 

 
Fig. 9 shows a spatially explicit representation of the uncertainty 

on  the DEAD grid  map over the N ¼ 24,576 model runsdcell size 

a ¼ 0.04  sq. km  is taken as an  example. A first map displaying the 

maximum values of  DEAD for  each cell  ck  over all  model runs 

(Fig. 9a)  is compared to the map of minimum values (Fig. 9b).  It 

appears that  for   a  large  number  of  cells,   the  minimum and 

maximum values of DEAD have opposite signs, which we  interpret 

to mean that, due to  the uncertainties in the NOE input data, it is 

impossible to assess with certainty whether these areas will benefit 

or suffer from the implementation of the flood mitigation measures 

on  the Orb Delta. 

By comparing these uncertainty maps with that of land use  on 

the study site  (Fig. 3), it can  be noted that the cells  with uncertain 

sign  are  mostly covered with cultivated land and show relatively 

small values of positive or negative DEAD. On the contrary, for cells 

ck that include urban areas, campgrounds and other economic ac- 

tivities, the DEAD indicator proves to keep a constant sign  over all 

model runs, with larger positive or negative values. Hence, in spite 

of the numerous uncertainties that were considered in the analysis, 

we  can  conclude that the flood risk  management plan will  almost 

certainly result in a reduction of the expected annual damages on 

urban areas, and almost certainly result in an  increase of damages 

on  campgrounds. In addition, cells  ck  that include urban areas or 

campgrounds show large standard deviations and low  coefficients 

of variation of the DEAD indicator (Fig. 9c and d), while cells  only 

covered with cultivated land have small standard deviations but 

larger coefficients of variation. 

Table 5 summarises the outcomes of the uncertainty analysis for 

floodplain: it  gives  the

1.  at each cell ck of the DEAD grid  map of cell size  a, we  compute 

the total-order sensitivity index STa ðc  Þ of the jth model input 

each cell  size  a,  as  well  as  for  the entire 

average value (over the cells  ck  of  size  a)  of  the mean, standard
j      k                                                                         

deviation and coefficient of variation of the DEAD indicator over 

N ¼ 24,576 model runs. The mean value and standard deviation of
 

5  
If an asset has a large surface area and overlaps many cells of the grid, then the 

value of  the DEAD indicator over this asset is  shared out among the cells in pro- 

portion to the overlaped areas. 

the DEAD indicator naturally increase with the surface area a of the 

cells  over which it is aggregated, ranging from 3.731 ± 1.380 kV/ 

year for  smallest cell  size  to 5459 ± 1110 kV/year for  the entire
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Fig.  8.  DEAD grid maps for  nominal values of the model inputs, cell  size  a ¼ 0.04 sq.  km  (bottom left), a ¼ 0.16 sq.  km  (top left), a ¼ 0.64 sq.  km  (top right) and a ¼ 2.56 sq.  km 

(bottom right). 
 

floodplain. However, if we  consider a  dimensionless  measure  of 

variability  such  as   the  coefficient of  variation,  we   observe  a 

different behaviour: the coefficient of variation of the DEAD indi- 

cator decreases with the surface area of  the cells.   This  finding 

corroborates the idea that some spatial averaging-out effects result 

in a reduction of the relative uncertainty when the DEAD indicator 

is aggregated over a large spatial unit. 

 
4.2.  Sensitivity analysis 

 
Fig. 10  displays the sensitivity maps STa  for  each model input 

and for both the smallest and largest cell size a. Spatial distribution 

of sensitivity indices proves to be heterogeneous. By comparing the 

first sensitivity maps (a ¼ 0.04  sq. km)  with the map of land use  on 

the study site  (Fig. 3), we  can  identify two different types of areas: 

urban areas and cultivated land. On  the cells  that include urban 

areas, the assets map and the hazard maps display smaller sensi- 

tivity  indices than  on   the  cells   covered with  cultivated  land. 

Correspondingly, depthedamage curves and flood exceedance 

frequencies have larger sensitivity indices in  urban areas than on 

cultivated land. This finding might be explained by comparing the 

characteristics of depthedamage curves for private housing assets 

and agricultural assets. In  particular,  depthedamage  curves  for 

cultivated  land  are   simple  step  functions  with  a   number   of 

threshold water levels: when water levels are  uncertain, they may 

induce a jump  below or above these thresholds. These jumps might 

explain that the water depth maps have a larger contribution to the 

variance of the DEAD indicator for  cultivated land than for  urban 

areas. 

In addition, we  can  investigate how a change of spatial support 

modifies the sensitivity indices in the NOE model, by comparing the 

sensitivity maps STa for cell sizes a ¼ 0.04 sq. km and a ¼ 2.56 sq. km 

(Fig. 10 top and bottom, respectively). This comparison clearly sug- 

gests that the ranking of uncertainty sources depends on the surface 

area of the cells.  The sensitivity indices of the spatially distributed 

inputs (i.e., the water depth maps and the assets map) decrease from
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Fig.  9.  Uncertainty on  the DEAD grid map of cell  size  a ¼ 0.04 sq.  km  over N ¼ 24,576 model runs: maximum values (a),  minimum values (b),  standard deviations (c),  and co- 

efficients of variation (d)  at each cell  ck. Dashed cells  indicate that the sign of DEAD over the cell  changes for  more than 20% of model runs. 

 

a  ¼  0.04  to  a  ¼  2.56  sq.  km,  while the sensitivity maps of  the 

depthedamage  curves and of  the flood exceedance frequencies 

display larger values for cell size a ¼ 2.56 sq. km than for a ¼ 0.04 sq. 

km.  These results offer  empirical evidence of the change of support 

effect on  variance-based sensitivity indices, which was described 

from a  theoretical perspective by  Saint-Geours et al.  (2012): the 

sensitivity indices of spatially distributed inputs decrease with the 

size  of  the spatial support of  model output while the sensitivity 

indices of non-spatially distributed inputs increase. 

To better highlight this change of support effect, Fig. 11 displays 

the average sensitivity indices STa  [Eq. (3)] for each model input Xj 

and each cell  size  a, as  well  as  the sensitivity indices STj for  the 

entire floodplain. From   these average indices, one can  derive a 

ranking of model inputs at  each cell  size: for  example, the assets 

map is ranked 1st  for cell sizes a ¼ 0.05  to 2.56  sq. km.,  while it is 

only  ranked 3rd  for cell size  a ¼ 63 sq. km.  The average sensitivity 

indices of spatially distributed inputs (i.e.,  the water depth maps 

and the assets map) prove to decrease with an increase of the area a 

over which the  model output  DEAD is  aggregated, while the 

sensitivity  indices of  non  spatially distributed  inputs  (depthe- 

damage curves and flood exceedance frequencies) increase con- 

trastingly. For a cell size  a 2 [5,50] sq. km., both spatially and non-



 

j 

ac 

j 

Table 5 Correspondingly,  when a >  ac,  non-spatial inputs contribute the 
a

Descriptive statistics over N ¼ 24,576 simulations: average values  of mean, standard 

deviation (s.d.) and coefficient of variation (c.var.) of DEAD over all  cells ck. Last  line 

gives descriptive statistics for  the sum of DEAD over the entire floodplain (one single 

cell). 

most to model output variance. To test this theoretical relation on 

the NOE model real  case study, we computed for each cell size  a  
the ratio p(a)  of the mean value of average sensitivity indices  

STa  of
 

Cell  size 

a [sq.  km] 

 
Number 

of cells
a

 

 
Av. mean [kV/yr]      Av. s.d.  [kV/yr]      Av. c.var. [%] 

j

0.04               1463           3.7      10
0

 1.4      10
0
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and depthedamage curves X4):

0.16               416             1.3      101                         4.1      100                    247 

0.64               128             4.3      10
1                         

1.2      10
1                      

96

2.56                43               1.3
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 ST
a   

þ  ST
a  

3                                           3                                                               pðaÞ ¼     2              3 (5)
63.00              e           5.5      10 1.1      10                  20 ST

a  
þ ST

a

a  
The  cells ck for  which the mean value of the DEAD indicator over N model runs is 

nulldi.e., some cells on the edge of the study areadwere not considered to compute 

these average values. 

 

Fig. 12 shows that p(a)  decreases with a, in accordance with Eq. 

(4). A least squares regression (R2 ¼ 0.79)  on log-transformed data

points yields an  estimate of the critical cell size  b ¼ 6:72  sq. km.
 

spatially distributed inputs contribute almost equally to  the vari- 

ance of the DEAD indicator. 

In  a  previous  work,  Saint-Geours et  al.  (2012) used  a  geo- 

statistical framework to provedunder restrictive assumptions  of 

inputs stationarity and model additivityda general relation of the 

form: 

 
pðaÞ ¼ ac =a                                                                                           (4) 

 
where p(a)  is the ratio of sensitivity indices of spatially distributed 

model inputs vs  non spatial inputs, a the area of the spatial unit 

over which the model output is  aggregated,  and ac   a  so-called 

critical size which depends both on  the model characteristics and 

on  the pdf  of uncertain model inputs. This critical size  divides the 

range of a into two zones: if a < ac, then p(a) > 1, which means that 

sensitivity indices of  spatially distributed inputs are  larger than 

those of non-spatial inputs, and thus that spatially distributed in- 

puts   are     key     contributors   to   model   output    variability. 

 
 
5.  Discussion 

 
5.1.  Sensitivity analysis and  spatial averaging-out effects 

 
Our first goal  was to identify the main sources of uncertainty in 

the NOE model, at different spatial scales. We  completed this goal 

by performing multi-scale VB-GSA on the Orb Delta case  study. Our 

results indicate that  for  large spatial supports  (e.g.,  the entire 

floodplain), the main source of uncertainty is the uncertain annual 

exceedance frequencies of  flood events, which explain almost a 

third of the variance of the DEAD indicator at the floodplain scale. 

This observation corroborates the conclusions of Apel et al. (2004), 

who  stated  that  reliable extreme  value statistics are   crucially 

important in  flood risk   modelling. Unfortunately,  reducing this 

input uncertainty is  impossible, as  it  would require longer time 

series of maximum discharges at  gauging stations, which are  not 

available.  Besides, we   also   found that for  much smaller spatial

 
 

 
 

Fig. 10.   Sensitivity maps ST
a  

for  each model input Xj, j ¼ 1,…,4,  cell  sizes a ¼ 0.04 sq.  km  (top) and a ¼ 2.56 sq.  km  (bottom).
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study (Fig.  12),  even if  the restrictive assumptions discussed in 

(Saint-Geours et al., 2012) are  not fulfilleddin particular, NOE un- 

certain spatial inputs such as water depth maps or the assets map 

are  not stationary random fields. Based  on  Eq. (4),  we  could esti-

mate   the   critical  area   b ¼ 6:72   sq.   km,   for   which  spatially
 

 
 
 
 
 
 
 
 
 

 

 
Fig.  11.  Average sensitivity  indices ST

a   
with increasing cell  size  a (logarithmic scale) 

for the flood exceedance frequencies (>), the hazard maps (B), the asset map (▫) and 

the depthedamage curves (▵). Points on the right hand side of the plot (a ¼ 63 sq. km.) 

show the sensitivity indices STj with respect to the DEAD indicator aggregated over the 

entire floodplain. 

 
 

supports, the variance of the DEAD output indicator is mainly due 

to the uncertainty on the water depth maps and the assets mapdat 

the smallest investigated scale  (a ¼ 0.04  sq.  km.),  these two un- 

certain inputs explain about 80% of the output variance. 

Hence, our  results offer  clear evidence that it  is impossible to 

establish a fixed and general ranking of the sources of uncertainty 

in spatially distributed models. On the contrary, we proved that the 

ranking of uncertainty sources in the NOE modeldand more 

generally, in any  flood risk  modelddepends on the spatial support 

over which the DEAD output indicator is  aggregated. All  other 

things being equal, the relative contributions of the assets map and 

water depth maps to the variance of the total avoided flood dam- 

ages over a given zone are a decreasing function of the extent of this 

zone. This  can  be  explained by a spatial averaging-out effect: the 

error on water depth maps and the assets map is local, and, if un- 

biased, it is reduced when it is averaged over a large surface area. 

Correspondingly, the relative contribution of non spatially distrib- 

uted inputs (flood exceedance frequencies, depthedamage curves) 

will  increase with the extent of the study area. 

These findings  offer   an  empirical confirmation and a  better 

understanding of the previous results of Saint-Geours et al. (2012). 

They  characterized, from a  theoretical perspective, the link  be- 

tween spatial averaging-out effects and variance-based sensitivity 

indices, and summarized it  by  Eq. (4).  Our  study shows that this 

theoretical relation approximately holds on  the NOE applied case 

 
 
 
 

 

 
 
 

 
 

 

Fig.  12.   Ratio p(a)   with fitted curve p(a)   ¼  ac/a. Least squares  regression  on  log- 

transformed data (R
2  

¼ 0.79) yields an  estimate of  the critical cell  size  ac 

km.
 

distributed inputs (water depth maps, assets map) and scalar inputs 

(flood exceedance frequencies, depthedamage curves) contribute 

equally to the variance of the DEAD indicator. 

In practice, flood risk experts often have to choose a spatial scale 

for the production of output maps, whether they be flood damage 

maps or,  like  in  the present study,  maps of  damage reduction 

brought by a flood risk  management policy. Our  research yields a 

better understanding of the following point: the choice of a given 

resolution (i.e.,  a spatial support for  the aggregation of the flood 

damage indicator) will  determine which sources of uncertainty are 

the most influential. To produce accurate maps of expected flood 

annual avoided damages with an  horizontal resolution finer than 

ac,  one must try  first and foremost to reduce the uncertainty on 

water depth maps and assets map, which are  the key  sources of 

uncertainty on  small spatial supports. On  the contrary, if a flood 

damage assessment model similar to NOE is used to produce esti- 

mates of  total  expected  annual  avoided damages over a  large 

floodplain, then the annual exceedance frequencies of flood sce- 

narios will  most likely  be the key  source of uncertainty. 

 
5.2.  Uncertainty maps and  sensitivity maps 

 
Our  research also  provides an  interesting insight on  how, for a 

fixed output scale,  sensitivity indices vary  in  space. We  demon- 

strated the use of uncertainty maps and sensitivity maps on the Orb 

Delta case  study to  display spatially explicit measures of  output 

uncertainty and sensitivities. 

First,  our  results prove that the uncertainty on  the DEAD indi- 

cator is  not spatially homogeneous. In particular, the sign  of  the 

DEAD indicator is almost certainly constant in some parts of the Orb 

Delta (urban areas: DEAD >  0;  seaside campgrounds: DEAD <  0), 

while in  other areas (those mostly covered with cultivated land), 

the sign  of  the DEAD indicator is highly uncertain. This  spatially 

explicit description of uncertainty brings new information for  the 

model end-user; it is a valuable tool  to discuss what level  of un- 

certainty and what type of uncertainty he  can  tolerate or not.  For 

example, in this case  study, the decision-maker could be especially 

concerned with the absolute standard deviation of the DEAD in- 

dicator: he  would then pay  more attention to urban areas. On the 

contrary, he  could be  worried not so  much about the DEAD stan- 

dard deviation, but rather about the DEAD changing sign: in  that 

case  he  would focus  on  cultivated land. 

To identify which sources of uncertainty contribute the most to 

the variability of  the DEAD maps, we   also  produced sensitivity 

maps STa ,  in  which variance-based total sensitivity indices are 

computed at each cell of a regular grid.  These maps clearly suggest 

that the contribution of the NOE model inputs to the variance of the 

DEAD indicator is  not spatially homogeneous. For  example, the 

sensitivity indices of the water depth maps and the assets map are 

smaller in urban areas than in areas covered with cultivated land. 

Such  different ranking of uncertainty sources from one location to 

another may be  explained by  a  number of  factors, including the 

main land use  type at  that location, the shape of  the associated 

depthedamage  curves, the average water depth at that location, 

etc.  Even  if we  did  not explore this point in depth, the sensitivity 

maps clearly appear to  be  promising tools to  better explore the 

behaviour of spatial models. In particular, an interesting question is 

how to summarize the information contained in a sensitivity map 

into a single scalar measure. In this exploratory study, we  simply 

computed  the  non-weighted  average  STa  ¼ 1=Ga 
P 

STa ðc  Þ   ofj   j      k 
k



 

j 

j                  m 

sensitivity indices defined with respect to the DEAD indicator on 

each cell  ck  of the map. However, we  could design other average 

measures, in  order to answer the various questions of the model 

end-user. For example, if the model end-user is mostly concerned 

with reducing the absolute standard deviation of the DEAD indi- 

cator,  then he  may compute the average of cell-based sensitivity 

indices STa ðc  Þ weighted by the DEAD variance on  each cell ck. On
 

value of  spatial inputs (water depths, assets map) at  that same 

location only.  But non-point-based outputs can  be encountered in 

flood damage assessment models; for  example, the damage on  a 

farm located at  a given point may depend on  the flood intensity 

parameters at this location but also  on  a number of induced dam- 

ages on  crops, warehouses or  infrastructures, related to flood in- 

tensity  parameters  at   other  locations (Bre  mond et  al.,  2013).j      k

the contrary,  if  he   is  more worried with  the  DEAD indicator Another example is that of flood damage assessment for  roads or

changing signs, he  will  calculate the average of cell-based sensi- 

tivity indices STa ðc  Þ weighted by the proportion of DEAD changing j      k 
signs over all  model runs on  the cell  ck.  These various average 
measures would probably give  different conclusions on  the key 

model inputs that drive the uncertainty of the DEAD map at a given 

cell size  a. Another idea could be to build up  on  recent works that 

investigated the issue of defining and computing sensitivity indices 

for a functional or multivariate output. Campbell et al. (2006) first 

suggested  to   use   any   dimension  reduction  technique  such  as 

Principal Component Analysis to  extract a small number of scalar 

components Y(m)   from the multivariate output Y,  then estimate 

sensitivity indices S
ðmÞ  

with respect to each of these scalar com- 

ponents. Lamboni et al.  (2011) applied this approach to  a  time- 

dependent output Y(t),  and further defined generalized sensitivity 

energy supply networks, in which the damage on  one part of the 

network heavily depends on the flood impacts on other parts of the 

network. To our  knowledge, no  study has  investigated the prop- 

erties of  variance-based sensitivity indices with respect to  such 

non-linear  or   non-point-based outputs  of  interest:  the  spatial 

averaging-out effects that we  discussed on the NOE model may not 

hold in these cases. 

 
 
5.4.  On the  use  of SA in environmental modelling 

 
We  would like  to conclude this section by a few  practical com- 

ments on  the outcomes of  sensitivity analysis in  environmental 

modelling. The main reason given in the literature to justify the use
indices  GS  ¼ 

P 
u S

ðmÞ as  a  weighted average of  indices S
ðmÞ , in of SA is to reduce the variability of the model output by identifying

which weights
mu

 j                                                                                                  j 

esent the energy content of each

m  repr indepen- the key  sources of uncertainty.
6  

However,  in  our  experience, this

dent scalar component Y(m)dsee  also  Gamboa et al.  (2013) for  a 

more formal definition of  these generalized indices. It should be 

possible to adapt these approaches to a spatially distributed output, 

with  particular attention  being paid to  finding an   appropriate 

dimension reduction technique. 

 
5.3.  Limits 

 
It should be  noted that our  work is based on  hypotheses that 

may limit the strength of some of its results. 

First, like in any  UA/SA study, some sources of uncertainty were 

identified but not taken into account in  the sensitivity analysis of 

the NOE model, and for those that were considered, the uncertainty 

modelling and  sampling  may be   open to dispute. Among the 

ignored sources of uncertainty, we  should at  least mention: i) the 

choice of flood events ei, their number and their characteristics, and 

ii)  the errors in  hydraulic modelling, which are  extensively dis- 

cussed in  the literature (de  Rocquigny et al.,  2010). Another key 

source of uncertainty is that the state of the whole system under 

study (land use,   hydrologic and hydraulic characteristics of  the 

floodplain, etc.)  is assumed to be  fixed through the length of time 

over which the flood risk  management plan is evaluated (typically 

30e50  years). Relaxing this hypothesis  would open a number  of 

new research questions, and may even challenge the very defini- 

tion of the EAD and DEAD indicators. 

Next, we focused in this study on a spatially distributed model in 

which the modeller's interest is in the sum of model output over a 

given spatial support (here, the total DEAD over a spatial unit). We 

know that we  would get similar results with the mean of model 

output over a given spatial support, as  variance-based sensitivity 

indices are  invariant under linear transformation of the output of 

interest [Eq.  (2)].   This   is  probably the  most  common case   in 

spatially distributed  modelling: other  examples of  such linear 

outputs of interest are  the average porosity of a piece of soil, or the 

total rainfall over a catchment. However,  some non-additive out- 

puts of interest could also be considered, such as the maximal value 

of model output over a spatial unit (e.g.,  maximal pollutant con- 

centration over a lake),  or  the percentage of a zone for  which the 

model output exceeds a  certain threshold. We  also  focused on  a 

point-based model, i.e., a model for which the computation of the 

model output (flood avoided damages) at  some location uses the 

goal is often difficult to reach because reducing the variability of the 

key model inputs may be impossible. Nevertheless, SA brings some 

other invaluable outcomes. First,  from a practical perspective, the 

most challenging step of an  UA/SA is to identify and describe the 

various sources of uncertainty involved in a modelduncertain in- 

puts, modelling assumptions, etc.  In our  view, this first step is also 

the most instructive for  the modeller. Indeed, by carefully discus- 

sing the nature of uncertainty in his model, the modeller will be led 

to foresee problems that he  ignored so far and may come up  with 

new ideas. For example, in the NOE model, investigating the nature 

of uncertainty in  the assets map was a strong incentive to better 

formalize the spatial overlay procedure that is used to assess flood 

exposure (Saint-Geours, 2012). Next,  SA also offers the opportunity 

to better understand the behaviour of each submodel of a complex 

modelling chain, and to promote a  shared view of  uncertainty 

treatment with all  the different partners involved in  a modelling 

project. Finally,  SA has  also  proven its  worth as  an  aid  in  better 

understanding the limits of a model, by giving empirical confidence 

bounds on  the model outputs, and by  helping to  identify some 

particular range of input values in which the model has  an  unex- 

pected behaviour.  These are  essential outcomes that should help 

the modeller to decide what use  can  be  done of the model and to 

what extent he  can  draw firm conclusions and recommendations 

on  the basis of the model outputs. 

 
 
6.  Conclusions 

 
This  work was carried out  with a view towards promoting the 

use  of sensitivity analysis in model-based spatial decision support 

systems. Based  on a detailed study of the NOE model for economic 

appraisal of  flood  risk   management  policies on   the Orb  Delta, 

France, we  demonstrated  how multi-scale variance-based global 

sensitivity analysis can  give  a  complementary insight on  uncer- 

tainty  propagation  and  scaling issues in  a  spatially distributed 

model. We  built both uncertainty maps and sensitivity maps at 

different  spatial  scales.  From   this  case   study,  we   derive the 

following main conclusions: 

 
 

6  
This rationale is called variance cutting in Saltelli et al.  (2008).



 

1.  The   uncertainty  of  the DEAD indicator,  and the  associated 

sensitivity indices, are  spatially heterogeneous; 

2.  Our  results confirm, on  the NOE test case,  the theoretical con- 

clusions of  Saint-Geours et al.  (2012): the ratio of  sensitivity 

indices of spatially distributed model inputs vs non spatial in- 

puts can  be approximated by the ratio ac/a, where a is the area 

of the spatial support over which the model output is summed 

up, and ac  is a critical size,  specific to each model and each case 

study; 

3.  On the Orb Delta case  study, the critical size is ac  x 6.72  sq. km. 

On a small spatial support (   6.72  sq. km),  variance of the DEAD 

output indicator is mainly due to the uncertainty in  the water 

depth maps and the assets map (spatially distributed model 

inputs). On a large spatial support (>6.72 sq. km), variance of the 

DEAD output indicator is mainly due to  the uncertainty in  the 

annual  exceedance frequencies of  flood events and depthe- 

damage curves (non spatial inputs). 

 
Further research is now needed to extend the reach of our study, 

for instance by exploring the case  of non-linear or non-point-based 

outputs of interest. Another challenging issue is how to  commu- 

nicate clearly to model end-users the outcomes of such a spatial 

uncertainty and sensitivity analysis, and to  turn our  results into 

practical recommendations  to  further  improve the  accuracy of 

flood risk  studies. 
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