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Abstract—In this paper, we present an approximate
algorithm that is able to quickly modify a large
distributed k-nn graph by adding or removing nodes.
The algorithm produces an approximate graph that
is highly similar to the graph computed using a naïve
approach, although it requires the computation of far
fewer similarities. To achieve this goal, it relies on a
novel, distributed graph based search procedure. All
these algorithms are also experimentally evaluated,
using both euclidean and non-euclidean datasets.

I. Introduction

A k-nn graph is a data structure where each element
(called node or vertex) has a link (an edge) to the
k most similar elements of the dataset. Building a k-
nn graph is a time consuming operation while, at the
opposite, analysing it is usually very fast. Therefore, k-nn
graphs are often used for interactive data analytics, like
clustering for example.

In the general case, building a k-nn graph requires the
computation of n · (n − 1)/2 similarities. If the similarity
used is a metric, the triangle inequality can be used to
reduce the number of computations. In any way, building
an exact k-nn graph remains a computationally heavy
process. Therefore, research mainly focuses on building
approximate k-nn graphs, where each node has edges to
the k most similar nodes with a high probability.

In the same way, modifying an existing graph by adding
or removing nodes is a computationally heavy process.
For example, adding a single node requires: 1) to compute
the edges of the new node and 2) to update the edges
of existing nodes. Each new data point thus requires to
compute the similarity between the new point and every
node in the existing graph. This is thus very slow, and
better alternatives that can achieve higher speedups w.r.t.
a naïve approach are truly desirable.

Therefore, in this paper we propose an fast approximate k-
nn graph modification algorithm, which is able to update
a k-nn graph by quickly adding or removing nodes. To
the best of our knowledge, this is the first algorithm

of this kind. Moreover, the algorithm can be run in a
distributed, shared-nothing environment to process very
large, distributed k-nn graphs. Finally, our algorithm is
independent of the similarity measure used to build or
query the graph.

The distributed algorithm starts by partitioning the k-
nn graph using a balanced k-medoids algorithm. This
partitioning is used to improve the nearest neighbour
search based on the existing graph. Indeed, the algorithm
has two main steps to add a new point to the graph:
1) use the distributed graph to search the k nearest
neighbours of the new point and 2) update the graph:
these neighbours are used as starting points to search
existing nodes for which the new point is now a nearest
neighbour. To search the nearest neighbours, inside each
partition the algorithm uses a fast sequential graph based
nearest neighbour search procedure.

The rest of this paper is organized as follows. In Section II
we present existing graph based search algorithms and
graph partitioning algorithms. In Sections III and IV we
show how we add and remove nodes from the distributed
k-nn graph. In Section V we explain the distributed
graph based search algorithm together with the sequential
graph based search procedure we use inside each partition.
The distributed search relies on a k-medoids based
partitioning method that we present in Section VI. In
Section VII we perform an experimental evaluation,
where we perform a parameter study of the algorithm.
Finally, in Section VIII, we present our conclusions and
propositions for future work.

II. Related work

We present here related work in the domain of k-nn graph
building. One important step in our algorithm consists
in searching the nearest neighbours of the new data
point using the existing graph. Therefore, we also present
existing graph based nearest neighbour search algorithms.
Finally, searching the graph in a distributed fashion
requires a specific partitioning of the graph. Hence, we



present here existing graph partitioning algorithms.

A. Graph based nn-search

The nearest-neighbour search problem (NN search) is
formally defined as follows: given a set S of points in
a space M and a so-called query point q ∈ M , find
the closest point in S to q, according to some similarity
metric. The k-nn search is a direct generalization of this
problem, where we need to find the k closest points. A
lot of algorithms exist to find the k nearest neighbours
of a point. They are generally very similar to those used
to build a k-nn graph. However, only a few of them rely
on an existing k-nn graph to find the nearest neighbours
of a query point.

In [6], Hajebi et al. proposed a sequential approximate
NN search algorithm that relies on k-nn graphs. The algo-
rithm, called Graph Nearest neighbour Search (GNNS),
works by selecting initial nodes at random. For each
node, the algorithm computes the similarity between
query point and every neighbour. The most similar
neighbours are selected, and the algorithm iterates until
a depth of search d is reached. It is thus a “hill climbing”
algorithm. The most promising nodes are searched first,
using the similarity between the query point and the node
as a heuristic. It was tested against different datasets.
Without taking graph building phase in account, the
search algorithm achieved a speedup of up to 80 over
linear search, and a speedup of two over randomized
KD-tree.

Dong, the co-author of the paper on nn-descent [5], also
created a software called KGraph [4] which is able to
search the nearest neighbours of a query point using a
precomputed k-nn graph. However, the search algorithm
used by the program was never published.

B. Graph partitioning

As will be shown below, performing a distributed graph-
based nn search requires a specific partitioning of the
data, based on k-medoids clustering. Hence, we present
here related existing graph partitioning algorithms.

The classical definition of graph partitioning consists
in splitting the graph data between partitions, mini-
mizing the number cross partition edges, while keeping
the number of nodes in every partition approximately
even. Multiple algorithms exist to perform this type of
partitioning. In [10], the authors proposed a distributed
iterative algorithm that iteratively swaps the partition
of two nodes to minimize the number of cuts. The
algorithm is heavily based on MPI and requires a lot of
communication between all nodes of the graph. In [3], the
authors proposed and tested a Bulk Synchronous Parallel

(BSP) version of the algorithm which makes it suitable
for shared nothing architectures like Apache Spark. In
[7], the authors proposed a streaming algorithm, that
requires a single iteration to partition the graph. They
experimentally compared various heuristics to assign
nodes to a partition. They found the best performing
heuristic was linear weighted deterministic greedy. This
one assigns each node to the partition where it has the
most edges, weighted by a linear penalty function based
on the capacity of the partition.

As we show in Section V, to improve distributed graph
based search, the partitioning scheme should minimize
the number of steps between any two nodes in the
partition. In this case the partitioning becomes a k-
medoids clustering problem. It is a variation of k-means
clustering, where the centres are points from the dataset.
It also minimizes the sum of pairwise distances, while k-
means minimizes the sum of squared Euclidean distances.
Just like k-means clustering, various algorithms were pro-
posed in the literature to perform k-medoids clustering,
like Partitioning Around Medoids (PAM) [11]. To the
best of our knowledge, the most efficient algorithm for
performing k-medoids clustering is currently the Voronoi
iteration method proposed in [9], which is very similar
to the classical Lloyd’s algorithm used to compute k-
means. However, these algorithms cannot be executed in
a distributed environment.

Moreover, until now no balanced version of k-medoids
was published, although a few balanced versions of k-
means exist. In [8], the authors proposed a method that
has a complexity O(n3), which makes it too complex for
large graphs. In [2], the authors proposed the Frequency
Sensitive Competitive Learning (FSCL) method, where
the distance between a point and a centroid is multiplied
by the number of points already assigned to this centroid.
Bigger clusters are therefore less likely to win additional
points. In [1], the authors used FSCL with additive bias
instead of multiplicative bias. However, both methods
offer no guarantee on the final number of points in
each partition, and experimental results have shown
the resulting partitioning is often largely unbalanced.
Hence, we present below our own algorithm, that offers a
guarantee on the maximum number of items per cluster.

III. Adding nodes

The algorithm we propose has two main steps to add
a new point to the graph: 1) use the current graph
to search the k nearest neighbours of the new point,
using the distributed algorithm presented in Section V
and 2) update the graph using the procedure presented
in Algorithm 2. The update procedure is actually a
propagation algorithm. It starts with the discovered



neighbours of the new node, and recursively explores the
neighbours of neighbours, up to a fixed depth, to check if
existing edges should be modified. In addition, the new
node is assigned to the compute node corresponding the
the most similar medoid.

Finally, the medoids may be recomputed once a given
number of new nodes have been added to the graph. This
is actually not mandatory, and depends on the dataset:
if the characteristics of the dataset are fixed over time,
adding new nodes will not induce a displacement of the
medoids. Otherwise, the medoids update rate should be
consistent with the expected rate of change of the dataset.
The automatic estimation of the update rate is left as as
future work. The complete procedure used to add a new
node to the graph is shown in Algorithm 1.

Algorithm 1 Distributed online k-nn graph building:
add a node to the graph

Inputs:
graph: current graph
node: a new node

In parallel: ⊲ Distributed search
neighbourlist = Search(graph, node, k)

In parallel: ⊲ Update with Algorithm 2
Update(graph, node, neighbours, 0)

medoid = NearestMedoid(node) ⊲ Shuffle
assign 〈node, neighbourlist〉 to the compute node
corresponding to medoid

Algorithm 2 Update

Inputs:
graph: the current graph
new: the new node to add in the graph
neighbours: the list of nodes to analyse
depth: the current depth
MAX_DEPTH : the maximum depth of exploration

for node in neighbours do

if depth < MAX_DEPTH then ⊲ Recursion
Update(graph, new, node.neighbours, depth++)

end if

compute similarity(node, new)
if needed, add new to the neighbourlist of node

end for

The most computation intensive steps of the algorithm
are the search and update steps. This latter requires
a maximum of kDEPTH+1 similarity computations. To
reduce the space requirement of the graph, k is generally

kept small. A value of 10 is very often seen. With this
value, experimental evaluation shows that a depth of
three is sufficient to update the graph. The resulting
number of similarity computations (1000) is thus small
compared to the size of the graphs targeted by this update
algorithm. The computation cost of the algorithm will
thus be dominated by the search step, hence the need
for a very efficient algorithm.

IV. Removing a node

When a node nd is deleted from the graph, some other
nodes which have nd as neighbour have to be updated
to assign them a new neighbour. These nodes to update
are easily identified by scanning the complete graph. As
these nodes to update all had nd as neighbour, they are
very likely to be highly similar to each other. Hence, we
do not process them individually, but as a group.

Indeed, a common set of candidates if first identified
using a distributed propagation algorithm similar to the
one used to update the graph after adding a node: the
graph is explored up to a fixed depth, starting from each
node to update and from the node to delete.

Finally, for each node to update, the the most similar
node from the set of candidates is used to replace nd.

When removing a node, we can expect an average of
k nodes will have to be updated. As we also use the
node to delete nd as a starting point for the propaga-
tion algorithm, we can expect to find (k + 1)DEPTH+1

candidates. The algorithm will thus require to compute
k · (k + 1)DEPTH+1 ≃ kDEPTH+2 similarities between
nodes. Experimental evaluation showed a small DEPTH
value is enough to get good results. This represents a
huge speed improvement compared to the naïve approach
that requires comparing the k nodes to update to the n
nodes in the graph and would thus require k ·n similarity
computations.

V. Distributed nearest neighbours search

As stated above, the computation cost for adding a new
node to the graph is mainly influenced by the search
step. To the best of our knowledge, no algorithm exists
in the literature that allows to quickly search the nearest
neighbours of a point using a distributed graph. So we
present here our own algorithm, which can support any
similarity measure, even non metric.

The procedure we propose to perform a k-nn search
is actually very simple: the p partitions are searched
independently using an efficient graph based sequential
algorithm, then the k · p nearest neighbour candidates
are filtered to keep the k most similar to the query point.
The data exchanged is very limited: the compute nodes



send the k · p candidate neighbours to the master, that
produces the final output.

The procedure we use inside each partition to search the
nearest neighbours of a query point q is inspired by the
hill climbing approach presented in [6]: the algorithm
selects a random node n from the graph, computes
the similarity between q and every neighbour of n, and
iterates with the most similar neighbour. While iterating,
it keeps a set of the most similar points to q. When a
local maximum is reached, the algorithm restarts with
another random node. This search algorithm is thus an
approximate algorithm, as it does not necessarily find
the most similar node in the graph. It does however
find the nearest neighbour with a high probability, while
analysing only a fraction of the nodes in the graph.

In our sequential search procedure we introduce two
additional approximations, which allow to further reduce
the number of computed similarities compared to the
naïve hill climbing approach.

The first improvement relies on the observation that by
the definition of a k-nn graph, each node only has edges to
other very similar nodes. Hence, the increase of similarity
at each iteration of the search can be very small. As a
consequence, the number of iterations i (the number of
nodes to analyse) before finding the nearest neighbours of
a query point can be very large. In the worst configuration
of the graph, i = n/k. This requires computing a lot of
similarities, i · k. To avoid this situation, the randomly
chosen starting node r is skipped if it is situated too far
from the query point.

Formally, we keep track of the similarity of the most
similar neighbour found so far smax, and we introduce an
expansion coefficient e > 1. As stated above, when a local
maximum is reached, the algorithm restarts with another
random node r. We immediately discard r and select
a new random node if similarity(query, r) < smax/e. In
this way, we avoid analysing a potentially very long chain
of i nodes before reaching the neighbourhood of the query
point, which would be computationally very expensive
(i · k). Instead, we focus on exploring the vicinity of the
query point (the nodes for which similarity with query
point is at least smax/e).

Secondly, to further reduce the number of computed
similarities, for each analysed node, we eagerly iterate
using the first neighbour that provides an increase in
similarity compared to the currently analysed node. We
thus try to analyse only a few of the k neighbours of
the analysed node. The improvement provided can be
calculated for a euclidean space of d dimensions and
uniformly randomly distributed data points. In such a
space, observe that for any node, on average only E(H) =

Table I
Speedup compared to classical hill-climbing search
achieved by iterating as soon as a node with higher

similarity is found, for various values of k and d

(dimensionality).

k 4 10 10 10
d 2 2 3 4
E(H) 1 2.5 1.25 0.625
E(L) 3 7.5 8.75 9.375
E(S) 1.5 2.14 3.88 5.77
E(speedup) 2.66 4.66 2.57 1.73

k/2d edges lead to a node with higher similarity, and
E(L) = k−k/2d edges lead to a node with lower similarity.
As the improved algorithm iterates as soon as a node
with higher similarity is found, the expected number of
similarities to compute for each analysed node is:

E(S) =
k − k/2d

1 + k/2d

At the opposite, the original hill climbing approach
requires computing k similarities for each analysed node.
Hence, this results in an expected speedup of k/E(S)
compared to the original hill climbing approach. The
resulting speedup for some values of k and d is shown
in Table I, which shows a substantial speedup can be
achieved in some cases. The drawback is that in some
cases the algorithm might pick a neighbour that improves
the similarity, but without maximizing it (there was
another neighbour which is more similar to the query
point). However, a node has edges only to other highly
similar nodes, hence those neighbours are also similar to
each other. The difference of similarity improvement when
choosing a sub optimal neighbour remains thus limited,
and globally the efficiency of the algorithm increases.

These additional approximations allow to reduce the
number of computed similarities, while they do not
prevent the convergence of the hill climbing approach.
The demonstration of this latter can be found in [6] and
is not repeated here.

To increase the efficiency of the distributed search, the
graph is also partitioned in a way that maximizes the
probability of finding the most similar nearest neighbours.
This partitioning scheme aims to fulfil two conditions: 1)
the distance (measured as the number of edges) between
two nodes in the same sub-graph should be as low as
possible, to maximize the probability of quickly finding
“good” candidates and 2) the number nodes in each sub-
graph should be similar to balance the work load between
compute nodes during the search.

The first condition corresponds to the definition of k-
medoids clustering, a variation of k-means clustering



where the centres are data points. It also minimizes the
sum of pairwise distances, while k-means minimizes the
sum of squared Euclidean distances.

The impact of the partitioning on the search algorithm
is actually very dependent on the geometry of the graph.
Let pg be the number of clusters that the graph naturally
contains (the number of connected components). If the
algorithm splits the graph into p = pg partitions, the
partitioning used by the distributed search algorithm
will reflect the natural partitioning of the graph. In
this case, it will ensure that the starting points used
by the sequential search will be nicely distributed over
the different clusters. We can thus expect the distributed
algorithm to produce better results then the sequential
algorithm.

In other cases (when p 6= pg), the clusters of the graph
will be distributed over the p partitions. The partitioning
will thus potentially cause a lot of cross-over edges.
Statistically, these will shorten the chain of nodes that
the sequential search procedure can run through and
cause the algorithm to restart from a random node in
the partition. It will eventually reduce the probability to
find the nearest neighbours of the query point.

VI. Balanced k-medoids partitioning of a
distributed k-nn graph

We present here the procedure we use to partition the
distributed k-nn graph. It is inspired by the Voronoi
iteration method used by the classical k-means algorithm
and in [9]. It has the additional advantage that it offers
a guarantee on the maximum size of each cluster, which
guarantees a fair distribution of the work load between
the compute nodes.

In our case, we wish to cluster the graph in order to
optimize the distributed k-nn search. Hence, the distance
measure used to assign each node to a medoids and to
compute the new medoids should be the length of the
shortest path in the graph between two nodes. However,
computing the shortest path from a node to all medoids
requires access to all adjacency lists, which is impossible
in a distributed, shared-nothing infrastructure. Therefore,
instead of computing the shortest path to every medoid,
we use the similarity between the node and every medoid
as a heuristic. An intuitive example is to consider the
simple case of a uniform distribution over an euclidean
space. In such a space, all edges have the same length.
Hence, the most similar medoid, measured as the shortest
path from the node to the medoid, is also the most similar
medoid, measured using the euclidean distance.

To achieve a balanced distribution of points between the
k clusters (not to confuse with the k edges per node

of a k-nn graph), we use a linear weighted determin-
istic greedy heuristic to assign each point to a cluster.
Let p0 . . . pi . . . pn be the set of points to cluster and
m0 . . . mj . . . mk the set of medoids at any iteration of
the algorithm. Each point pi is assigned to the cluster
C(pi) corresponding to the most similar medoid weighted
by a penalty function w(mj , t):

C(pi) = arg max
mj

(similarity(pi, mj) · w(mj , t))

This penalty function is based on the capacity and current
size of the cluster in order to penalize large clusters:

w(mj , t) = 1 −
|C(mj , t)|

capacity

where C(mj , t) is the cluster corresponding to medoid
mj at time t and capacity is the maximum size of each
cluster.

Depending on the application, a small size difference
can be tolerated between clusters, hence the capacity of
clusters is usually computed using an imbalance factor
(imbalance > 1):

capacity =
n · imbalance

k

A perfectly balanced clustering can be achieved using
imbalance = 1.

In a distributed shared nothing environment the different
compute nodes don’t have access to total size of each
cluster at time t. Each compute node can only rely on
the local number of points already assigned to a cluster
CL(mj , t).

Hence, to execute the algorithm in parallel we first
randomly distribute the input dataset between the
c compute nodes. At each iteration, this randomized
dataset is used to assign each point using a modified
weight function that relies solely on the local size of
clusters:

wL(mj , t) = 1 −
|CL(mj , t)|

capacityL

(1)

where capacityL is the contribution of each compute node
to total size of the final cluster:

capacityL =
n · imbalance

k · c

If the dataset is large enough (with respect to c) and
randomly distributed, we can assume that the resulting



error (relative number of points that are not assigned to
the correct cluster) can be kept arbitrarily low.

If the clustering of the data points is perfectly balanced,
during the update step the size of each cluster is n/k.
For each cluster, computing the new medoid requires to
compute every pairwise similarity:

n

k
·

n
k

− 1

2
≈ O(

n2

k2
)

The lower bound on the total computational cost for
computing the k new medoids is thus

O(
n2

k
)

This is completely unacceptable for large datasets. There-
fore, we sample the dataset and run the balanced k-
medoids algorithm against the downsized data to com-
pute the medoids. We only use the complete dataset once,
to assign each node to a medoid using the constraint in
equation 1, and thereby to a compute node.

It is a well known technique for the family of k-means
clustering algorithms to use a sampled dataset to compute
the initial centres. The impact of this technique depends
naturally on the final goal of the clustering. For our
use case, experimental evaluation shows it is perfectly
valid and offers the same results as performing multiple
iterations of distributed k-medoids clustering with the
complete dataset, while it requires the computation of
far less similarities.

VII. Experimental evaluation

To perform the experimental evaluation, we implemented
all algorithms using the Spark parallel processing frame-
work. All experiments are run on a cluster consisting of
16 compute nodes plus one master node, each equipped
with a quad-core processor and 8GB of RAM memory.
Each experiment is repeated 10 times, and we present
below the averaged values 1.

The experiments are run using two datasets, with different
similarity measures2.

The synthetic dataset consists of points in R3 which are
randomly generated according to a mixture of gaussian
distributions. The similarity measure used to build and
query the graphs is the classical euclidean distance.

The SPAM dataset contains the subject of approxima-
tively 1 million spams collected by Symantec Research

1The source code of algorithms and evaluation scripts can be
found at https://github.com/tdebatty/spark-knn-graphs

2Instructions to download and process the datasets can be found
at https://github.com/tdebatty/java-datasets

Labs in 2010. Domain knowledge suggests that the most
relevant similarity measure for building and querying the
graph built from this dataset is Jaro-Winkler. This dis-
similarity measure is similar to classical Levenshtein edit
distance, but it allows character substitution. Moreover,
the substitution of two close characters is considered
less important then the substitution of two characters
that are located far from each other. Jaro-Winkler is
not a metric distance as it does not abide by triangle
inequality. It confirms our algorithm can also be used
with non-euclidean similarity measures.

A. Graph quality

We first evaluate the quality of the graph produced by
the fast distributed algorithm. Therefore, we build an
initial k-nn graph consisting of 50000 nodes using a naïve
brute force algorithm. Then we progressively add new
points to the graph and regularly compare the updated
graph to a graph built from the same points using the
brute force algorithm. At each step we count the number
of edges that are correct in the updated graph ec and
compute the quality of the graph, as defined below.

If the initial graph has n nodes and we add na nodes
to the graph, the algorithm has to create na · k new
edges. We can also expect that a number of edges from
the initial graph have to be modified. Hence, the total
expected number of modified edges is:

E(em) = na · k + n · k ·
na

na + n

The expected number of unmodified edges in the final
graph is simply E(eu) = (n + na) · k − E(em). Hence,
the quality of the produce graph can be measured as
the number of correctly modified edges divided by the
expected number of edges that the algorithm should
modify:

Q =
ec − E(eu)

E(em)
(2)

where ec is the real number of correct edtes in the graph.
Hence, Q is also the ratio of correct edges in the graph
when na → ∞:

Q = lim
na→∞

ec

k · (n + na)

The results are shown in Figure 1. It confirms the quality
value we defined above is an accurate measure of the
correctness of the updated graph. It also shows that the
algorithm produces graphs that are highly similar to
the exact graphs (produced by a brute force algorithm),
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Figure 1. Graph quality

although it introduces multiple approximations to reduce
the number of computed similarities. The algorithm is
however more efficient with the synthetic dataset, that
relies on an euclidean similarity measure, than with
the SPAM dataset, that uses a non-euclidean similar-
ity measure. This will also be confirmed by following
experiments.

B. Parallelism

The first source of approximation is due to the partition-
ing of the graph, which is required to execute the nearest
neighbour search in parallel. Indeed, increasing the
number of partitions reduces the size of each sub-graph,
and thus increases the probability for the sequential
search procedure to reach the boundary of the sub-graph,
which reduces the probability to find the most similar
nodes in the graph.

To evaluate the effect of parallelism on the algorithm,
we build an initial graph and add a fixed number of
nodes while we vary the number of partitions. Hereby we
thus also vary the parallelism. We start with one single
partition, which means the processing is sequential, and
not distributed. For each value, we measure the quality
of the produced graph, the time required to add the
nodes, and we count the number of times the sequential
search procedure has to restart because it reaches the
boundary of the partition. The measured values are shown
in Figure 2.

As we can see, increasing the number of partitions (and
thus the parallelism) effectively reduces the amount of
time required to add points to the graph. However, once
a certain amount of parallelism is reached, the cost of
distributing the operations outreaches the speed increase

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

G
ra

p
h

q
u
a
li
ty

[%
]

Number of partitions

Synthetic
SPAM

60

80

100

120

140

0 5 10 15 20 25 30 35T
im

e
to

ad
d

a
p

o
in

t
[m

s]

Number of partitions

Synthetic
SPAM

0
5

10
15
20
25
30
35
40

0 5 10 15 20 25 30 35

R
es

ta
rt

s
d
u
e

to
p
ar

ti
ti

on
in

g
co

m
p
ar

ed
to

th
e

to
ta

l
n
u
m

b
er

of
re

st
ar

ts
[%

]

Number of partitions

Synthetic
SPAM

Figure 2. Influence of the number of partitions

offered by a higher parallelism. This threshold depends
mainly on the cost of computing the similarity between
points. For the synthetic dataset, for which the similarity
is very easy to compute (Euclidean distance in R3), the
best parallelism appears to be 8.

The Figure also confirms that the graph quality decreases
with the number restarts due to the partitioning, which
increases with the number of partitions. Once again, the
effect is more pronounced with the spam dataset.

C. Update depth

The second approximation lies in the update depth used
to modify the edges of existing nodes when a new node is
added to the graph. Increasing the update depth will of
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Figure 3. Influence of the update depth

course increase the quality of the produced graph, but it
also requires to compute more similarities. To evaluate its
impact we vary the update depth and measure for each
one the quality of the produced graph and total number
of computed similarities . This last includes the number
of similarities computed to search the neighbours of the
new node, and the number of similarities computed to
update the edges of existing nodes in the graph.

As we can see on Figure 3, there is a clear effect of
diminishing return, and an update depth of three seems
to be a good compromise.

D. Search speedup

Finally, the main source of approximation relies in the
sequential search procedure used inside each partition.
This one is responsible for finding the nearest neighbours
of the new node added to the graph. It is itself influenced
by multiple parameters. The first and most important
one is the search speedup. As we could expect and is
confirmed in Figure 4, increasing the search speedup
allows to reduce the number of similarities to compute,
while the produced graphs remain highly similar to the
graphs produced by a brute force algorithm, especially
with the euclidean dataset. There is however a floor on
the number of computed similarities due the similarities
that have to be computed to update the edges of existing
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Figure 4. Influence of the search speedup

nodes.

E. Search expansion parameter

Another important parameter of the sequential search
procedure is the expansion parameter. As we can see in
Figure 5, a well chosen value (1.1 for the SPAM dataset
and 4.5 for the synthetic dataset) effectively increases the
quality of the search procedure by reducing the number
of nodes to analyse, and eventually increases the quality
of the produced graph. This parameter is however very
dependent on the dataset and can be quite difficult to
tune.

F. Dimensionality and k

Finally, the dimensionality of the dataset and the number
of edges per node k also have a strong influence on the
search procedure. Remember that the search relies on
a hill climbing approach. Hence, if k is inferior to the
dimensionality of the dataset, the probability is high that
a node has no neighbour that increases the similarity with
the query point. This will cause the search procedure to
restart, and will eventually reduce the probability to find
the nearest neighbours of the query point.

This effect is illustrated in Figure 6. We build a synthetic
dataset in R20, then build a k-nn graph with different
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Figure 5. Influence of the search expansion
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values of k, add a fixed number of nodes to the graph,
and finally evaluate the quality of the produced graph.
As we can see, increasing k also increases the quality of
the produced graph.

Regarding the SPAM dataset, although it is not euclidean
and the real dimensionality is not defined, its behaviour
is roughly similar to a high dimensionality dataset.

G. Partitioning

We compare here the quality of the graph produced after
adding a fixed number of nodes if: 1) we don’t partition
the graph and leave the nodes randomly distributed
between the compute nodes, 2) we use the complete
dataset and run one to ten iterations of k-medoids to
compute the medoids and 3) we sample the dataset to
compute the medoids and partition the original graph.

As we can see on Figure 7, the partitioning allows
to improve the quality of the graph, and the medoids
computed by sampling the dataset eventually produce
the same quality of the final graph.
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H. Scalability

We evaluate here the scalability of the algorithm. There-
fore, we increase the number of partitions, and keep the
size of the graph proportional to the number of partitions
(10000 nodes per partition). We add a fixed number
of nodes to the graph, and compute the quality of the
produced graph. The results in Figure 8 show the size of
the dataset has a very limited impact on the quality of
the produced graph, which makes the algorithm suitable
for very large datasets.
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Figure 9. Removing nodes

I. Removing nodes

Finally, we evaluate the quality of the produced graph
when we remove nodes. In this case, the quality factor
is computed as follows. We can expect each node in
the graph has an average of k incoming edges. Hence,
deleting a single node will require to compute k new edges.
When we remove nr nodes from the graph, the expected
total number of modified edges is thus E(em) = k · nr,
the expected number of unmodified edges is E(eu) =
(n − nr) · k − E(em) and the quality of the graph can be
computed using Formula 2.

As we can see, the algorithm allows to remove nodes from
the graph computing only a few similarities (less than
2% of the number of computations required by the naïve
approach). The produced graph is highly similar to the
graph produced by a brute-force algorithm, although the
quality of the built from the SPAM dataset is once again
slightly inferior to the the quality of the graph built from
the synthetic dataset.

VIII. Conclusions and future work

In this paper we proposed an algorithm that is able
to update a distributed k-nn graph by quickly adding
or removing nodes. We performed an experimental

evaluation that shows the algorithm can be used with
very large datasets and produces graphs that are highly
similar to the graphs produced by a brute-force algorithm,
while it requires the computation of far less similarities.

As a future work, we plan to study the auto-evaluation of
the expansion and medoids update interval parameters.
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