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Estimation of the Multivariate Conditional-Tail-Expectation

for extreme risk levels: illustration on environmental data-sets

Elena Di Bernardino∗and Clémentine Prieur†

19th March 2018

Abstract

This paper deals with the problem of estimating the Multivariate version of the Conditional-Tail-

Expectation introduced by Di Bernardino et al. (2013) and Cousin and Di Bernardino (2014). We propose

a new semi-parametric estimator for this risk measure, essentially based on statistical extrapolation tech-

niques, well designed for extreme risk levels. We prove a central limit theorem for the obtained estimator.

We illustrate the practical properties of our estimator on simulations. The performances of our new estim-

ator are discussed and compared to the ones of the empirical Kendall’s process based estimator, previously

proposed in Di Bernardino and Prieur (2014). We conclude with two applications on real data-sets: rainfall

measurements recorded at three stations located in the south of Paris (France) and the analysis of strong

wind gusts in the north west of France.

Keywords: Multivariate extreme value theory, multivariate risk measures, central limit theorem, hydrological

applications. 62H12; 62H05; 60G70.

Introduction

Multivariate risk-measures Modeling and quantifying uncertainties related to extreme events is of main

interest in environmental sciences (hydrological extreme events, cyclonic intensity, storm surges, . . . ).

Most of the time, environmental risks involve several aleas which are often correlated. A flood, e.g., can be

described by three main characteristics: the peak flow, the volume and the duration. As these three quantities

are correlated, it is important to define and to estimate the risk in a multivariate setting. For the same reasons,

the design of facilities installed alongside of rivers should be based on multivariate extreme value analysis. In

the case where the installation lies downstream the confluence of two rivers, neglecting in the risk analysis
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the correlations between both rivers may lead to an over- or under-estimation of the risk, involving either

unnecessary costs or the construction of unsafe dams, with potentially dramatic consequences.

The classical univariate frequency analysis in environmental sciences focuses on the estimation of the probably

most popular risk measure: the return level. A return level with a return period (RP) of T = 1/p years is a

threshold zp whose probability of exceedance is p. The return period is traditionally defined as “the average

time elapsing between two successive realizations of a prescribed event” (Singh et al. (2007)). An alternative,

that takes into account the intensity of an event above a given threshold, is the mean excess function, i.e.,

E(X | X ≥ zp), with X the variable of interest (flows, rainfall, temperature, . . . ). This measure is also known

as the Conditional-Tail-Expectation (CTE).

As already mentioned, it is often insufficient to consider a single real measure to quantify risks. This is therefore

challenging for practitioners to estimate a multivariate return period and to select a specific design event starting

from multivariate dangerous hydrological situations. However, the notion of return period in the multivariate

setting is not univalent (see for instance Vandenberghe et al. (2012)). From the years 2000, different multivariate

risk measures have been indeed introduced. Recently, level-curves and level sets associated to the multivariate

risk vector have been proposed as risk measures in multivariate hydrological models because of their many

advantages: they are simple, intuitive, interpretable and probability-based (see Chebana and Ouarda (2011),

de Haan and Huang (1995)).

The problem of consistent estimation of the univariate quantile-based risk-measures has received attention

in literature essentially in the univariate case. There are less papers on the estimation of multivariate risk-

measures, due to a number of theoretical and practical reasons. Recently, a conditional return level estimator

was proposed in Di Bernardino and Palacios-Rodŕıguez (2016). An estimation of extreme Component-wise

Excess design realization (δCE) was also proposed in Di Bernardino and Palacios-Rodŕıguez (2017). This

measure was introduced and used for hydrological applications in Salvadori et al. (2011). Salvadori et al. (2014)

provided practical guidelines for coastal and off-shore engineering by using the δCE risk measure. In Salvadori

et al. (2013), multivariate RP were estimated by using a semi-parametric approximation of Kendall’s distribution

function. A directional multivariate quantile was proposed in Torres et al. (2017) to detect multivariate extremes

in environmental phenomena.

Multivariate CTE under study In the following we deal with a version of the multivariate CTE, previously

proposed by Di Bernardino et al. (2013) (see also Cousin and Di Bernardino (2014), Di Bernardino and Prieur

(2014)). Let I = {1, . . . , d}. It is constructed as the conditional expectation of a d−dimensional vector of risks

X = (X1, X2, . . . , Xd) following the distribution function F , given that the associated multivariate probability

integral transformation Z := F (X) is large. More precisely, for i ∈ I, we will consider the multivariate

Conditional-Tail-Expectation:

E[Xi |Z > QZ(1− p)], for p ∈ (0, 1), (1)

where QZ is the quantile function of Z and p is small enough. Then, we take the conditional expectation of X
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conditionally to the fact that it belongs to the joint risk scenario {x ∈ Rd : F (x) ≥ 1− p}.

Remark that our measure is based on the Kendall’s distribution function K(t) = P[Z ≤ t], for t ∈ [0, 1]. For this

reason, risk measure in (1) can be used for hydrological risk management in the same vein of the multivariate

RP in Salvadori et al. (2013) and Salvadori et al. (2011). Furthermore, conversely to risk measures in Cai and

Li (2005), Bargès et al. (2009) and Landsman and Valdez (2003), the multivariate risk measure proposed in (1)

is a non-aggregated risk measure. Indeed, hydrological variables can be of different nature (e.g. precipitation,

temperature, discharge, . . . ), prohibiting the aggregation of the various components.

Statistical inference for multivariate CTE in (1) Some consistent estimator of the multivariate risk

measure E[Xi |Z > t], for fixed t ∈ (0, 1), has been provided by Di Bernardino et al. (2013), who proposed a

plug-in estimator based on the consistent estimation of the whole level sets associated to the vector of risks X.

As the level sets are not compact, their estimation procedure requires the choice of an increasing truncation

sequence (Tn)n≥1. Making the “best choice” for (Tn)n≥1 is not trivial (see Di Bernardino et al. (2013)). Recently,

Di Bernardino and Prieur (2014) proposed a non-parametric estimator for E[Xi |Z > t] based on the estimation

of the Kendall’s process. For this estimator they provide a functional central limit theorem without requiring

the calibration of extra parameters or sequences. However, a global good performance of this estimator is

illustrated only for moderate to high (but not extreme) fixed risk levels t (see Di Bernardino and Prieur (2014)).

Conversely, in the present paper, we will develop a consistent estimation procedure to estimate the multivariate

CTE defined in (1) for extreme risk levels (that is for p < 1/n, where n is the sample size). Our estimator is

based on the bivariate inferential procedure proposed in Cai et al. (2015) for the estimation of the Marginal

Expected Shortfall. However, a main difference relies on the fact that our conditioning random variable Z in

(1) is a latent variable, which is not observed and has to be estimated.

Organization of the paper In Section 1, we introduce some notation, tools and preliminary assumptions.

In Section 2.1, we propose our estimation procedure for the multivariate CTE defined in (1), based on Extreme

Value Theory. In Section 2.2 we establish the asymptotic normality for the proposed semi-parametric estimator.

The practical properties of our estimator are further investigated, and compared to the ones of alternative

empirical approaches on simulated data-sets in Section 3. Finally in Section 4, we consider two 3-dimensional

real data-sets: first a rainfall data-set, then a wind gusts data-set. For the sake of clarity of presentation, proofs

and auxiliary results are postponed to Appendix.

1 Preliminaries and notation

Let N∗ = N \ {0}. Let X = (X1, X2, . . . , Xd) be a d−dimensional positive1 random vector with distribution

function F . Define Z = F (X) and the associated multivariate Kendall distribution function K(t) = P[Z ≤ t],

1In the following, we restrict ourselves to Rd
+. This choice is motivated essentially by our applications in environmental risk

theory, where random variables consist in rainfall measurements (in mm), thus defined on a positive support. However the results

in this paper can be adapted also in Rd.
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for t ∈ [0, 1]. For more details on the multivariate probability integral transformation the interested reader

is referred to Capéraà et al. (1997), Genest and Rivest (2001), Nelsen et al. (2003), Genest et al. (2006) and

Belzunce et al. (2007).

As a consequence of Sklar’s Theorem, the Kendall distribution only depends on the dependence structure or

the copula function C associated with X (see Sklar (1959)). Thus, we also have K(t) = P[C(V) ≤ t], where

V = (V1, . . . , Vd) with uniform marginals V1 = FX1(X1), . . . , Vd = FXd(Xd). The analytical formulation of the

Kendall distribution is in general not available. However, for the particular case of multivariate Archimedean

copulas, it can be derived explicitly (see Section 3).

Let UZ = ( 1
1−K )← be the tail quantile function of Z, where← denotes the left-continuous inverse. In this paper

we aim to estimate the quantity

θip := E[Xi |Z > UZ(1/p)] for p ∈ (0, 1) and i ∈ I,

on independent and identically distributed (i.i.d.) d−dimensional observations, (Xj)j=1,...,n from F , for small

values of p in a sense detailed below (see Section 2.1, in particular Equation (7)).

To estimate θip we make assumptions both on the right-hand tail of Xi and on the right-hand upper tail

dependence of Xi and Z. Then, we expect that high values of Z correspond to high values of Xi. These

assumptions are classical in multivariate Extreme Value Theory (EVT). We begin with describing the right-

hand upper tail dependence. In the whole paper we will suppose that, for all (x, z) ∈ [0,∞]2 \ {(∞,∞)}, and

for all i ∈ I, the following limits exist:

lim
t→∞

tP
[
1− Fi(Xi) ≤ x

t
, 1−K(Z) ≤ z

t

]
=: R(Xi,Z)(x, z). (2)

Function R(Xi,Z) in (2) completely determines the so-called stable tail dependence function l(Xi,Z), as for all

x, z ≥ 0, l(Xi,Z)(x, z) = x + z − R(Xi,Z)(x, z), (see, e.g., Drees and Huang (1998), Beirlant et al. (2004)). As

analysed below, the case of asymptotic independence, i.e., R(Xi,Z) ≡ 0, will not be included in our main central

limit theorem result (see Theorem 2.1 and Remark 4).

Let i ∈ I. For the marginal distribution Fi we assume that Xi follows a distribution with a heavy right tail,

i.e., ∃ γi > 0 such that ∀x > 0,

lim
t→∞

Ui(tx)

Ui(t)
= xγ

i

, (3)

where Ui = ( 1
1−Fi )

← and γi is the extreme tail index associated to Fi.

Suppose that (3) holds true with γi ∈ (0, 1). In the following, we introduce different Gaussian processes that will

be useful to state our main asymptotic normality result (see Theorem 2.1). Let WR be a zero mean Gaussian

process on [0,∞]2 \ {(∞,∞)} with covariance structure

E[WR(Xi,Z)
(x1, z1)WR(Xi,Z)

(x2, z2)] = R(Xi,Z)(x1 ∧ x2, z1 ∧ z2).
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Let i ∈ I and q ∈ [0,+∞) ∪ {+∞}. Let (Θi,Γi(q))> (with v> the transpose of vector v) denote the bivariate

process described by:

Θi = (γi − 1)WR(Xi,Z)
(∞, 1) +

(∫ ∞
0

R(Xi,Z)(s, 1) ds−γ
i

)−1 ∫ ∞
0

WR(Xi,Z)
(s, 1) ds−γ

i

, (4)

Γi(q) =


γi√
q

(
−WR(Xi,Z)

(q,∞) +
∫ q
0
s−1WR(Xi,Z)

(s,∞)ds
)

for q ∈ (0,+∞),

N(0, (γi)
2
) random variable independent of WR for q = 0 or q = +∞ .

(5)

For 0 < q < ∞, classical computations, mainly based on Fubini’s theorem and on the covariance structure of

WR(Xi,Z)
, lead to Var(Θi) = (γi)2 − 1 − b2

∫∞
0
R(Xi,Z)(s, 1) ds−2 γ

i

, Var(Γi(q)) = (γi)2 and Cov(Γi(q),Θi) =

γi√
q (1− γi + b

qγi )R(Xi,Z)(q, 1)− γi(1−γi)b√
q

∫ q
0
R(Xi,Z)(s, 1)s−1−γids− γi(1−γi)√

q

∫ q
0
R(Xi,Z)(s, 1)s−1ds

−γ
i2 b√
q

∫ q
0
R(Xi,Z)(s, 1) ln( qs ) s−1−γids, with b =

(∫∞
0
R(Xi,Z)(s, 1) ds−γ

i
)−1

.

Processes {(Θi,Γi(q))> , i = 1, . . . , d} appear as limiting processes in Theorem 2.1 of Section 2 below.

2 Main results

2.1 Estimation procedure

Let i ∈ I, n1, n2 ∈ N∗ and the sample size n := n1 +n2. We consider (Xj)j=1,...,n a d−dimensional i.i.d. sample

of X. For all c ∈ Rd+ we define the d−dimensional empirical distribution function of X based on n2 observations

as Fn2
(c) = 1

n2

∑n1+n2

j=n1+1 1{Xj ≤ c}. For all j = 1, . . . , n1 we define Zj = F (Xj) and Z̃j = Fn2
(Xj).

Following classical Weissman-type extrapolation technique (see Weissman (1978)), we construct an estimator

of θip by a two-stage approach. Let k = k(n1) be an intermediate sequence of integers which satisfies k → ∞

and k/n1 → 0, as n1 → ∞. Firstly, we consider the estimation of θik
n1

, i.e. the CTE at an intermediate (not

extreme) probability level k
n1

. We can estimate non-parametrically θik
n1

by taking the empirical average of the

Xi of those selected observations:

θ̂ik
n1
,n2

=
1

k

n1∑
j=1

Xi
j 1{Z̃j > Z̃n1−k,n1

}, (6)

where Z̃n1−k,n1
is the (n1 − k)-th order statistic of Z̃1, . . . , Z̃n1

.

Secondly, using an extrapolation method based on Proposition 1 in Cai et al. (2015) applied to the bivariate

vector (Xi, Z) and Equation (3), we have that, for n1 p = o(k) as n1 →∞,

θip ∼
Ui(1/p)

Ui(n1/k)
θik
n1

∼
(

k

n1 p

)γi
θik
n1

. (7)

In order to apply the asymptotic approximation in Equation (7), we need to estimate the tail index γi. To this

aim, we will consider the Hill estimator (see Hill (1975)), i.e.

γ̂i =
1

ki

ki∑
j=1

ln(Xi
n1−j+1,n1

)− ln(Xi
n1−ki,n1

), (8)
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where ki = ki(n1) is an intermediate sequence of integers and Xi
j,n1

, for j = 1, . . . , n1, is the j-th order statistic

of Xi
1, . . . , X

i
n1

. Finally, using Equations (6), (7) and (8), we estimate θip by

θ̂ip(n1),n2
=

(
k

n1 p

)γ̂i
θ̂ik
n1
,n2
. (9)

The asymptotic normality of our estimator in (9) is stated in Theorem 2.1 below, for n1, n2 → ∞. The limit

process can be written as a combination of processes Θi and Γi(q) in Equations (4) and (5) respectively. In

particular, the process Θi plays a central role to describe the asymptotic behavior of θ̂ik
n1
,n2

(see Proposition 2.1).

The process Γi(q) is related to the asymptotic behavior of γ̂i.

Remark 1 (On the split-up of the observation in two samples). To conclude this section, we notice that the

split-up of the data in two samples of sizes n1 and n2, respectively, seems artificial. Indeed, one would like

to consider the estimator θ̌ik
n

= 1
k

∑n
j=1X

i
j 1{Ẑj > Ẑn−k,n}, where Ẑn−k,n is the (n − k)-th order statistic of

Ẑ1, . . . , Ẑn, with for j = 1, . . . , n and Ẑj = Fn(Xj). Note that the split-up of the data is a technical requirement

in our paper for proving consistency results. Indeed, the split-up allows constructing multivariate pseudo-

samples that are independent of the Hill estimator γ̂i. To our knowledge, the asymptotic study of θ̌ik
n

remains

an open issue, despite recent studies, e.g., the one in van der Vaart and Wellner (2007).

2.2 Asymptotic normality

We now characterize the limit distribution of θ̂ip(n1),n2
in Equation (9). The proof of our main result requires

the following conditions.

Assumption 2.1. [Assumptions for the central limit Theorem 2.1]

(a.1) There exist β > maxi∈I γ
i and τ < 0 such that, for any i ∈ I, as t→∞,

sup
{0<x<∞, 1/2≤ z≤2}

∣∣tP [1− Fi(Xi) ≤ x
t , 1−K(Z) ≤ z

t

]
−R(Xi,Z)(x, z)

∣∣
xβ ∧ 1

= O(tτ ).

(a.2) The Kendall distribution function K(t), t ∈ [0, 1] of Z = F (X) admits a continuous density K
′
(t) on (0, 1].

(a.3) There exist p0 <
1

maxi∈I γi
, 1/p0+1/q0 = 1 and ε > 0 such that sup

{
n1√
k
n
−1+ε

2
2 ,

√
n1

(
k
n1

) 1
p0
− 1

2

n
−1+ε
2q0

2

}
→

0, as n1, n2 →∞.

(b) For i ∈ I, there exist ρi < 0 and an eventually positive or negative function Ai such that as t → ∞,

Ai(t x)/Ai(t)→ xρi for all x > 0 and supx>1 |x−γ
i Ui(t x)
Ui(t)

− 1| = O(Ai(t)).

(c) For i ∈ I, as n1 →∞,
√
kiAi(n1/ki)→ 0, where ki(n1) is the intermediate sequence of integers in (8).

(d) For i ∈ I, as n1 →∞, k = O(nα1 ) for some α < min
(
−2 τ
−2 τ+1 ,

2 γi ρi
2 γi ρi+ρi−1

)
, where k(n1) is the intermediate

sequence of integers in (6).

Under assumptions presented above, we can state a central limit theorem for our estimator θ̂ip(n1),n2
.
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Theorem 2.1. Let i ∈ I and p = p(n1) → 0, for n1 → ∞. Assume that Assumptions (a.1)-(d) hold true and

γi ∈ (0, 1/2). Assume dn1
:= k

n1 p
≥ 1, r := limn1→∞

√
k ln(dn1

)√
ki

∈ [0,+∞] and q = limn→∞
ki
k ∈ [0,+∞]. If

limn1→∞
ln(dn1

)√
ki

= 0, then for n1, n2 →∞,

vn1

(
θ̂ip(n1),n2

θip(n1)

− 1

)
→

 Θi + r Γi(q), if r ≤ 1,

1
r Θi + Γi(q), if r > 1,

where vn1
= min(

√
k,

√
ki

ln(dn1
) ), with (Θi,Γi(q))> defined in Section 1 (see Equations (4) and (5)).

Remark 2. Recall that we are interested in the multivariate CTE for very small risk levels p. It is thus not

possible to use classical empirical estimators. We therefore turn to extrapolation techniques. The assumption

limn1→∞
ln(dn1 )√

ki
= 0 indicates that we should not extrapolate too far.

Remark 3. We now comment Items (a.1 ), (a.2 ), (a.3 ), (b), (c) and (d) in Assumption 2.1 above:

- Item (a.1 ) is a second order assumption, which allows to quantify the rate of convergence in (2) (see also

Condition (7.2.8) in de Haan and Ferreira (2006) and Condition (2.1) in Draisma et al. (2004)). Note that the

constants β and τ in (a.1 ) do not depend on i ∈ I.

- Item (a.2 ) is a regularity assumption on the Kendall density. It is satisfied for a large class of multivariate

distributions, as the class of Archimedean copulas, bivariate extreme copulas, Farlie-Gumbel-Morgenstern cop-

ulas. It is required to describe the asymptotic behavior of the Kendall process (see, e.g., Barbe et al. (1996)).

- As already mentioned, the conditioning random variable Z in (1) is a latent variable, which is not observed

and has to be estimated. Item (a.3 ) explains how large the fraction n2 of the initial sample used to estimate Z

has to be chosen not to affect the asymptotic behavior in Proposition A.1.

- Item (b) allows to quantify the rate of convergence in (3) (see also Condition (3.2.4) in de Haan and Ferreira

(2006)).

- Item (c) ensures the convergence of the first and third terms (respectively Ln1
1 and Ln1

3 ) in the proof of The-

orem 2.1.

- Practical application of the extreme value theory requires to select the tail sample fraction, i.e., the extreme

values of the sample, that may contain most information on the tail behavior. Item (d) provides an asymptotic

upper-bound on the fraction k.

The proof of Theorem 2.1 above is mainly based on arguments in de Haan and Ferreira (2006); Cai et al. (2015),

as far as on Proposition 2.1 below. Both proofs of Proposition 2.1 and Theorem 2.1 are postponed to Appendix.

Proposition 2.1. Let i ∈ I. Under conditions of Theorem 2.1 for n1, n2 →∞, it holds that

√
k

 θ̂ikn1
,n2

θik
n1

− 1

 P→ Θi, with Θi defined in Equation (4).

Remark 4 (Asymptotic independence and marginal tail behavior). We discuss here two main restrictions in

the assumptions of Theorem 2.1.
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1. Item (a.1 ) excludes the asymptotic independence, i.e., the case R(Xi,Z) ≡ 0. Asymptotic dependence seems

to be a necessary condition, as illustrated in Section 3.3, where we provide an example for which the assumption

of asymptotic dependence is violated. The interested reader is also referred to Cai et al. (2015).

2. The assumption γi ∈ (0, 1/2) is necessary for Theorem 2.1. A careful reading of the proof of auxiliary

Proposition A.2 shows that the result does not hold true anymore when γi = 1/2. For the consistency of

θ̂ip(n1),n2
, this assumption can be relaxed to γi ∈ (0, 1). Indeed, if we assume that (Xi, Z) satisfies (2), as far

as Item (b) of Assumption 2.1, R(Xi, Z̃)(1, 1) > 0, limn1→∞
log(dn1 )√

ki
= 0 and γi ∈ (0, 1), then

θ̂ip(n1),n2

θi
p(n1)

P→ 1, for

n1, n2 → +∞. In Section 3.3, we provide an example with γi 6∈ (0, 1/2).

To conclude this section, note that the validation of the whole set of items in Assumption 2.1 on a real data-set

is not an easy task. We describe in the introduction of Section 3 a graphical procedure to select the tail sample

fractions ki, for i ∈ I and k (see also Cai et al. (2015)). The procedure is based on the following: a small tail

sample fraction leads to a large variance in the estimation procedure. Conversely, for large values of the tail

sample fraction, we observe a bias on the estimates. The graphical procedure helps in finding a bias-variance

tradeoff. It is also possible to estimate R(Xi,Z) as far as the tail indices γi, for i ∈ I to test the asymptotic

dependence and the assumption γi ∈ (0, 1/2). To the best of our knowledge, there does not exist any convincing

empirical testing for second order assumptions. In the real-data section (Section 4), we propose an empirical

procedure to choose the split-up sample sizes n1 and n2 such that n1 + n2 = n, with n the total sample size.

3 Simulation Study

In this section, a simulation and comparison study is implemented to investigate the finite sample performances

of our estimator of the multivariate CTE defined in (9). We focus on dimension d = 2, considering different

dependence structures and marginal distributions. Later in Section 4, we will provide an analysis of two real

data-sets in dimension d = 3.

Graphical representation of the performances

We draw 500 samples of size n from each probability distribution under study. Based on each sample, we estimate

θ1p(n1)
and θ2p(n1)

for different values of n1 and p(n1). In Figures 1, 2 and 6, we displayed on the left side the

boxplots for the ratio between the estimates and the true values, i.e., θ̂ip(n1),n2
/θip(n1)

for different structures of

dependence and different marginal distributions, which will be described hereafter (see details in Sections 3.1

and 3.2). On the right side of these figures, we plotted Q-Q plots. More precisely, for r < ∞, Theorem 2.1

can be expressed as
√
k

(
θ̂ip(n1),n2

θi
p(n1)

− 1

)
→ Θi + r Γi(q), for n1, n2 → +∞. Note that the limit distribution is a

centered normal distribution. Let (σip)
2 := 1

k Var(Θi + r Γi(q)). We compare, through corresponding Q-Q plots,

the distribution of 1
σip

ln
(
θ̂ip(n1),n2

/θip(n1)

)
with the limit distribution N (0, 1).

Empirical procedure for the selection of parameters k(n1), k1(n1) and k2(n1)

Specific values for k(n1) and ki(n1) are chosen for each sample size n1, accordingly to the selection procedure
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described by Cai et al. (2015). Indeed, a usual practice to choose the intermediate sequence ki, is to select a

range corresponding to the first stable region of the estimator γ̂i. Then, to gain in stability, we average the

estimations γ̂i corresponding to ki(n1) in the selected range. Similarly, for the sequence k(n1), we select a

range corresponding to the first stable region of the final estimator θ̂ip(n1),n2
. Then, we average the estimations

θ̂ip(n1),n2
corresponding to k(n1) in the stability window.

Comparison with the empirical estimator

In Section 3.1, we compare the performance of our estimator with the empirical one, i.e.,

θ̂ip,emp =
1

bn pc

n∑
j=1

Xi
j 1{Z̃j>Z̃n−bn pc,n}, (10)

with Z̃j = Fn(Xj) and Z̃n−k,n the associated order statistic (see Figure 3). This estimator is the empirical

counterpart of θip.

Sensitivity to the choice of the split-up parameters and robustness with respect to the hypotheses

In Section 3.1, we study the sensitivity of the estimation to the choice of the split-up parameters n1 and n2

(see Figures 4 and 5). Furthermore, in Section 3.3, we investigate the performance of our estimator when

assumptions required in Theorem 2.1 are partially violated, namely the assumptions related to the asymptotic

dependence and to the marginal tails (see Figures 7 and 8, see also Remark 4 in Section 2.2).

3.1 Copula 4.2.2 in Nelsen (1999)

In this section, we assume that the copula associated to the bivariate vector (X1, X2) is Copula 4.2.2 in Nelsen

(1999), i.e., C(X1,X2)(s, t) = 1−((1−s)θ+(1−t)θ) 1
θ , for θ ∈ [1,+∞). For θ = 1, we get C(X1,X2)(s, t) = s+t−1

(i.e., counter-monotonicity copula); for θ = +∞, we get C(X1,X2)(s, t) = min(s, t) (i.e., comonotonicity copula).

Furthermore, for θ > 1, we have

R(X1,Z)(x, z) =


z, if x ≥ θz

θ−1 ,

x− xθ

θθ( z
θ−1 )

θ−1 , if x < θz
θ−1 .

From now on, we fix θ = 2. In this case R(X1,Z)(1, 1) = 0.75. We remark that ∀ θ ∈ (1,+∞), Item (a.1 ) in

Assumption 2.1 is satisfied for any β > γ1 and any τ < 0. Let us now describe the marginal models we consider

for the simulations.

Model (A)

• X1 follows a Hall/Weiss distribution (i.e., FX1(x) = 1− 1
2x
−α(1 + xρ)) with parameters α = 4 and ρ = −4;

• X2 follows a Pareto distribution (i.e., FX2(x) = 1− ( 1
x+1 )α) with parameter α = 3.

These marginal distributions satisfy Item (b) in Assumption 2.1 with tail indices γ1 = 1/4, ρ1 = −4 and

γ2 = 1/3, ρ2 = −1 (the interested reader is referred to Example 1 in Hua and Joe (2011) and Example 5.1 in

Mao and Hu (2012)).
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Model (B)

• X1 follows a Burr distribution (i.e., FX1(x) = 1− (1 + xb)−a) with parameters a = 2 and b = 2;

• X2 follows a Burr distribution with parameters a = 3 and b = 2.

These marginal distributions satisfy Item (b) in Assumption 2.1 with tail indices γ1 = 1/4, ρ1 = −2 and

γ2 = 1/6, ρ2 = −2 (the interested reader is referred to Example 2 in Hua and Joe (2011)).

In Figure 1 (resp. 2), we show the boxplots drawn from 500 realizations for Copula 4.2.2 in Nelsen (1999)

with θ = 2 and marginal model (A) (rep. (B)) for n1 = n2 and n = n1 + n2 ∈ {100, 500}. We also show the

corresponding QQ-plots. Such a simulation study was also conducted for Copula 4.2.15 in Nelsen (1999). Since

the results looked very similar, they are not included here.
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Figure 1: Boxplots and associated QQ-plots based on 500 realizations for Copula 4.2.2 in Nelsen (1999) with θ = 2 and

marginal model (A), p = 1/4n1 for different sample sizes n1. First row: θ̂i=1
p(n1),n2

. Second row: θ̂i=2
p(n1),n2

.

The accuracy of the estimate of the marginal tail index γi is related to the parameter ρi. For a larger (in

absolute value) ρi, we get a more accurate estimation (see, e.g., Section 4.3 in de Haan and Ferreira (2006)). In

Figure 1, we observe much less variability for a similar bias for the estimation of θ1p(n1)
than for the estimation

of θ2p(n1)
. It is coherent with the values ρ1 = −4 and ρ2 = −1. It illustrates the influence of the marginal

distributions on our estimator. In both Figures 1 and 2, we observe, as expected, that increasing the sample

size n increases the accuracy of the estimation and the quality of the QQ-plots.

Comparison with the empirical estimator In the following, we compare the performance of our estimator

with the empirical estimator θ̂ip,emp defined in (10) for p = 1/n and n = {200, 1500}. Clearly, θ̂ip,emp is not

designed to deal with small probabilities p such that np < 1. For that comparison, we consider Copula 4.2.2 in

Nelsen (1999) with θ = 2 and marginal model (C) described just below.
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Figure 2: Boxplots and associated QQ-plots based on 500 realizations for Copula 4.2.2 in Nelsen (1999) with θ = 2 and

marginal model (B), p = 1/4n1 for different sample sizes n1. First row: θ̂i=1
p(n1),n2

. Second row: θ̂i=2
p(n1),n2

.

Model (C)

• X1 follows a Hall/Weiss distribution with parameters α = 4 and ρ = −4 (i.e., γ1 = 1/4, ρ1 = −4);

• X2 follows a Hall/Weiss distribution with parameters α = 6 and ρ = −6 (i.e., γ2 = 1/6, ρ2 = −6).

Results are gathered in Figure 3. We remark that the empirical estimator θ̂ip,emp underestimates the multivariate

CTE and is consistently outperformed by our EVT estimator θ̂ip(n1),n2
.

We also discuss the influence of the sample sizes n, n1 and n2 = n− n1 on the quality of our estimator.

Sensitivity to the choice of the split-up parameters n1 and n2 We analyse the performance of our

estimator for different choices of the total sample size n and of the splitting of the initial sample into two sub-

samples of respective size n1 and n2. The boxplots for the sensitivity analysis with respect to these parameters

are presented in Figures 4 and 5. We consider Copula 4.2.2 in Nelsen (1999) with θ = 2 and the marginal

model (C). We observe on that example that for a total sample size of n = 100 (see Figure 4), our estimator of

(θ1p(n1)
, θ2p(n1)

) for p(n1) = 1/(2n1) is biased if n1 is not large enough. For both i coordinates (left and right),

the bias becomes neglectable for n1 ≥ 70. For a total sample size of n = 230 (see Figure 5) and for both i

coordinates (left and right), the bias becomes neglectable for n1 ≥ 140. If n1 is too small, the Hill estimations γ̂1

and γ̂2 are not accurate enough and introduce a bias in the estimation of (θ1p(n1)
, θ2p(n1)

), with p(n1) = 1/(2n1).

We observe much less variability for a similar bias for the estimation of θ2p(n1)
than for the estimation of θ1p(n1)

.

It is coherent with the values ρ1 = −4 and ρ2 = −6.

Based on these simulated studies, in Section 4, an empirical procedure for the choice of the split-up parameters

n1 and n2 will be proposed.
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Figure 3: Boxplots on 500 Monte-Carlo simulations for Copula 4.2.2 in Nelsen (1999) with θ = 2 and marginal model

(C), p = 1/n. First row: n1 = n2 = 100 (n = 200). Second row: n1 = n2 = 750 (n = 1500).
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Figure 4: Boxplots based on 500 realizations for Copula 4.2.2 in Nelsen (1999) with θ = 2 and marginal model (C),

p = 1/2n1 for n1 ∈ {50, 60, 70, 80}. The sub-sample size n2 = n− n1 with n = 100.
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Figure 5: Boxplots based on 500 realizations for Copula 4.2.2 in Nelsen (1999) with θ = 2 and marginal model (C),

p = 1/2n1 for n1 ∈ {40, 80, 120, 140, 160}. The sub-sample size n2 = n− n1 with n = 230.
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3.2 Not-Archimedean example: HRT Copula

Let us consider the heavy right tail (HRT) copula (also called Clayton survival copula in the insurance and

finance literature): C(u, v) = u+ v − 1 + ((1− u)−1/θ + (1− v)−1/θ − 1)−θ, for θ > 0.

This not-Archimedean copula has low correlation in the joint lower tail but high correlation in the joint upper

tail. It was invented by Venter in 2001 to model the dependence on events of strong intensity (see, e.g., Section

3.8 in Gorge (2013)). Notice that in this case, we can not use the Archimedean generator in order to write

the Kendall distribution. However, one can check the asymptotic dependence of the couple (Xi, Z̃) at least

empirically, by estimating R̂(Xi,Z̃)(1, 1). We consider the previous marginal model (C). Results are gathered in

Figure 6, and still show good performances for our estimator.
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Figure 6: Boxplots and associated QQ-plots on 500 Monte-Carlo simulations for HRT copula with θ = 1 and marginal

model (C), p = 1/4n1 for different sample sizes n1. First row: θ̂i=1
p(n1),n2

. Second row: θ̂i=2
p(n1),n2

.

3.3 Estimation when our assumptions are partially violated

In this section, we investigate the performance of our estimator when assumptions of Theorem 2.1 are partially

violated.

Tail index γi 6∈ (0, 1/2) We consider (X1, X2) with Copula 4.2.2 in Nelsen (1999) (see Section 3.1), with

θ = 2, and Pareto marginals F (x) = 1−(1/x)
1

γi , with γi = 1/2, for i = 1, 2. Firstly, remark that the rate for the

regular variation (3) is too fast then Item (b) of Assumption 2.1 does not hold true in this case. Furthermore,

assumption γi ∈ (0, 1/2) is violated for both components. However, our estimator θ̂ip(n1),n2
is still consistent

(see Remark 4 in Section 2.2). The consistence is illustrated in Figure 7, where we present boxplots of the ratio

of the estimates and the true values for n1 = n2 = 750 and different values of p.

Asymptotic independence We now consider the bivariate Independent copula with Pareto marginals
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Figure 7: Copula 4.2.2 in Nelsen (1999) with θ = 2 and Pareto marginals F (x) = 1− (1/x)
1
γi with γ1 = γ2 = 1/2. Here

we take n1 = n2 = 750, different values of the risk level p and 500 Monte-Carlo simulations.

F (x) = 1 − (1/x)
1

γi with γ1 = γ2 = 1/4. Note that R(Xi,Z) ≡ 0, then this distribution does not satisfy Item

(a.1 ) in Assumption 2.1. In this case, our EVT estimator overestimates the theoretical multivariate CTE (see

Figure 8). For a similar behavior the reader is also referred to Figure 3 in Cai et al. (2015).
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Figure 8: Independent copula and Pareto distributed marginals F (x) = 1− (1/x)
1
γi with γ1 = γ2 = 1/4. Here we take

n1 = n2 = 750, different values of the risk level p and 500 Monte-Carlo simulations.

4 Applications to environmental real data

This section is devoted to the analysis of two real data-sets.

4.1 Analysis of rainfall measurements

In this first real application, we consider the monthly mean of the rainfall measurements recorded in 3 different

stations of the region Bièvre, located in the south of Paris (France), from 2003 to 2013 (see also Di Bernardino

and Prieur (2014)). This data-set was provided by the SIAVB2. The unit of measurements is mm. The

3−dimensional data-set is represented in Figure 9 (left). The temporal series of monthly mean data are denoted

by X1 at Station 1, X2 at Station 2 and X3 at Station 3. Recall that our estimation of the risk measure

θip is based on d−dimensional i.i.d. observations. This assumption was validated for the present data-set in

Di Bernardino and Prieur (2014). The length of the data-set is n = 125. We aim at estimating the multivariate

CTE, i.e., θip = E[Xi |Z > UZ(1 − p)], for i = 1, 2, 3 and Z = F (X1, X2, X3). As a preliminary step, we have

2Syndicat Intercommunal pour l’Assainissement de la Vallée de la Bièvre, http://www.siavb.fr/
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to choose the split-up parameters n1 and n2. We propose a two-steps empirical strategy.

Step 1: for different valued of n1 (n1 ∈ {25, 45, . . . , 100, 105} in the present case), we get γ̂i as in (8). The

procedure for selecting ki(n1) has been described in the beginning of Section 3. We then select the smallest

value of n01 (n01 = 57 in the present case) for which the estimation of γi seems to stabilize (see Table 1).

Step 2: we fix the split-up parameters to n01 and to n02 = n − n01 (n02 = 125 − 57 = 68 in the present case).

The idea is to reduce at most the bias due to the estimation of Zj by Z̃j = Fn2(Xj), for j = 1, . . . , n1 (see Item

(a.3 ) of Assumption 2.1).

In the following, we thus fix n1 = 57 and n=68. To check the asymptotic dependence assumption between Xi and

Z̃ (see Remark 4), we estimate the tail dependence coefficient by R̂(Xi,Z̃)(1, 1) = 1
k

∑n1

j=1 1{Xij >Xin1−bkc,n1
, Z̃j > Z̃n1−bkc,n1

},

with Z̃j = Fn2
(Xj), for j = 1, . . . , n1 and b·c denotes the integer part (see Figure 9, right).
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Figure 9: Left: Scatterplot of considered mean monthly rainfall data-set. Right: R̂(Xi,Z̃)(1, 1) in term of k.

The three estimators R̂(Xi,Z̃)(1, 1), for i = 1, 2, 3, are stable around the value 0.8. This strongly indicates that

right-upper asymptotic dependence is present in this 3-dimensional real data-set.

For the assumption γi < 1/2, we plot the Hill estimation γ̂i against various values of the intermediate sequence

of integers ki (see Figure 10). Accordingly to the procedure described at the beginning of Section 3, we select a

stability window for ki and we average the estimations γ̂i on this window. On the present data-set, the window

ki ∈ [20, 32] is selected for any i = 1, 2, 3.

We then estimate the Multivariate CTE, selecting a stability window for the intermediate sequence (k ∈ [20, 35]

on Figure 11). The results are gathered in Table 2 for each of the three stations and for p(n1) = 1/(2n1),

1/(4n1) and 1/(10n1), corresponding to return periods of around 10, 20 and 50 years. On that data-set, the

averaged monthly precipitations with return periods of around 10 years and 20 years are balanced between the

three stations. However, for a return period of around 50 years, the contribution of the first station detaches

from the other two contributions.
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Figure 10: Mean monthly rainfall data-set. Hill estimates γ̂i in Equation (8) for i = 1, 2, 3. Horizontal line represents

the upper-bound of 1/2. Asymptotic confidence intervals for level α = 0.95 are also displayed.
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Figure 11: Mean monthly rainfall data-set. Estimated multivariate CTE against various values of the intermediate

sequence k(n1), for i = 1, 2, 3, n1 = 57 and different values of risk level p. Full line corresponds to Station 1, dotted to

Station 2 and dashed-dotted to Station 3.

4.2 Analysis of high wind gusts

In this second application we focus on the study of strong wind-gusts. These data come from a larger data-set

previously analyzed in Marcon et al. (2017). We consider the 2 weeks-max wind speed (WS) in meter per

second (m/s), wind gust (WG) in m/s and positive increment air pressure (IP) at the sea level in millibar

(mbar) recorded in Parcay-Meslay city in the north west of France, from July 2004 to July 2013 (see Figure 12,

left).

Remark that this 3-dimensional data-set is composed by hydrological variables of different nature prohibiting

the aggregation of the various components. In such a framework, our multivariate CTE measure defined in (1)

is useful since it just considers as conditioning extreme event the behavior of the copula associated to the 3

different risk variables (see the Introduction section). The length of the data-set is n = 232. We select the two

subsample sizes n1 and n2 with the two-steps empirical procedure proposed in Section 4.1. The results of Step

1 are gathered in Table 3 and lead to the choice: n1 = 145 and n2 = 87.

On Figure 13, we have drawn the Hill estimates against different choices for the intermediate sequence of integers

ki. We see that the window [15, 55] is a stability region for any i = 1, 2, 3. Then, to gain in stability, we average
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Figure 12: Left: Scatterplot of the 3−dimensional wind gusts data-set. Right: R̂(Xi,Z̃)(1, 1) against k.

the estimations γ̂i corresponding to ki in this stability region, as suggested in the beginning of Section 3. The

results are reported in the first column of Table 4.
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Figure 13: Wind gusts data-set. Hill estimates γ̂i in Equation (8) against the intermediate sequence ki, for i = 1, 2, 3.

Horizontal line represents the upper-bound of 1/2. Asymptotic confidence intervals for level α = 0.95 are also displayed.

Then we analyse the asymptotic dependence of the couples (WS, Z̃), (WG, Z̃) and (IP, Z̃) (see Remark 4), by

using the estimated tail dependence coefficient R̂(Xi,Z̃)(1, 1). Figure 12 (right) shows that the estimations are

stable around the value 0.8. This strongly indicates that right-upper asymptotic dependence is present in this

wind gusts data-set. Using the values γ̂i gathered in the first column of Table 4, we estimate the Multivariate

CTE and plot the estimates against various values of the intermediate sequence k (see Figure 14). Following

the same idea of balancing bias and variance, we choose k ∈ [30, 65].

The final estimates based on averaging the estimates for k ∈ [30, 65] are reported in Table 4 for different values

of the risk level p = p(n1). We remark a lower contribution of WS to the multivariate stress scenario represented

here by the event {Z > UZ(1/p)} for small values of risk level p. The contributions of WG and IP are similar,

and about twice the one of WS for the three values of p(n1) (i.e., p = 1/2n1, p = 1/4n1 and p = 1/10n1).
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Figure 14: Wind gusts data-set. Estimated multivariate CTE against various values of the intermediate sequence k and

for different values of risk level p. Full line corresponds to WS, dotted line to WG and dashed-dotted one to IP.
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A Proofs and auxiliary results

This appendix is devoted to the proofs of Theorem 2.1 and Proposition 2.1 stated in Section 2. We firstly focus

on the central limit Theorem 2.1.

Proof of Theorem 2.1: Recall that dn1 := k
n1 p

. Then, one can write

θ̂ip(n1),n2

θip(n1)

=
dγ̂

i

n1

dγ
i

n1

×
θ̂ik
n1
,n2

θik
n1

×
dγ

i

n1
θik
n1

θip(n1)

:= Ln1
1 × L

n1,n2

2 × Ln1
3 .

We now analyse these three factors separately. Under Assumptions (b) and (c), since Ln1
1 does not depend on

n2 then, as in the proof of Theorem 4.3.8 in de Haan and Ferreira (2006), we get for n1 →∞,

√
ki

ln(dn1
)

(Ln1
1 − 1)− Γi(q)

P→ 0, (11)

where Γi(q) is defined in Equation (5).

The asymptotic behaviour of Ln1,n2

2 , for n1, n2 → ∞ is stated in Proposition 2.1 (see proof of Proposition 2.1

below). Finally for Ln1
3 , by using Equations (2)-(3) and their second order strengthening given by Assumptions
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(b) and (d) respectively, we know from the proof of Theorem 1 in Cai et al. (2015) that

Ln1
3 = 1 + o

(
1√
k

)
. (12)

Now, combining (11)-(12) and Proposition 2.1 we obtain the convergence result of Theorem 2.1, where the

covariance matrix of (Θi, Γi(q)) is given in Section 1 and follows from straightforward computation. 2

The second part of this appendix is devoted to the proof of Proposition 2.1. This proof requires different

preliminary results, introduced and proved below.

Proposition A.1. Let en1,n2
:= n1

k (1−K(Z̃n1−k,n1
)), with k = k(n1), Z̃n1−k,n1

the (n1 − k)-th order statistic

of Z̃1, . . . , Z̃n1
and Z̃j = Fn2

(Xj). Under Assumptions (a.2) and (a.3), en1,n2

P→ 1, as n1, n2 →∞.

Proof: Applying the d-dimensional extension of Kolmogorov-Smirnov Theorem and the properties of ordered

statistics, we know that, for all ε > 0∣∣∣Zn1−k,n1
− Z̃n1−k,n1

∣∣∣ = |(F (X))n1−k,n1
− (Fn2

(X))n1−k,n1
| = o(

√
n2
−1+ε

), (13)

where the ordered statistics are defined from the samples (Zj)j=1,...,n1 = (F (Xj))j=1,...,n1
and (Z̃j)j=1,...,n1 =

(Fn2
(Xj))j=1,...,n1

. Then we write

|en1,n2
− 1| ≤

∣∣n1

k (1−K(Zn1−k,n1
))− 1

∣∣+
∣∣∣n1

k (K(Zn1−k,n1
)−K(Z̃n1−k,n1

))
∣∣∣ .

Since 1 − K(Zn1−k,n1
) is the k−th order statistic of a random sample of size n1 from the standard uniform

distribution, we get
∣∣n1

k (1−K(Zn1−k,n1))− 1
∣∣ P→ 0.

We now study the second term. From Assumption (a.2), by applying a first-order Taylor approximation we get∣∣∣n1
k

(K(Zn1−k,n1)−K(Z̃n1−k,n1))
∣∣∣ =

n1
k
K
′
(Zn1−k,n1)

∣∣∣(Z̃n1−k,n1 − Zn1−k,n1) + oP(Z̃n1−k,n1 − Zn1−k,n1)
∣∣∣ .
(14)

Since K(Zn1−k,n1
) ∼ 1 − k

n1
in probability for n1 → ∞, then, from Assumption (a.2), K

′
(Zn1−k,n1

) =

K
′
(K−1(K(Zn1−k,n1))) is bounded for large values of n1. Then, by using Equations (13) and (14),∣∣∣n1

k
(K(Zn1−k,n1

)−K(Z̃n1−k,n1
))
∣∣∣ = o

(n1
k
n
−1+ε

2
2

)
,

which tends to zero as n1 and n2 tend to infinity from Assumption (a.3). Hence the result. 2

Lemma A.1 below is a variation of Lemma 1 in Cai et al. (2015) in our setting. The interested reader is also

referred to Proposition 3.1 in Einmahl et al. (2006). The limit process is characterized by the aforementioned

WR-process (see Section 1). For convenient presentation, all the limit processes that are involved in Lemma

A.1 are defined on the same probability space, via the Skorohod construction. However, they are only equal in

distribution to the original processes.

Define, for i ∈ I,

Rin1
(x, z) :=

n1
k

P
[
1− Fi(Xi) <

k x

n1
, 1−K(Z) <

k z

n1

]
. (15)
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A non-parametric pseudo-estimator of Rin1
(with unknown margins) is given by

T in1,n2
(x, z) :=

1

k

n1∑
j=1

1{1−Fi(Xij)< k x
n1
, 1−K(Z̃j)<

k z
n1
}, (16)

where Z̃j = Fn2(Xj). Its asymptotic behavior is stated in Lemma A.1 below.

Lemma A.1. Let i ∈ I. Suppose that condition in (2) and Assumptions (a.2) and (a.3) hold true. Let T > 0

and η ∈ (maxi∈I γ
i, 1/2). Then, with probability 1, for n1, n2 →∞,

sup
x, z∈(0,T ]

∣∣∣∣∣
√
k (T in1,n2

(x, z)−Rin1
(x, z))−WR(Xi,Z)

(x, z)

xη

∣∣∣∣∣ → 0,

sup
x∈(0,T ]

∣∣∣∣∣
√
k (T in1,n2

(x,∞)− x)−WR(Xi,Z)
(x,∞)

xη

∣∣∣∣∣ → 0,

sup
z∈(0,T ]

∣∣∣∣∣
√
k (T in1,n2

(∞, z)− z)−WR(Xi,Z)
(∞, z)

zη

∣∣∣∣∣ → 0,

where Rin1
(x, z) and T in1,n2

(x, z) are defined by Equations (15) and (16) respectively.

Proof: Let us write

T in1,n2
(x, z) = T in1

(x, z) + T in1,n2
(x, z)− T in1

(x, z),

with T in1
(x, z) := 1

k

∑n1

j=1 1{1−Fi(Xij)< k x
n1
, 1−K(Zj)<

k z
n1
} and Zj = F (Xj). Remark that, by using Lemma 1 in

Cai et al. (2015), Lemma A.1 above holds true by replacing T in1,n2
(x, z) by T in1

(x, z), T in1,n2
(x,∞) by T in1

(x,∞)

and T in1,n2
(∞, z) by T in1

(∞, z). Let us thus study the term

Di
n1,n2

(x, z) :=
√
k
(
T in1,n2

(x, z)− T in1
(x, z)

)
= 1√

k

∑n1

j=1

(
1{1−Fi(Xij)< k x

n1
, 1−K(Z̃j)<

k z
n1
} − 1{1−Fi(Xij)< k x

n1
, 1−K(Zj)<

k z
n1
}

)
= 1

n1

∑n1

j=1 Ln1,n2,k,j ,

with Ln1,n2,k,j = n1√
k

(
1{1−Fi(Xij)< k x

n1
, 1−K(Z̃j)<

k z
n1
} − 1{1−Fi(Xij)< k x

n1
, 1−K(Zj)<

k z
n1
}

)
.

One can deduce that, under Assumptions (a.2) and (a.3),

1

n1

n1∑
j=1

(Ln1,n2,k,j − E (Ln1,n2,k,j))
a.s−−−→

n1,n2

0.

Thus, we now focus on 1
n1

∑n1

j=1 E (Ln1,n2,k,j). Using Hölder’s Inequality, we get:∣∣∣∣∣∣ 1

n1

n1∑
j=1

E (Ln1,n2,k,j)

∣∣∣∣∣∣ ≤ n1√
k

(
P
[
Fi(X

i
j) > 1− k x

n1

])1/p

·

·
(
E
[∣∣11−K(Z̃j)<

kz
n1
,1−K(Zj)≥ kz

n1

∣∣+
∣∣11−K(Z̃j)≥ kz

n1
,1−K(Zj)<

kz
n1

∣∣]q)1/q
= o

(
n1√
k

(
k x

n1

)1/p (
n
−1+ε

2
2

)1/q)
= o

(
√
n1

(
k

n1

) 1
p−

1
2

x
1
p n

−1+ε
2q

2

)
.

(17)
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Then, from Assumption (a.3) it is possible to choose p0 < 1
maxi∈I γi

and η ∈ (maxi∈I γi, 1/2) such that

supx, z∈(0,T ]
|Din1,n2

(x,z)|
xη = o

(
√
n1

(
k
n1

) 1
p0
− 1

2

n
−1+ε
2q0

2 x1/p0−η
)

tends to zero. 2

Finally, Proposition A.2 will be useful below to archive the proof of Proposition 2.1.

Proposition A.2. Let i ∈ I. Define

θ
i
k z
n1
,n2

:=
1

k z

n1∑
j=1

Xi
j 1{Z̃j >UZ(

n1
k z )}

. (18)

Suppose that condition in (2) and Assumptions (a.2) and (a.3) hold with γi ∈ (0, 1/2). Then, for n1, n2 →∞,

sup
1/2≤ z≤ 2

∣∣∣∣∣
( √

k

Ui(
n1

k )

)
(θ
i
k z
n1
,n2
− θik z

n1

) +
1

z

∫ ∞
0

WR(Xi,Z)
(s, z) ds−γ

i

∣∣∣∣∣ P→ 0 ,

with θ
i
k z
n1
,n2

as in Equation (18) and θik z
n1

= E
[
Xi |Z > QZ

(
1− k z

n1

)]
.

Proof: Let sn1
(x) := n1

k (1 − Fi(Ui(n1

k )x−γ
i

)), for x > 0. Remark that, from the regular variation condition

in (3), sn1(x) → x, as n1 → ∞. Furthermore Lemma 3 in Cai et al. (2015) states that, when handling proper

integrals and by using the uniform convergence of sn1
(x) to x, as n1 → ∞, sn1

(x) can be substituted by x in

the limit. We get

z θik z
n1

=

∫ ∞
0

n1
k

P
[
Xi > s,Z > UZ

( n1
k z

)]
ds =

∫ ∞
0

Rin1

(n1
k

(1− Fi(s)), z
)

ds =

= −Ui
(n1
k

) ∫ ∞
0

Rin1
(sn1

(x), z) dx−γ
i

, (19)

with Rin1
as in (15). Similarly, z θ

i
k z
n1
,n2

= −Ui(n1

k )
∫∞
0
T in1,n2

(sn1
(x), z) dx−γ

i

, with T in1,n2
as in (16) and θ

i
k z
n1
,n2

as in (18). For any T > 0

sup
1/2≤ z≤ 2

∣∣∣∣∣
( √

k

Ui(
n1

k )

)(
z θ

i
k z
n1
,n2
− z θik z

n1

)
+

∫ ∞
0

WR(Xi,Z)
(x, z) dx−γ

i

∣∣∣∣∣
≤ sup

1/2≤ z≤ 2

∣∣∣∣∫ ∞
T

WR(Xi,Z)
(x, z) dx−γ

i

∣∣∣∣+ sup
1/2≤ z≤ 2

∣∣∣∣∫ ∞
T

√
k (T in1,n2

(sn1
(x), z)−Rin1

(sn1
(x), z)) dx−γ

i

∣∣∣∣
+ sup

1/2≤ z≤ 2

∣∣∣∣∣
∫ T

0

√
k (T in1,n2

(sn1(x), z)−Rin1
(sn1(x), z))−WR(Xi,Z)

(x, z) dx−γ
i

∣∣∣∣∣
:= I1(T ) + In1,n2

2 (T ) + In1,n2

3 (T ).

It is sufficient to prove that for any ε > 0, there exist T0 = T0(ε) such that

P[I1(T0) > ε] < ε (20)

and n1,0, n2,0 such that for any n1 > n1,0 and n2 > n2,0,

P[In1,n2

2 (T0) > ε] < ε, (21)

P[In1,n2

3 (T0) > ε] < ε. (22)
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Equation (20) holds true by application of Lemma 2 in Cai et al. (2015) with η = 0.

We now deal with (21). Once more we use the decomposition

T in1,n2
(sn1(x), z) = T in1

(sn1(x), z) + T in1,n2
(sn1(x), z)− T in1

(sn1(x), z)

= T in1
(sn1

(x), z) + 1√
k
Di
n1,n2

(sn1(x), z).

Then, we deduce that In1,n2

2 (T0) is bounded by

sup
1/2≤ z≤ 2

∣∣∣∣∫ ∞
T0

Di
n1,n2

(sn1(x), z) dx−γ
i

∣∣∣∣+ sup
1/2≤ z≤ 2

∣∣∣∣∫ ∞
T0

√
k(T in1

(sn1(x), z)−Rin1
(sn1(x), z)) dx−γ

i

∣∣∣∣ .
Then using the bound in (17) for p = +∞ and q = 1, we get

sup1/2≤ z≤ 2

∣∣∣∫∞T0
Di
n1,n2

(sn1
(x), z) dx−γ

i
∣∣∣ = O

(
1

Tγ
i

0

n1√
k
n
−1+ε

2
2

)
,

which tends to zero from Assumption (a.3). We conclude for the term In1,n2

2 (T0) by using the result of Propos-

ition 2 in Cai et al. (2015) for sup1/2≤ z≤ 2

∣∣∣∫∞T0

√
k (T in1

(sn1(x), z)−Rin1
(sn1(x), z)) dx−γ

i
∣∣∣.

It remains to handle the term (22). We get

P[In1,n2

3 (T ) > ε] = P

[
sup

1/2≤ z≤ 2

∣∣∣∣∣
∫ T

0

√
k (T in1,n2

(sn1
(x), z)−Rin1

(sn1
(x), z))−WR(Xi,Z)

(x, z) dx−γ
i

∣∣∣∣∣ > ε

]

≤ P

[
sup

1/2≤ z≤ 2

∣∣∣∣∣
∫ T

0

√
k (T in1,n2

(sn1(x), z)−Rin1
(sn1(x), z))−WR(Xi,Z)

(sn1(x), z) dx−γ
i

∣∣∣∣∣ > ε/2

]

+ P

[
sup

1/2≤ z≤ 2

∣∣∣∣∣
∫ T

0

WR(Xi,Z)
(sn1

(x), z)−WR(Xi,Z)
(x, z) dx−γ

i

∣∣∣∣∣ > ε/2

]
= pn1,n2

31 + pn1
32 .

Firstly we consider pn1,n2

31 . Notice that for any T , there exists ñ1 = n1(T ), such that for all n1 > ñ1, sn1
(T ) <

T + 1. Hence for n1 > ñ1 and for η0 ∈ (maxi∈I γ
i, 1/2),

pn1,n2

31 ≤ P

 sup
1/2≤ z≤ 2,
0<s≤T+1

∣∣∣∣∣
√
k (T in1,n2

(s, z)−Rin1
(s, z))−WR(Xi,Z)

(s, z)

sη0

∣∣∣∣∣
∣∣∣∣∣
∫ T

0

(sn1
(x))η0dx−γ

i

∣∣∣∣∣ > ε/2

 .
Notice that, by Lemma 3 in Cai et al. (2015),

∣∣∣∫ T0 (sn1
(x))η0dx−γ

i
∣∣∣→ γi

η0−γi T
η0−γi , as n1 →∞. By application

of Lemma A.1, we conclude the proof for pn1,n2

31 . Finally, since pn1
32 does not depend on n2 we can conclude

using Lemma 2 in Cai et al. (2015). 2

We now use the auxiliary results above to prove Proposition 2.1 stated in Section 2.

Proof of Proposition 2.1: From Proposition 1 in Cai et al. (2015) applied to the bivariate vector (Xi, Z), we

have that limn1→∞
θik/n1

Ui(n1/k)
=
∫∞
0
R(Xi,Z)(x

−1/γi , 1) dx. Then, to prove Proposition 2.1 it is sufficient to prove

that, for n1, n2 →∞ √
k

Ui(n1/k)

(
θ̂ik
n1
,n2
− θik

n1

)
P→ Θi

∫ ∞
0

R(Xi,Z)(x
−1/γi , 1) dx.
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Note that θ̂ik
n1
,n2

= en1,n2
θ
i
k en1,n2

n1

. From Proposition A.1, we know that en1,n2

P→ 1, as n1, n2 →∞. Using the

analytical expression of process Θi in Equation (4), we can write:

√
k

Ui(n1/k)

(
en1,n2

θ
i
k en1,n2

n1

− θik
n1

)
−Θi

∫ ∞
0

R(Xi,Z)(x
−1/γi , 1) dx

=

( √
k

Ui(n1/k)

(
en1,n2

θ
i
k en1,n2

n1

− en1,n2
θik en1,n2

n1

)
+

∫ ∞
0

WR(Xi,Z)
(s, 1) ds−γ

i

)

+

( √
k

Ui(n1/k)

(
en1,n2θ

i
k en1,n2

n1

− θik
n1

)
−WR(Xi,Z)

(∞, 1)(γi − 1)

∫ ∞
0

R(Xi,Z)(s
−1/γi , 1) ds

)

=: J
(n1,n2)
1 + J

(n1,n2)
2 .

We prove that both J
(n1,n2)
1 and J

(n1,n2)
2 converge to zero in probability as n1, n2 → ∞. Using Lemma A.1,

since T in1,n2
(∞, en1,n2

) = 1, we get, as n1, n2 →∞:

√
k (en1,n2

− 1)
P→ −WR(Xi,Z)

(∞, 1) . (23)

This implies that limn1,n2→+∞ P(|en1,n2
− 1| > k−1/4) = 0. Thus

|J (n1,n2)
1 | ≤ sup

|z−1|<k−1/4

∣∣∣∣∣
√
k

Ui(n1/k)

(
z θ

i
k z,n2
n1

− z θik z
n1

)
+

∫ ∞
0

WR(Xi,Z)
(s, z) ds−γ

i

∣∣∣∣∣
+ sup
|z−1|<k−1/4

∣∣∣∣∫ ∞
0

WR(Xi,Z)
(s, z)−WR(Xi,Z)

(s, 1) ds−γ
i

∣∣∣∣ .
The first term of the right hand term above converges to zero in probability by Proposition A.2. The second

term can be handled as in the proof of Proposition 3 in Cai et al. (2015), using Lemma 2 in Cai et al. (2015).

We now focus on J
(n1,n2)
2 . Firstly recall that, using Assumption (a.1), as n1 →∞

sup
1/2≤ z≤ 2

√
k

∣∣∣∣∫ ∞
0

Rin1
(sn1

(x), z)−R(Xi,Z)(x, z) dx−γ
i

∣∣∣∣→ 0, (24)

(see Equation (27) in Cai et al. (2015)). Combining (19) and (24), we get:

en1,n2 θ
i
k en1,n2

n1

Ui(n1/k)
= −

∫ ∞
0

Rin1
(sn1(x), en1,n2) dx−γ

i

= −
∫ ∞
0

R(Xi,Z)(x, en1,n2) dx−γ
i

+ oP(1/
√
k),

where the last term oP(1/
√
k) does not depend on n2. Using the homogeneity of R function, we have:

en1,n2 θ
i
k en1,n2

n1

= e1−γ
i

n1,n2
θik
n1

+ oP

(
Ui(n1/k)√

k

)
,

still with the last term not depending on n2. By applying (23) and Proposition 1 in Cai et al. (2015) for the

bivariate vector (Xi, Z), as far as the Cramér’s delta method, we get as n1, n2 →∞,

√
k

Ui(n1/k)

(
en1,n2

θik en1,n2
n1

− θik
n1

)
=
√
k
(
e1−γ

i

n1,n2
− 1
) θik

n1

Ui(n1/k)
+ oP(1)

P→ (γi − 1)WR(Xi,Z)
(∞, 1)

∫ ∞
0

R(Xi,Z)(s
−1/γi , 1) ds ,

uniformly in n2. Hence J
(n1,n2)
2 converges to zero in probability as n1, n2 →∞. Hence the result. 2
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structure for bivariate distributions. Comput. Statist. Data Anal., 51(10):5112–5129.

Cai, J. and Li, H. (2005). Conditional tail expectations for multivariate phase-type distributions. Journal of Applied

Probability, 42(3):810–825.

Cai, J. J., Einmahl, J. H. J., de Haan, L., and Zhou, C. (2015). Estimation of the marginal expected shortfall: the mean

when a related variable is extreme. Journals of the Royal Statistical Society, Series B, 77(2):417–442.
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n1 105 100 95 85 75 65 60 57 56 55 50 45 25

n2 20 25 30 40 50 60 65 68 69 70 75 80 100

stable range ki [45, 60] [40, 60] [35, 60] [33, 50] [24, 40] [22, 37] [22, 35] [20, 32] [17, 30] [17, 30] [15, 27] [14, 25] [3, 7]

averaged γ̂1 0.404 0.399 0.399 0.403 0.413 0.407 0.405 0.405 0.362 0.344 0.353 0.365 0.209

averaged γ̂2 0.355 0.357 0.381 0.367 0.363 0.355 0.352 0.353 0.315 0.298 0.292 0.305 0.213

averaged γ̂3 0.367 0.363 0.367 0.366 0.362 0.368 0.363 0.363 0.303 0.297 0.288 0.302 0.226

Table 1: Mean monthly rainfall data-set. Estimation of γi for different values of n1 and n2 = n − n1. Here

n = 125.

Station i γ̂i θ̂ip=1/(2n1),n2
θ̂ip=1/(4n1),n2

θ̂ip=1/(10n1),n2

1 0.405 148.089 196.083 284.188

2 0.353 142.781 182.363 252.005

3 0.363 147.084 189.164 263.811

Table 2: The estimates γ̂i are computed by taking the average for ki ∈ [20, 32] for i = 1, 2, 3. The estimates of the

multivariate CTE are based on these values of γ̂i. We report the average of θ̂ip(n1),n2
for k(n1) ∈ [20, 35] with n1 = 57

and p(n1) = 1/(2n1), 1/(4n1), 1/(10n1).

n1 210 220 205 190 175 160 150 145 140 135

n2 22 12 27 42 57 72 82 87 92 97

stable range ki [30, 90] [30, 90] [20, 70] [20, 60] [20, 61] [16, 60] [15, 60] [15, 55] [15,55] [15, 45]

averaged γ̂1 0.172 0.169 0.169 0.179 0.172 0.173 0.173 0.173 0.165 0.164

averaged γ̂2 0.181 0.179 0.178 0.178 0.174 0.171 0.171 0.171 0.161 0.154

averaged γ̂3 0.235 0.231 0.236 0.243 0.245 0.241 0.240 0.240 0.237 0.227

Table 3: Wind gusts data-set. Estimation of γi for different values of n1 and n2 = n− n1. Here n = 232.

Variables γ̂i θ̂ip=1/(2n1),n2
θ̂ip=1/(4n1),n2

θ̂ip=1/(10n1),n2

WS 0.173 22.177 25.002 29.298

WG 0.171 40.981 46.137 53.964

IP 0.240 47.253 55.805 69.532

Table 4: The estimates γ̂i are computed by taking the average for ki ∈ [15, 55] for i = 1, 2, 3. The estimates of the

multivariate CTE are based on these values of γ̂i. We report the average of θ̂ip(n1),n2
for k(n1) ∈ [30, 65] with n1 = 145

and p(n1) = 1/(2n1), 1/(4n1), 1/(10n1).
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