M. Duvernoy, The Human Brain: Surface, Three- Dimensional Sectional Anatomy with MRI, and Blood Supply, 2012.
DOI : 10.1007/978-3-7091-6792-2

G. Chaudhuri and S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chemical Reviews, vol.112, issue.4, pp.2373-2433, 2012.
DOI : 10.1021/cr100449n

D. Lee, D. Yoo, M. H. Ling, T. Cho, J. Hyeon et al., Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy, Chemical Reviews, vol.115, issue.19, pp.10637-10689, 2015.
DOI : 10.1021/acs.chemrev.5b00112

D. Laurent, M. Forge, A. Port, C. Roch, L. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, vol.108, issue.6, pp.2064-2110, 2008.
DOI : 10.1021/cr068445e

J. Kucheryavy, V. T. He, P. John, L. Maharjan, G. Z. Spinu et al., Superparamagnetic Iron Oxide Nanoparticles with Variable Size and an Iron Oxidation State as Prospective Imaging Agents, Langmuir, vol.29, issue.2, pp.710-716, 2013.
DOI : 10.1021/la3037007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666865

H. Mahmoudi, B. Hofmann, A. Rothen-rutishauser, and . Petri-fink, Assessing the In Vitro and In Vivo Toxicity of Superparamagnetic Iron Oxide Nanoparticles, Chemical Reviews, vol.112, issue.4, pp.2323-2338, 2012.
DOI : 10.1021/cr2002596

K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

H. Ganta, A. Devalapally, M. Shahiwala, and . Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, Journal of Controlled Release, vol.126, issue.3, pp.187-204, 2008.
DOI : 10.1016/j.jconrel.2007.12.017

A. C. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober et al., Emerging applications of stimuli-responsive polymer materials, Nature Materials, vol.323, issue.2, pp.101-113, 2010.
DOI : 10.1038/nmat2614

Y. Galaev and B. Mattiasson, 'Smart' polymers and what they could do in biotechnology and medicine, Trends in Biotechnology, vol.17, issue.8, pp.335-340, 1999.
DOI : 10.1016/S0167-7799(99)01345-1

A. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery???, Advanced Drug Delivery Reviews, vol.58, issue.15, pp.1655-1670, 2006.
DOI : 10.1016/j.addr.2006.09.020

M. Chanana, S. Jahn, R. Georgieva, J. Lutz, H. Bäumler et al., Fabrication of Colloidal Stable, Thermosensitive, and Biocompatible Magnetite Nanoparticles and Study of Their Reversible Agglomeration in Aqueous Milieu, Chemistry of Materials, vol.21, issue.9, pp.1906-1914, 2009.
DOI : 10.1021/cm900126r

M. Jonas, K. Glinel, R. Oren, B. Nysten, and W. T. Huck, Thermo-Responsive Polymer Brushes with Tunable Collapse Temperatures in the Physiological Range, Macromolecules, vol.40, issue.13, pp.4403-4405, 2007.
DOI : 10.1021/ma070897l

L. Barbey, D. Lavanant, N. Paripovic, C. Schüwer, S. Sugnaux et al., Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications, Chemical Reviews, vol.109, issue.11, pp.5437-5527, 2009.
DOI : 10.1021/cr900045a

V. L. Edmondson, W. T. Osborne, and . Huck, Polymer brushes via surface-initiated polymerizations, Chemical Society Reviews, vol.33, issue.1, pp.14-22, 2004.
DOI : 10.1039/b210143m

W. Matyjaszewski, K. Jakubowski, W. Min, J. Tang, W. A. Huang et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proceedings of the National Academy of Sciences, vol.5, issue.15, pp.15309-15314, 2006.
DOI : 10.1021/ic9812048

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1622823

H. Matyjaszewski, W. Dong, J. Jakubowski, A. Pietrasik, and . Kusumo, Grafting from Surfaces for ???Everyone???:?? ARGET ATRP in the Presence of Air, Langmuir, vol.23, issue.8, pp.4528-4531, 2007.
DOI : 10.1021/la063402e

M. Gaspar, E. C. Costa, J. A. Queiroz, C. Pichon, F. Sousa et al., Folate-Targeted Multifunctional Amino Acid-Chitosan Nanoparticles for Improved Cancer Therapy, Pharmaceutical Research, vol.23, issue.2, pp.562-577, 2015.
DOI : 10.1007/s11095-014-1486-0

URL : https://hal.archives-ouvertes.fr/hal-01171243

T. Li, C. Li, S. Liu, J. Ye, H. Liang et al., Folic Acid-Targeted and Cell Penetrating Peptide-Mediated Theranostic Nanoplatform for High-Efficiency Tri-Modal Imaging-Guided Synergistic Anticancer Phototherapy, Journal of Biomedical Nanotechnology, vol.12, issue.5, pp.878-893, 2016.
DOI : 10.1166/jbn.2016.2226

K. S. Sahoo, R. Devi, T. K. Banerjee, P. Maiti, D. Pramanik et al., Thermal and pH Responsive Polymer-Tethered Multifunctional Magnetic Nanoparticles for Targeted Delivery of Anticancer Drug, ACS Applied Materials & Interfaces, vol.5, issue.9, pp.3884-3893, 2013.
DOI : 10.1021/am400572b

A. E. Hervault, M. Dunn, C. Lim, D. Boyer, S. Mott et al., Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications, Nanoscale, vol.52, issue.24, pp.12152-12161, 2016.
DOI : 10.1039/C5NR07773G

R. Missirlis, N. Kawamura, and J. A. Tirelli, Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles, European Journal of Pharmaceutical Sciences, vol.29, issue.2, pp.120-129, 2006.
DOI : 10.1016/j.ejps.2006.06.003

B. Louguet, R. Rousseau, N. Epherre, G. Guidolin, S. Goglio et al., Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release, Polymer Chemistry, vol.1, issue.6, pp.1408-1417, 2012.
DOI : 10.1039/c2py20089a

URL : https://hal.archives-ouvertes.fr/hal-00817216