On the asymptotic behaviour of M/G/1 retrial queues with batch arrivals and impatience phenomenon

Abstract : In this work, we consider an M/G/1 retrial queue with batch arrivals and impatient customers. By using the method of supplementary variables, we obtain the partial generating functions of the steady state joint distribution of the server state and the number of customers in the retrial group. To complete the analysis of the considered model, we find the steady state distribution of the embedded Markov chain. Although the generating function of the steady state distribution of the number of customers in the retrial group can be obtained in explicit form, it is cumbersome and does not reveal the nature of the distribution in question. Therefore, we investigate the asymptotic behaviour of the random variable representing the number of customers in the retrial group under limit values of various parameters.
Type de document :
Article dans une revue
Mathematical and Computer Modelling, Elsevier, 2012, 〈10.1016/j.mcm.2011.08.039〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01523971
Contributeur : Jean-Bernard Baillon <>
Soumis le : mercredi 17 mai 2017 - 12:04:36
Dernière modification le : dimanche 8 avril 2018 - 11:48:13

Lien texte intégral

Identifiants

Collections

Citation

Nawel Arrar, Natalia Djellab, Jean-Bernard Baillon. On the asymptotic behaviour of M/G/1 retrial queues with batch arrivals and impatience phenomenon. Mathematical and Computer Modelling, Elsevier, 2012, 〈10.1016/j.mcm.2011.08.039〉. 〈hal-01523971〉

Partager

Métriques

Consultations de la notice

71