B. Frenay and M. Verleysen, Classification in the Presence of Label Noise: A Survey, IEEE Transactions on Neural Networks and Learning Systems PP (99
DOI : 10.1109/TNNLS.2013.2292894

K. R. Gabriel and R. R. Sokal, A New Statistical Approach to Geographic Variation Analysis, Systematic Zoology, vol.18, issue.3, pp.259-278, 1969.
DOI : 10.2307/2412323

G. Toussaint, The relative neighbourhood graph of a finite planar set, Pattern Recognition, vol.12, issue.4, pp.261-268, 1980.
DOI : 10.1016/0031-3203(80)90066-7

C. T. Zahn, Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters, IEEE Transactions on Computers, vol.20, issue.1, pp.68-86, 1971.
DOI : 10.1109/T-C.1971.223083

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Urquhart, Graph theoretical clustering based on limited neighbourhood sets, Pattern Recognition, vol.15, issue.3, pp.173-187, 1982.
DOI : 10.1016/0031-3203(82)90069-3

F. Muhlenbach and S. Lallich, A New Clustering Algorithm Based on Regions of Influence with Self-Detection of the Best Number of Clusters, 2009 Ninth IEEE International Conference on Data Mining, pp.6-9
DOI : 10.1109/ICDM.2009.133

URL : https://hal.archives-ouvertes.fr/hal-00446155

M. Paterson and F. F. Yao, On nearest-neighbor graphs, Automata, Languages and Programming Proceedings, pp.416-426, 1992.
DOI : 10.1007/3-540-55719-9_93

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Eppstein, M. Paterson, and F. F. Yao, On Nearest-Neighbor Graphs, Discrete & Computational Geometry, vol.4, issue.3, pp.263-282, 1997.
DOI : 10.1007/PL00009293

G. C. Osbourn and R. F. Martinez, Empirically defined regions of influence for clustering analyses, Pattern Recognition, vol.28, issue.11, pp.1793-1806, 1995.
DOI : 10.1016/0031-3203(95)00032-U

J. W. Jaromczyk and G. T. Toussaint, Relative neighborhood graphs and their relatives, Proceedings of the IEEE, vol.80, issue.9, pp.1502-1517, 1992.
DOI : 10.1109/5.163414

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Muhlenbach and R. Rakotomalala, Multivariate supervised discretization, a neighborhood graph approach, 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp.9-12, 2002.
DOI : 10.1109/ICDM.2002.1183918

G. T. Toussaint, GEOMETRIC PROXIMITY GRAPHS FOR IMPROVING NEAREST NEIGHBOR METHODS IN INSTANCE-BASED LEARNING AND DATA MINING, International Journal of Computational Geometry & Applications, vol.17, issue.02, pp.101-150, 2005.
DOI : 10.1109/72.501733

A. D. Cliff and J. K. Ord, Spatial processes, models & applications, 1986.

G. J. Mclachlan, Discriminant Analysis and Statistical Pattern Recognition, 2004.
DOI : 10.1002/0471725293

N. Cristianini, J. Shawe-taylor, A. Elisseeff, and J. S. Kandola, On Kernel Target Alignment, Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, pp.367-373, 2001.
DOI : 10.1007/3-540-33486-6_8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. H. Nguyen and T. B. Ho, Kernel matrix evaluation, IJCAI Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp.987-992, 2007.
DOI : 10.1016/j.patcog.2008.04.005

D. A. Zighed, S. Lallich, and F. Muhlenbach, A statistical approach to class separability, Applied Stochastic Models in Business and Industry, vol.65, issue.2, pp.187-197, 2005.
DOI : 10.1002/asmb.532

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. M. Mood, The Distribution Theory of Runs, The Annals of Mathematical Statistics, vol.11, issue.4, pp.367-392, 1940.
DOI : 10.1214/aoms/1177731825

A. Wald and J. Wolfowitz, On a Test Whether Two Samples are from the Same Population, The Annals of Mathematical Statistics, vol.11, issue.2, pp.147-162, 1940.
DOI : 10.1214/aoms/1177731909

A. K. Jain and R. C. Dubes, Algorithms for clustering data, 1988.

G. E. Noether, A Central Limit Theorem with Nonparametric Applications, The Annals of Mathematical Statistics, vol.41, issue.5, pp.1753-1755, 1970.
DOI : 10.1214/aoms/1177696820

P. A. Moran, The interpretation of statistical maps, Journal of the Royal Statistical Society, Series BMethodological), vol.10, issue.2, pp.246-251, 1948.

H. Hacid and D. A. Zighed, An Effective Method for Locally Neighborhood Graphs Updating, Database and Expert Systems Applications, 16th International Conference, pp.930-939, 2005.
DOI : 10.1007/11546924_91

J. Leskovec and C. Faloutsos, Sampling from large graphs, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.631-636, 2006.
DOI : 10.1145/1150402.1150479

F. Leisch and E. Dimitriadou, mlbench: Machine Learning Benchmark Problems , r package version 2, pp.1-1, 2010.

L. Breiman, Bias, variance, and arcing classifiers, 1996.

Y. Freund and R. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119-139, 1997.
DOI : 10.1006/jcss.1997.1504

K. Hornik, C. Buchta, and A. , Open-source machine learning: R meets Weka, Computational Statistics, vol.15, issue.3, pp.225-232, 2009.
DOI : 10.1007/s00180-008-0119-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. M. Cover and P. E. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

A. Karatzoglou, A. Smola, K. Hornik, and A. , Zeileis, kernlab ? an S4 package for kernel methods in R, Journal of Statistical Software, vol.11, issue.9, pp.1-20, 2004.
DOI : 10.18637/jss.v011.i09

URL : http://doi.org/10.18637/jss.v011.i09

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

A. Liaw and M. Wiener, Classification and Regression by randomForest, pp.18-22, 2002.

N. Landwehr, M. Hall, and E. Frank, Logistic Model Trees, Machine Learning, vol.4, issue.3, pp.161-205, 2005.
DOI : 10.1007/s10994-005-0466-3

J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors), The Annals of Statistics, vol.28, issue.2, pp.337-407, 2000.
DOI : 10.1214/aos/1016218223

C. A. Shipp and L. I. Kuncheva, Relationships between combination methods and measures of diversity in combining classifiers, Information Fusion, vol.3, issue.2, pp.135-148, 2002.
DOI : 10.1016/S1566-2535(02)00051-9

F. Muhlenbach, S. Lallich, and D. A. Zighed, Identifying and handling mislabelled instances, Journal of Intelligent Information Systems, vol.22, issue.1, pp.89-109, 2004.
DOI : 10.1023/A:1025832930864

D. A. Zighed, D. Tounissoux, J. P. Auray, and C. Largeron, Discrimination by optimizing a local consistency criterion, Uncertainty in Knowledge Bases, 3rd International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU '90 Proceedings, pp.337-348, 1990.
DOI : 10.1007/BFb0028120

G. M. Weiss, Mining with rarity, ACM SIGKDD Explorations Newsletter, vol.6, issue.1, pp.7-19, 2004.
DOI : 10.1145/1007730.1007734

D. A. Cieslak and N. V. Chawla, Learning Decision Trees for Unbalanced Data, Machine Learning and Knowledge Discovery in Databases, European Conference Proceedings, Part I, pp.241-256, 2008.
DOI : 10.1007/978-3-540-87479-9_34

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Q. Cai, H. He, and H. Man, Imbalanced evolving self-organizing learning, Neurocomputing, vol.133, pp.258-270, 2014.
DOI : 10.1016/j.neucom.2013.11.010