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Abstract. This article addresses one of the major constraints imposed by additive manufacturing processes

on shape optimization problems - that of overhangs, i.e. large regions hanging over void without sufficient

support from the lower structure. After revisiting the ‘classical’ geometric criteria used in the literature,
based on the angle between the structural boundary and the build direction, we propose a new mechanical

constraint functional, which mimics the layer by layer construction process featured by additive manufac-

turing technologies, and thereby appeals to the physical origin of the difficulties caused by overhangs. This
constraint, as well as some variants, are precisely defined; their shape derivatives are computed in the sense of

Hadamard’s method and numerical strategies are extensively discussed, in two and three space dimensions,
to efficiently deal with the appearance of overhang features in the course of shape optimization processes.
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1. Introduction

The recent breakthroughs in the development of additive manufacturing technologies have given a new
impetus to the capabilities of construction processes. Their unique potential as regards the complexity of the
assembled designs is no longer restricted to their original purpose of rapid prototyping, and they have already
been integrated into various real-life, industrial environments; as an illustration, additive manufacturing
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technologies have been used in the automotive industry [13], in biomedical engineering [27], etc; see [37] for
an overview.

Let us present shortly the main features of additive manufacturing techniques, referring to [6, 20] and
the introduction in [12] for more detailed accounts. Additive manufacturing is a common label for quite
different construction processes, all of which starting by a slicing operation: the Computer Aided Design
(CAD) model for the input shape (which is often supplied under the form of a surface mesh) is converted
into a series of two-dimensional layers; see Figure 1. Thence, these layers are assembled individually, one

Figure 1. Rough sketch of the slicing procedure, initiating any additive manufacturing process.

above the other, according to the particular technology at play.
These technologies show competing features as far as their speed, cost, accuracy, and the nature of the

processed materials are concerned. Two important categories are the following (see Figure 2 for illustrations):

• Material extrusion methods, such as Fused Filament Fabrication (FFF), use a nozzle to extrude the
molten material, which is then deposited into rasters; such methods are typically used to process
thermoplastics (ABS), although recent studies have considered applying the same principle with
metal [29].

• Powder bed fusion strategies (such as Selective Laser Melting, or Electron Beam Melting) are gen-
erally used to process metal; at the beginning of the construction of each layer, metallic powder
is spread within the build chamber and a laser (or an electron beam) is used to bind the grains
together.

Figure 2. (Left) Sketch of Fused Filament Fabrication methods: a molten filament is de-
posited by a nozzle along rasters; (right) sketch of the Electron Beam Melting technology:
metallic powder is fused by an electron beam, giving birth to the desired shape.

In spite of their unique assets, additive manufacturing technologies also suffer from major drawbacks when
compared to traditional construction methodologies: at first, they are not scalable, contrary to, for instance,
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casting techniques where the mold, once it is constructed, can serve to produce quickly and efficiently
thousands of copies of the desired component. What’s more, because of the specific path followed by the
printing nozzle or laser, the material properties of parts produced by additive manufacturing methods are
not precisely controlled, and many ongoing studies aim at quantifying the induced anisotropic behavior; see
for instance [1, 46].

On a different note, closer to the topic of the present article is the difficulty experienced by almost all
additive manufacturing techniques when it comes to building parts showing large overhangs, that is large
features close to horizontal, hanging over void, without sufficient support from the lower structure; see Figure
3 for an illustration. Beyond the increased staircase effect entailed by the assembly of such regions, the reason
for this difficulty varies from one additive manufacturing technology to the other:

Figure 3. The angle between the structural boundary and the build direction has a direct
impact on the quality of the processed shape.

• In the case of material extrusion methods, structures with large overhangs cannot be produced as
is, since this demands depositing material on void.

• In the case of powder bed fusion methods, the rapid melting then solidification of the material
induces large thermal variations in the structure; this creates residual stresses, and eventually causes
warpage. This phenomenon is all the more likely to occur in regions which are unanchored to the
lower structure (in particular, overhanging regions); see [31]. Another source of difficulties in the
assembly of overhanging regions lies in that the fused material may drip between the unfused powder
of the lower structure, thus leaving the processed boundary with rough patches [10].

Several possibilities have been thought off to deal with the presence of overhangs in the constructed shapes.
Most of them are post-processing methods, i.e. they apply to the final shape (and they are not included
in the prior design optimization stage). In this direction, much effort has been devoted to the construction
of an efficient scaffold structure to support the shape, which has to be removed at the end of the process;
see for instance [16]. Other works have focused on identifying the best build direction, which minimizes the
volume of the needed support structure, or the impact of the staircase effect on the cylindricity and flatness
errors [15, 36]. Let us eventually mention the works [9, 23, 26] in which the constructed design is modified
so that it becomes self-supporting.

On the contrary, surprisingly few works tackle the penalization of overhangs at the level of the shape
optimization problem. As far as this strategy is concerned, most investigations focus on criteria based on
the angle between the structural boundary and the build direction. In [8], a quite complicated procedure is
proposed which is based on the average angle between every overhanging region and the build direction, but
the sensitivity analysis of the resulting criterion is postponed to a further publication and no actual imple-
mentation of the method is reported. In [19], a filter is introduced for density-based topology optimization,
whereby the value of the density field at each point depends on those in the lower regions which are eligible
to provide support to the considered point; a quite similar approach is used in the works [24, 25]. In [39],
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still in the context of density-based topology optimization, the problem is formulated as the penalization of
the angle between the gradient of the density function and the build direction. In the interesting work [30],
an optimization algorithm is proposed to optimize at the same time the shape and the amount of material
needed for the supporting scaffold structure during its assembly. This procedure relies on the topological
sensitivity analysis of the latter quantity. Last but not least, from a quite different point of view, the con-
tribution [44] aims at extracting a self-supporting truss structure from a continuous shape, composed of a
minimum amount of material.

The main goal of the present article is to explore two alternative strategies for constraining the presence of
overhangs in shape and topology optimization problems. On the one hand, we address the problem in a purely
geometric manner, which is reminiscent of the aforementionned angle-based criteria used in the literature.
On the other hand, we use a new formulation which takes advantage of the theoretical background developed
in our previous work [3], and appeals to the mechanical origin of the difficulty to build overhangs. More
precisely, we propose a new constraint functional which is based on a simplified model for the manufacturing
process: we distinguish between the final shape, which is the end component used in the real-life context
(this is the shape whose mechanical performance is evaluated and optimized), and the intermediate shapes
Ωh, corresponding to snapshots taken during the construction process of Ω, where Ω has been assembled
layer by layer, up to height h. The physical behavior of the Ωh during the manufacturing stage is modelled,
and aggregated into a single constraint functional. We present several numerical investigations about the
respective achievements of both formulations, and we infer efficient numerical strategies to deal with the
presence of overhangs in the produced shapes.

The remainder of this article is organized as follows. In Section 2, we present the shape optimization
problem at stake, namely that of compliance minimization, and we recall some classical notions about shape
derivatives. In Section 3, we introduce geometric shape functionals which rely on the angle between the
structural boundary and the build direction to constrain the presence of overhangs in shape optimization
problems. Section 4 is devoted to the description, analysis and implementation of a mechanical constraint
functional (and variants of it) to achieve this goal. Eventually, in Section 5, we discuss several numerical
instances of shape optimization problems under overhang constraints and we appraise the efficiency of the
proposed formulations.

2. Shape optimization of linearly elastic structures

2.1. Description of the shape optimization problem.

The objects in the place of honor in this article are shapes, that is, bounded domains Ω ⊂ Rd, filled with
a linear elastic material characterized by its Hooke’s tensor A. Each shape Ω is clamped on a subset ΓD of
its boundary, and is submitted to surface loads f ∈ L2(ΓN )d applied on a subset ΓN of ∂Ω which is disjoint
from ΓD. The complementary region Γ := ∂Ω \ (ΓD ∪ ΓN ) is traction-free. For later purpose (see Section
4), we introduce an additional, non optimizable subset Γ0 of ∂Ω which may overlap ΓD, ΓN or Γ.

In the context of its final (i.e. practical) utilization, the physical behavior of a shape Ω is described by
the elastic displacement uΩ, which is the unique solution in the space

H1
ΓD

(Ω)d :=
{
u ∈ H1(Ω)d, u = 0 on ΓD

}
to the mechanical system:

(2.1)


−div(Ae(uΩ)) = 0 in Ω,

uΩ = 0 on ΓD,
Ae(uΩ)n = 0 on Γ,
Ae(uΩ)n = f on ΓN .

In the above system, e(u) := 1
2 (∇u +∇uT ) is the (linearized) strain tensor associated to the displacement

u, and n (or equivalently nΩ when it comes to emphasizing its dependence on Ω) denotes the unit normal
vector to ∂Ω, pointing outward Ω.
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Without loss of generality, in the present article, the mechanical performance of Ω is evaluated in terms
of its (structural) compliance

(2.2) J(Ω) =

∫
Ω

Ae(uΩ) : e(uΩ) dx =

∫
ΓN

f · uΩ ds,

as a measure of the elastic energy stored in Ω during its deformation, or equivalently of the work of the
external loads acting on it; see for instance [5, 7] for other possible objective functions. This criterion is
minimized among the set Uad of admissible shapes defined by:

Uad :=
{

Ω ⊂ Rd is smooth and bounded, ΓD ∪ ΓN ∪ Γ0 ⊂ ∂Ω
}
.

So that the shape optimization problem be physically relevant, we shall impose constraints, modelled by
one (or several) function P (Ω) of the domain. Simple examples as for P (Ω) are the volume Vol(Ω) and
perimeter Per(Ω) of shapes, which are respectively defined by:

(2.3) Vol(Ω) =

∫
Ω

dx, and Per(Ω) =

∫
∂Ω

ds;

the main purpose of this article is to devise other constraint functionals enforcing the constructibility of
shapes by additive manufacturing technologies.

In the present work, we rely on two different strategies to incorporate a generic constraint P (Ω) into the
optimization process; on the one hand, we consider unconstrained problems, of the form:

(2.4) min
Ω∈Uad

J(Ω) + `P (Ω),

where ` is a given penalization parameter. On the other hand, we may alternatively formulate the problem
in the language of constrained optimization:

(2.5) min
Ω∈Uad

J(Ω) such that P (Ω) ≤ α,

where α is a maximum imposed value for P (Ω).

2.2. Shape sensitivity using Hadamard’s boundary variation method.

Most numerical algorithms dealing with unconstrained or constrained optimization problems of the form
(2.4) or (2.5) are based on the derivatives of the objective and constraint functionals J(Ω) and P (Ω). In
the shape optimization context, the usual notion of differentiation with respect to the domain is provided
by Hadamard’s boundary variation method [2, 32, 38]. In this setting, variations of a domain Ω ⊂ Rd are
considered under the form:

(2.6) Ωθ := (Id + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1;

see Figure 4.

Accordingly, a function F (Ω) of the domain is shape differentiable at Ω if the underlying mapping θ 7→
F (Ωθ), from W 1,∞(Rd,Rd) into R is Fréchet differentiable at 0; the corresponding derivative is denoted by
F ′(Ω) and the following asymptotic expansion holds, in the neighborhood of 0:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0.

In practice, shape deformations θ are often restricted to a subset of W 1,∞(Rd,Rd) composed of admissible
variations; in the present work, we consider the sets:

Θk :=
{
θ : Rd → Rd is k times continuously differentiable and bounded, θ = 0 on ΓD ∪ ΓN ∪ Γ0

}
.

For instance, it is well-known (see e.g. [5, 22]) that the functions Vol(Ω), Per(Ω) and J(Ω) defined by (2.3)
and (2.2) respectively are shape differentiable for deformations θ ∈ Θk (k ≥ 1), and that:

Vol′(Ω)(θ) =

∫
Γ

θ · n ds, Per′(Ω)(θ) =

∫
Γ

κ θ · n ds,
5
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Figure 4. One variation Ωθ of an admisible shape Ω.

where κ : ∂Ω→ R is the mean curvature of ∂Ω, and:

J ′(Ω)(θ) = −
∫

Γ

Ae(uΩ) : e(uΩ) θ · n ds.

3. Geometric constraint functionals

As we have mentioned in the introduction, the prevalent quantity used in the literature to detect and
constrain the presence of overhangs is the angle between the normal vector nΩ to the structural boundary
∂Ω and the negative build direction −ed, where ed is th drh vector in the canonical basis of Rd. This relies
on the generally accepted heuristic that most additive manufacturing tools experience trouble in building
features where this angle is lower than a certain threshold - the value 45° is often found in the literature; see
e.g. [42].

In this section, we formulate geometric constraints based on this criterion, borrowing some material
introduced in another context (that of architectural design) in [14]. We consider anisotropic perimeter
functionals of the form:

(3.1) Pg(Ω) =

∫
∂Ω

ϕ(nΩ) ds,

where ϕ : Rd → R is a given function of class C1. Two particular instances of such functions ϕ will come in
handy:

• The choice

(3.2) ϕa(n) := (n · ed + cos ν)2
−, where (s)− := min(s, 0),

and ν is a threshold angle, penalizes the regions of ∂Ω where the angle between the normal vector n
and the negative vertical direction −ed is smaller than ν.

• The choice

(3.3) ϕp(n) =

m∏
i=1

(n− nψi)
2
,

where the ψi : Rd → R, i = 1, ...,m are given pattern functions, and nψi
:= ∇ψi

|∇ψi| are the correspond-

ing normalized gradients, compels n to be close to at least one of the directions nψi
.
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In the sequel, we denote by Pa(Ω) and Pp(Ω) the constraint functionals arising from (3.1) in the respective
cases where ϕ ≡ ϕa and ϕ ≡ ϕp. When it comes to the shape derivatives of these functionals, the result of
interest is the following [14].

Proposition 3.1. The shape functional Pg(Ω) defined by (3.1) is shape differentiable at any admissible
shape Ω ∈ Uad when deformations θ are in Θk, k ≥ 1. Its shape derivative reads:

P ′g(Ω)(θ) =

∫
Γ

κ ϕ(n) θ · n ds−
∫

Γ

∇∂Ω(ϕ(n)) · ∇∂Ω(θ · n) ds,

where ∇∂Ωψ := ∇ψ − (∇ψ · n)n is the tangential gradient of a smooth enough function ψ : ∂Ω→ R.

Remark 3.1. Although the normal vector n is a priori defined only on the boundary ∂Ω, it can always
be extended in a neighborhood of the boundary (at least when Ω is sufficiently smooth). Thus, there is no
difficulty in defining the full gradient ∇n and furthermore the tangential gradient ∇∂Ωn is independent of
such an extension of n.

Anticipating a little on the numerical discussion of Section 5 - see notably Section 5.2.3 about the dripping
effect - such geometric functionals turn out to have serious limitations when it comes to penalizing overhang
features. This calls for the device of other types of constraint functionals.

4. Presentation of the mechanical constraint functionals

As an alternative to the geometric functionals of Section 3, we now introduce mechanical constraint
functionals, bringing into play the physical behavior of shapes during the construction process. To this end,
we rely on the results obtained in [3], and we also elaborate on the model discussed in there.

4.1. Modeling of the construction process.

In the context of their fabrication, the shapes Ω are contained in a fixed working domain D = S × (0, H)
(where S ⊂ Rd−1) representing the build chamber.

In order to mimic the layer by layer construction of Ω, we consider the intermediate shapes

Ωh := {x = (x1, ..., xd) ∈ Ω, 0 < xd < h} , h ∈ (0, H),

which roughly speaking correspond to particular snapshots taken during the construction process. We use a
decomposition of ∂Ωh which slightly differs from that in Section 2.1: ∂Ωh now reads: ∂Ωh = Γ0 ∪ Γlh ∪ Γuh,
where:

• Γ0 = {x ∈ ∂Ωh, xd = 0} is the contact region between Ωh and the build table,
• Γuh = {x ∈ ∂Ωh, xd = h} is the upper side of Ωh,

• Γlh = ∂Ωh \ (Γ0 ∪ Γuh) is the lateral surface of ∂Ωh.

We also introduce the part `h := {x ∈ ∂Ω, xd = h} of the boundary ∂Ω lying at height h (typically, `h is a
curve in three space dimensions, which is the boundary of Γuh in the plane xd = h); see Figure 5 about these
notations.

Remark 4.1. Let us point out an important bias in the above model for the manufacturing process: it
implicitly relies on the assumption that every layer of material is constructed instantaneously (and so, it does
not see the way each such layer is assembled). This feature has important consequences on the interpretation
of the numerical results; see Section 5.3.

4.2. The self-weight manufacturing compliance Psw(Ω).

At an arbitrary stage h ∈ (0, H) of the construction process, the intermediate shape Ωh is only submitted
to gravity effects, accounted for by a (smooth) body force g : Rd → Rd. In this context, the elastic
displacement of Ωh is the unique solution ucΩh

∈ H1
Γ0

(Ωh)d to the construction system:

(4.1)


−div(Ae(ucΩh

)) = g in Ωh,
ucΩh

= 0 on Γ0,
Ae(ucΩh

)n = 0 on Γlh ∪ Γuh.
7
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Figure 5. Physical setting of the shape Ω during the additive manufacturing process.

The self-weight of Ωh then reads:

(4.2) cΩh
=

∫
Ωh

Ae(ucΩh
) : e(ucΩh

) dx =

∫
Ωh

g · ucΩh
dx.

The proposed mechanical constraint Psw(Ω) aggregates the self-weigths of all the intermediate structures
Ωh, h ∈ (0, H), and therefore deserves the name of self-weight manufacturing compliance:

(4.3) Psw(Ω) =

∫ H

0

j(cΩh
) dh,

where j : R→ R is a given smooth function.

The study of the derivative of Psw(Ω) with respect to the domain is not a standard issue. It has been
addressed in [3], and to account for the results of interest, we need additional notations; Ω ∈ Uad being a
given admissible shape, we introduce:

• Two open sets O1 b O2 in Rd, where O1 is an open neighborhood of the set

{x ∈ ∂Ω, n(x) = ±ed}
composed of the points on ∂Ω where the normal vector is vertical.
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• A smooth cutoff function χ : Rd → R such that:

0 ≤ χ ≤ 1, χ ≡ 0 on O1, and χ ≡ 1 on Rd \ O2.

• For every k ≥ 1, the set Xk of vector fields

Xk :=
{
θ = χθ̃, where θ̃ ∈ Θk

}
.

In other terms, the completely flat regions of ∂Ω stay fixed under deformations θ ∈ Xk; the motivation
behind this definition is that deformations of such regions could cause some intermediate shapes to change
topology, breaking the differentiability of Psw(Ω) with respect to Ω.

The result of interest is now the following; see [3].

Theorem 4.1. The functional Psw(Ω) given by (4.3) is shape differentiable at Ω, in the sense that the
mapping θ 7→ Psw(Ωθ), from Xk into R is differentiable for k ≥ 1. Its derivative is:

(4.4) ∀θ ∈ Xk, P ′sw(Ω)(θ) =

∫
∂Ω\Γ0

DΩ θ · n ds,

where the integrand factor DΩ is defined for a.e. x ∈ ∂Ω \ Γ0 by:

(4.5) DΩ(x) =

∫ H

xd

j′(cΩh
)
(
2g · ucΩh

−Ae(ucΩh
) : e(ucΩh

)
)

(x) dh.

Remark 4.2. Formula (4.5) for the integrand of the shape derivative P ′sw(Ω)(θ) has an intuitive interpre-
tation: the sensitivity at each point x = (x1, ..., xd) ∈ ∂Ω depends on the sensitivities of the self-weights of
all the intermediate structures Ωh for h > xd. Indeed the point x does not belong to Ωh for h < xd.

4.3. Practical algorithms for the calculation of Psw(Ω) and its derivative.

The constraint Psw(Ω) and its shape derivative P ′sw(Ω)(θ) (or equivalently the integrand DΩ) bring into
play a continuum of shapes, and so their numerical evaluation is a priori non trivial. In this section, we
consider a fixed admissible shape Ω ∈ Uad, and we propose two numerical algorithms for the calculation of
Psw(Ω) and DΩ.

4.3.1. The 0th-order method.

The intuitive way to perform the aforementioned evaluations consists in discretizing the height interval
(0, H) into N small subintervals

(4.6) Ii = (hi, hi+1), i = 0, ..., N − 1, where 0 = h0 < h1 < ... < hN−1 < hN = H,

then in approximating the mappings h 7→ cΩh
and h 7→ ucΩh

by constant quantities on each subinterval Ii.

More precisely, our 0th-order procedure for the evaluation of Psw(Ω) and DΩ reads:

(1) For i = 1, ..., N , calculate the displacements ucΩhi
by solving (4.1) and the self-weights cΩhi

via (4.2).

(2) The self-weight h 7→ cΩh
is approximated by the quantity h 7→ c0(h) defined by:

c0(h) = cΩhi+1
for h ∈ (hi, hi+1), i = 0, ..., N − 1.

(3) The displacement h 7→ ucΩh
is approximated by the mapping h 7→ u0(h) given by:

u0(h)(x) = ucΩhi+1
(x) for h ∈ (hi, hi+1) and x ∈ Ωh, i = 0, ..., N.

Note that this makes sense since ucΩhi+1
is defined on Ωhi+1 , thus on Ωh for h ∈ (hi, hi+1).

(4) Psw(Ω) and DΩ are approximated by the quantities P 0
N and D0

N obtained by replacing cΩh
and ucΩh

by their 0th-order approximations c0(h) and u0(h) in the definitions (4.3) and (4.5) respectively.
9



Unfortunately, this algorithm is quite costly since the discretization (4.6) of (0, H) has to be fine enough
so that the accuracy of the piecewise constant approximations c0(h) and u0(h) is guaranteed.

In order to accelerate these calculations, we therefore propose a first-order interpolation method for the
mappings h 7→ cΩh

and h 7→ ucΩh
, based on the calculation of their derivatives. Before defining this first-order

method, we first introduce the required derivatives.

4.3.2. Derivatives of the mappings h 7→ cΩh
and h 7→ ucΩh

.

In this section, we consider a fixed level h ∈ (0, H) satisfying the assumption:

(4.7) For all x ∈ `h, the normal vector n(x) is different from ± ed.
Our first result concerns the derivative of h 7→ cΩh

; see [3] for the proof.

Proposition 4.1. The self-weight h 7→ cΩh
is differentiable at any level h satisfying (4.7) and:

(4.8)
d

dh
(cΩh

)

∣∣∣∣
h

=

∫
Γu
h

(
2g · ucΩh

−Ae(ucΩh
) : e(ucΩh

)
)
ds.

Giving a proper meaning to the derivative of h 7→ ucΩh
is a little more involved since the ucΩh

are functions,
defined on the different shapes Ωh. This operation can nevertheless be carried out in the language of shape
derivatives: roughly speaking, for small t > 0, the shape Ωh−t may be understood as a variation of Ωh, in
an adapted sense from the definition (2.6); see Figure 6. More precisely, the following facts are proven in [3]
(see also [33]).

• There exists t0 > 0 and a mapping (−t0, t0) 3 t 7→ Tt satisfying the following properties:

(4.9)

(i) For t ∈ (−t0, t0), Tt is a diffeomorphism of Rd, mapping Ωh onto Ωh−t such that:

Tt(Γ0) = Γ0, Tt(Γ
u
h) = Γuh−t, and Tt(Γ

l
h) = Γlh−t,

(ii) The mapping t 7→ (Tt − Id), from (−t0, t0) into W 1,∞(Rd,Rd) is of class C1,

• For any mapping t 7→ Tt satisfying (4.9), introducing V (x) := dTt(x)
dt |t=0∈W 1,∞(Rd,Rd), one has,

for x ∈ Γuh, V (x) · ed = −1, and for x ∈ Γlh, V (x) · n(x) = 0.

• The mapping t 7→ ucΩh−t
◦ Tt is differentiable from (−t0, t0) into H1

Γ0
(Ωh)d. Its derivative at t = 0 is

called the Lagrangian derivative YΩh
of h 7→ ucΩh

. In general, YΩh
depends on the mapping Tt used

in its definition.
• The quantity UΩh

:= YΩh
−∇ucΩh

V is then identified as the Eulerian derivative of h 7→ ucΩh
and is

the solution in H1
Γ0

(Ωh)d to the system:

(4.10)


−div(Ae(UΩh

)) = 0 in Ωh,
UΩh

= 0 on Γ0,
Ae(UΩh

)n = 0 on Γlh,
Ae(UΩh

)n = ∂
∂n

(
(Ae(uΩc

h
)n
)

on Γuh.

In particular, UΩh
is independent of the mapping Tt as long as it fulfills (4.9).

In other words, the diffeomorphism Tt maps Ωh onto Ωh−t by moving only its upper boundary, leaving
the other lateral and bottom boundaries fixed.

Remark 4.3. There is a small abuse of language in referring to UΩh
as the ‘Eulerian derivative’ of h 7→ ucΩh

.

Strictly speaking, UΩh
is the ‘right derivative’ of the mapping t 7→ uΩh−t

as t→ 0+, and not that of t 7→ uΩh+t

as t goes to zero with positive or negative values. This choice is motivated by the fact that, for a fixed level
h and small t > 0, it naturally gives rise to a first-order Taylor formula for uΩh−t

which makes sense as a
function on the domain Ωh−t (see formula (4.12) below).

10
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Figure 6. Example of one diffeomorphism Tt of Rd mapping Ωh onto Ωh−t, satisfying (4.9).

4.3.3. The 1st-order method.

Relying again on a discretization (4.6) of the interval (0, H), our first-order procedure for approximating
Psw(Ω) and DΩ unfolds as follows:

(1) For i = 0, ..., N , calculate the displacements ucΩhi
by solving (4.1) and the self-weights cΩhi

according

to (4.2) (for i = 0, these quantities vanish).
(2) For i = 0, ..., N , compute the derivative d

dh (cΩh
)
∣∣
h=hi

with Proposition 4.1 (for i = 0, it is zero).

(3) For i = 1, ..., N , calculate the Eulerian derivative UΩhi
at hi by using (4.10).

(4) The first-order reconstruction c1(h) of h 7→ cΩh
coincides on each interval Ii = (hi, hi+1) with the

cubic spline h 7→ c1i (h) which is uniquely determined by the data:

(4.11) c1i (hi) = cΩhi
, c1i (hi+1) = cΩhi+1

, c1′i (hi) =
d

dh
(cΩh

)

∣∣∣∣
hi

, and c1′i (hi+1) =
d

dh
(cΩh

)

∣∣∣∣
hi+1

.

(5) The first-order reconstruction u1(h) of h 7→ ucΩh
is given for h ∈ Ii by:

(4.12) u1(h)(x) = ucΩhi+1
(x) + (hi+1 − h) UΩhi+1

(x) for x ∈ Ωh.

Again, (4.12) makes sense for x ∈ Ωh, h ∈ (hi, hi+1) since ucΩhi+1
and UΩhi+1

are both well-defined

on Ωh ⊂ Ωhi+1
. Note that u1(h) is not continuous with respect to h.

(6) Psw(Ω) and DΩ are approximated by the quantities P 1
N and D1

N obtained by replacing cΩh
and ucΩh

by their 1st-order approximations c1(h) and u1(h) in (4.3) and (4.5) respectively.

4.4. Alternative mechanical models of the behavior of intermediate shapes.

Our device of the constraint Psw(Ω) in Section 4.2 is guided by the description (4.1) of the physical
behavior of the intermediate shapes Ωh in the course of the construction process: they are only subjected to
gravity effects.

However, different mechanical models could be considered instead of (4.1), including fictitious ones,
thereby giving different focuses to the constraint functional. In this spirit, we propose in this section an
alternative construction to that of Section 4.2 which brings into play an artificial force, applied on the upper
region of each intermediate shape Ωh. More precisely, each intermediate shape Ωh is now subjected to a
body force gh ∈ L2(Rd)d defined by:

(4.13) gh(x) =

{
g if xd ∈ (h− δ, h),
0 otherwise,

11



where δ > 0 is a small parameter, and g ∈ L2(Rd)d is a given function. The elastic displacement uaΩh
of Ωh

in this context is the unique solution in H1
Γ0

(Ωh)d to the system:

(4.14)


−div(Ae(uaΩh

)) = gh in Ωh,
uaΩh

= 0 on Γ0,
Ae(uaΩh

)n = 0 on Γlh ∪ Γuh.

The related upper-weight of Ωh then reads:

caΩh
=

∫
Ωh

Ae(uaΩh
) : e(uaΩh

) dx =

∫
Γu
h

g · uaΩh
ds,

and the corresponding upper-weight manufacturing compliance reads:

(4.15) Puw(Ω) =

∫ H

0

j(caΩh
) dh.

As we shall see in Section 5, this formulation is well-suited when it comes to penalizing more specifically the
upper region of each intermediate shape Ωh.

As far as the shape derivative of Puw(Ω) is concerned, the exact same proof as in [3] can be worked out
(taking advantage of the definition (4.13) of gh), and the conclusions of Theorem 4.1 extend verbatim to this
new case. Also, using a similar analysis to that of Section 4.3 (and working out similar calculations as in
[3]), it is possible to calculate the ‘derivatives’ of the mappings h 7→ caΩh

and h 7→ uaΩh
, which look very much

like the expressions (4.8) and (4.10), up to additional terms accounting for the dependence of the load gh on h.

Let us eventually emphasize that our choice of the linearized elasticity systems (4.1) or (4.14) for the
description of the behavior of the intermediate shapes is merely incidental. One could for instance rely
on a similar construction, involving instead the heat equation, so as to model cooling effects within the
intermediate shapes, and thereby residual stresses; see [4] about this idea.

5. Numerical examples

In this section, we conduct several numerical experiments to put the constraint functionals introduced in
this work to the test.

5.1. Description of the numerical framework.

Let us first and foremost provide some technical details about the practical implementation of the examples
discussed hereafter.

When it comes to the numerical representation of shapes and their deformations, the level set method
on a fixed computational mesh is used because of its robustness and versatility; see [34, 35, 40] for general
considerations about the level set method, and [5, 41, 43] about its use in the shape optimization context. In
a nutshell, one shape Ω, enclosed in a larger, fixed working domain D is regarded as the negative subdomain
of a scalar ‘level set’ function φ : D → R, that is:

(5.1)


φ(x) < 0 if x ∈ Ω,
φ(x) = 0 if x ∈ ∂Ω,
φ(x) > 0 if x ∈ D \ Ω.

The evolution in time of a shape Ω(t), driven by a velocity field with normal component V (t, x), can be
modeled by the following Hamilton-Jacobi equation, the solution φ(t, x) of which, is a level set function for
Ω(t):

(5.2)
∂φ

∂t
(t, x) + V (t, x)|∇φ(t, x)| = 0, t > 0, x ∈ D.

In our applications, the (scalar) velocity field V (t, x) stems from the resolution of Problem (2.4) or (2.5) by
means of an SLP-type optimization algorithm similar to those presented in [17, 45], based on the derivatives
of J(Ω) and P (Ω).

12



From a numerical point of view, the working domain D is a box in two or three space dimensions; it is
discretized by means of a Cartesian mesh G, i.e. G is composed of square elements in 2d and cubes in 3d.
The level set function φ is discretized at the vertices of G and the Hamilton-Jacobi equation (5.2) is solved
by using an explicit second-order upwind scheme on G, as presented e.g. in [34, 40].

Since the computational mesh G is fixed throughout the optimization process of the shape Ω, no mesh of Ω
is available for the Finite Element resolution of linearized elasticity systems of the form (2.1). To circumvent
this difficulty, we rely on the so-called ‘ersatz-material’ approximation which consists in filling the void D \Ω
with a very soft material with Hooke’s tensor εA (in practice ε = 10−3), thus transferring a system posed
on Ω into an approximate one posed on D; see for instance [5].

We rely on Q1 Lagrange Finite Elements coded in Scilab [11] for all the two-dimensional computations
performed in this article, except for the tests regarding the first-order algorithm in Sections 5.3.1 and
5.3.2. For the latter calculations, as well as for the three-dimensional Finite Element resolutions, we use the
FreeFem++ environment [21]: Lagrange P1 elements are used on a simplicial mesh of D, obtained by splitting
each square element of G into two triangles in 2d, and each cubic element of G into six tetrahedra in 3d [18].

In all the examples, the Young’s modulus of the considered elastic material is normalized as E = 1 and
the Poisson’s ratio is set to ν = 0.33.

When it comes to our numerical experiments about the mechanical constraints of Section 4, the integrand
function featured in the definitions (4.3) and (4.15) is j(s) = s. Except in the examples of Section 5.3.1
and 5.3.2, where it is explicitly specified, we rely on the 0th-order algorithm for the evaluation of the
constraint functionals and their derivative, using a uniform subdivision {hi}i=0,...,N of the height interval

(0, H). Indeed, the results produced by the first-order procedure in 3d situations, or when using the upper-
weight manufacturing compliance constraint Puw(Ω), are not so convincing as those of Sections 5.3.1 and
5.3.2. We believe that this is mainly caused by our numerical environment, which does not allow us to use
a finer space discretization, as would be required to carry out accurate enough computations.

Let us finally emphasize that no particular programming effort has been devoted to making our imple-
mentation computationnally efficient. For instance, all the Finite Element resolutions of (4.1) or (4.14),
which are needed for the evaluation of the mechanical constraints and their derivative, associated to the
intermediate shapes Ωh of a single shape Ω could trivially be performed in parallel, which is not the case in
this work. Also, the communication between the optimization algorithm and the Finite Element solver is
achieved via file exchange, which is a notorious source of inefficiency.

5.2. Evaluation of the efficiency of the geometric functionals.

Our first set of numerical experiments is devoted to the geometric constraint functionals of Section 3.

5.2.1. Two-dimensional cantilever beam.

In this example, we consider a two-dimensional cantilever beam, enclosed in a working domain D with
size 0.5 × 1. In the context of its final utilization, the structure is clamped at its lower boundary and a
horizontal load f = (1, 0) is applied at the middle of its upper side (see Figure 7). When it comes to its
construction, the shape is built from bottom to top, so that Γ0 coincides with ΓD. The domain D is meshed
with 100× 200 Q1 elements.

Starting from the initial shape Ω0 of Figure 8 (a), we first minimize the structural compliance of shapes
under a volume constraint, i.e. we solve:

(5.3)
min

Ω
J(Ω)

s.t. Vol(Ω) ≤ αvVol(D)

with the value αv = 0.2. The resulting optimized design Ω∗ is represented on Figure 8 (b). Notice that Ω∗

presents two overhanging bars, i.e. forming a small angle with the horizontal direction.
In order to penalize the emergence of such features, starting from the same initial shape, we solve, instead

of (5.3), the new optimization problem:

(5.4)
min

Ω
(1− αg) J(Ω)

J(Ω∗) + αg
Pg(Ω)
Pg(Ω∗)

s.t. Vol(Ω) ≤ αvVol(D)
,
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Figure 7. Setting of the two-dimensional cantilever beam test case.

for different values of the weight αg ∈ [0, 1], where the constraint Pg(Ω) defined by (3.1) is cooked from one
of the functions ϕa or ϕp defined in (3.2) and (3.3).

We first use the integrand function ϕ ≡ ϕa with the threshold angle ν = 45° and the parameter αg = 0.01;
the resulting optimized structure is represented on Figure 8 (c). The overhanging regions have been reduced
thanks to the addition of intermediate bars, but they have not totally disappeared.

Let us now consider the choice ϕ ≡ ϕp as in (3.3), with the pattern functions ψi : R2 → R defined by:

(5.5) ψi(x) := nψi · x, where nψi = (cos νi, sin νi) and νi = −π
4

+
6iπ

40
, i = 0, ..., 10;

in other terms, the corresponding constraint functional Pp(Ω) imposes the orientation of the boundary ∂Ω
to comply with that of one of the straight lines with normal vector nψi

. These directions nψi
are uniformly

sampled among the set of those making an angle with the negative vertical direction comprised in [π4 ,
5π
4 ].

The resulting optimal shape is depicted on Figure 8 (d), and it is free of overhangs.
The values of the structural compliance, volume and constraint functionals in the above cases are reported

in Table 1. Interestingly, the optimized shape in Figure 8 (d) is better than that in Figure 8 (c) with respect
to both functionals Pa(Ω) and Pp(Ω) (and also in terms of the structural compliance J(Ω)). This suggests
that the optimization process for Problem (5.4) has fallen into a (bad) local minimum in the case where the
geometric functional Pa(Ω) was used. This trend showed up in many of our numerical experiments about
the used of the geometric functionals Pa(Ω) and Pp(Ω); it suggests that Pa(Ω) has ‘more’ local minima than
Pp(Ω), and so we believe that the use of the former is awkward in the shape optimization context.

Optimization problem J(Ω) Vol(Ω) Pa(Ω) Pp(Ω)
Problem (5.3) 141.25 0.400 0.032 12091

Problem (5.4) using Pa(Ω) 151.05 0.400 0.028 13812
Problem (5.4) using Pp(Ω) 147.37 0.400 0.004 3338

Table 1. Values of the compliance, the volume and the geometric constraints Pa(Ω) and
Pp(Ω) for the optimized designs obtained in the 2d cantilever example of Section 5.2.1.
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(a) (b) (c) (d)

Figure 8. Penalization of the overhang features in the 2d cantilever of Section 5.2.1 using
geometric constraints: (a) initial shape Ω0, (b) optimized shape Ω∗ for Problem (5.3), (c)
optimized shape for Problem (5.4) using ϕ = ϕa, ν = 45°, and αg = 0.01, (d) optimized
shape using ϕ = ϕp, αg = 0.02 and the patterns defined by (5.5).

Remark 5.1. Let us already point out an important limitation in the ability of the geometric functionals
Pa(Ω) and Pp(Ω) to penalize the presence of overhang features. Obviously, the negative vertical direction
−ed is the local maximizer of the integrands ϕa(n) and ϕp(n) defined by (3.2) and (3.3) (at least with the
choice (5.5) for the patterin functions ψi), and so the shape gradients of Pa(Ω) and Pp(Ω) equal 0 in the
completely horizontal regions of Ω (see Proposition 3.1). In particular, removing the possible nearly horizontal
overhanging features on the initial shape Ω0 is likely to fail with such strategies - a difficulty we experienced
in using the shape Ω∗ displayed on Figure 8 (b) as initial shape for the optimization problem (5.4).

5.2.2. Two-dimensional MBB beam.

Our second example is the benchmark two-dimensional MBB Beam of size 6 × 1, as depicted in Figure
9. The structure is anchored at its bottom-right corner, and the vertical displacement is set to 0 at its
bottom-left corner. A unit vertical load f = (0,−1) is applied at the middle of its upper side. Here again,
from the manufacturing point of view, the shape is assembled from bottom to top, i.e. Γ0 coincides with
the lower side of D. Taking advantage of the symmetry of the mechanical problem, only half the working
domain D is considered during the optimization process; it is meshed by using 300× 100 Q1 elements.

6

1

f

Figure 9. Setting of the two-dimensional MBB beam example.
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Starting from the initial shape of Figure 10 (top), we solve the compliance minimization problem (5.3)
with the threshold αv = 0.3 for the volume constraint. The optimized design Ω∗ is represented in Figure 10
(bottom) and contains large overhanging regions. Contrary to the previous example, the overhangs in this
situation are of great physical significance for the performance of Ω∗; hence, it is expected that their removal
will prove more difficult than in the context of Section 5.2.1.

Figure 10. (Top) initial and (bottom) optimized shapes for Problem (5.3) in the two-
dimensional MBB Beam test-case of Section 5.2.2.

The results displayed in Figure 11 are typical of the ‘optimized’ shapes resulting from the use of geometric
functionals such as Pa(Ω) or Pp(Ω) to penalize the overhangs formed by members of such great structural
significance. They are obtained by solving problem (5.4) with the parameter αg = 0.50, using

• the function ϕa given by (3.2) and the threshold angle ν = 45° as for Figure 11 (top),
• the function ϕp given by (3.3) and the pattern functions ψi defined in (5.5) as for Figure 11 (bottom).

One first observes that several parts in the resulting designs do comply with the desired orientation, but
these are the parts whose structural significance is negligible.

More importantly, oscillations arose on the boundaries of some members, in particular those which are
close to horizontal and bear a great part of the loading. This dripping effect has already been observed in
the literature; see for instance [39]. The next subsection is devoted to a better understanding of its origin,
which is a strong indicator of why geometric criteria based on angle violation are in general not sufficient
ingredients to overcome overhang features.

Figure 11. Optimized shapes resulting from Problem (5.4) in the two-dimensional MBB
Beam example, using (top) ϕ ≡ ϕa and the threshold angle ν = 45°, and (bottom) ϕ ≡ ϕp
and the pattern functions ψi defined in (5.5).
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5.2.3. The ‘dripping’ effect.

As we have mentioned, the ‘dripping’ effect is the trend for shapes to develop oscillatory boundaries within
the prescribed threshold angle. From a mathematical standpoint, this effect is caused by the many local
minimizers of anisotropic perimeter functionals of the form (3.1). For instance, in the optimized shapes
of Figure 11, the constraint with respect to the imposed angle between the structural boundary and the
horizontal directions is violated at only few points, namely at the cusps of the dripping patterns. Depending
on the discretization, these points may not even be detected in the evaluation of Pg(Ω).

To better appraise this point, let us consider the following simple situation, where no mechanical objective
function is involved: starting from the half-domain initial design depicted on Figure 12 (a), we minimize the
angle-based functional Pa(Ω) for a threshold angle ν = 45° without adding any constraint to the problem;
namely, we solve:

(5.6) min
Ω
Pa(Ω).

The resulting shape is represented on Figure 12 (b), and it is far from what we would have expected a priori,
namely a half-space with 45° orientation with respect to the horizontal direction. The ‘dripping’ effect is
blatant; it leads to a dramatic decrease in the value of Pa(Ω) by creating oscillations on the structural
boundary, as can be observed on the convergence diagram of Figure 12 (c). Note that Figure 12 (b) even
displays small inclusions of one phase (material or void) in the other one: they were created by ‘pinching’
flat holes, in a fashion well explained in [28] (see Figure 3.24 therein).

(a) (b)

(c)

Figure 12. Evaluation of the purely geometric approach and observation of the ‘dripping’
effect in Section 5.2.3: (a) initialization, (b) optimized shape for Problem (5.6), and (c)
convergence history for the values of Pa(Ω).
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In the two-dimensional MBB Beam example of Section 5.2.2, the same effect is at play: the structure
contains regions where the optimization criterion J(Ω) urges the formation of large horizontal features; the
oscillatory patterns have little impact on the mechanical performance of the structure (at least when it
is measured in terms of the compliance J(Ω)), but they lead to a dramatic decrease in the values of the
geometric functionals Pa(Ω) and Pp(Ω). Obviously, the algorithm prefers to create oscillating boundaries
than rearranging the large horizontal bars, which would undermine significantly the structural performance
of the shape. In this sense, the geometric criteria are not ‘strong enough’ to steer the algorithm to a different
optimization path.

At this point, let us discuss a tempting remedy to this ‘dripping’ effect. An intuitive idea consists in
adding a perimeter constraint to the optimization problem, with the hope that it dampens these oscillations
of the boundary. To evaluate this idea, we solve a new version of Problem (5.6) which is augmented with a
perimeter penalization; i.e. we solve:

(5.7) min
Ω
Pa(Ω) + `Per(Ω),

where the coefficient ` is equal to 0.1.
In the same spirit, we also solve the same problem (5.4) as in Section 5.2.2, in the MBB Beam example

of Figure 9, adding a perimeter penalization:

(5.8)
min

Ω
(1− αg) J(Ω)

J(Ω∗) + αg
Pg(Ω)
Pg(Ω∗) + `Per(Ω)

s.t. Vol(Ω) ≤ αvVol(D)
,

where ` = 0.1, αv = 0.3 and αg = 0.5.
The results are displayed on Figures 13 and 14, respectively. Obviously, in both cases, the oscillations are

smoothed, but the problem has not been dealt with. Admittedly, using larger values of the weight factor ` in
(5.7) or (5.8) may make these oscillations disappear totally, but putting too much emphasis on the perimeter
penalization is bound to lead to optimized designs with poor mechanical performance.

Figure 13. Optimized shapes for the purely geometric Problem (5.7) under perimeter pe-
nalization, using the values (from left to right) ` = 0.01, 1 and 10.

Figure 14. Optimized two-dimensional MBB Beam for Problem (5.8), under both a geo-
metric and perimeter constraint.

In a nutshell, although purely geometric approaches are computationally inexpensive, their efficiency turns
out to be quite limited, even in rather simple cases.
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5.3. Evaluation of the efficiency of the mechanical functional Psw(Ω).

In this section, we present numerical examples for the manufacturing compliance Psw(Ω) introduced in
Section 4.2. We show how the incorporation of this mechanical constraint into the optimization problem
leads to a different treatment of the overhanging parts and avoids the dripping effect. Moreover, based on
the results, we test different formulations of the elasticity system describing the manufacturing context (4.1).

5.3.1. Two-dimensional cantilever beam.

We consider once more the two-dimensional cantilever of Section 5.2.1. The initial and optimized shapes
Ω0 and Ω∗ for the compliance minimization problem under volume constraint (5.3) are the same as in Section
5.2.1 (see Figures 15 (a) and (b)).

As far as the mechanical problem simulating the manufacturing process is concerned, the physical behavior
of each intermediate shape Ωh is described by the system (4.1) where the body force g equals (0,−1). We
now solve the optimization problem:

(5.9)

min
Ω

J(Ω)

s.t. Vol(Ω) ≤ αvVol(D),
Psw(Ω) ≤ αcPsw(Ω∗).

The 0th-order algorithm of Section 4.3.1 is used for the evaluation of Psw(Ω) and its derivative, with
N = 200 layers; in other terms, in the notation of Section 4.3.1, we calculate P 0

200 and D0
200. In Figure 15

(c)-(e), we show the optimized shapes for (5.9) for various values of the parameter αc, and for αv = 0.2. The
overhanging parts disappear, and for large values of αc, a greater amount of material is concentrated in the
regions close to Γ0; as expected, the structural compliance J(Ω) increases (yet not too dramatically) as the
imposed threshold αc becomes stricter (see Table 2).

Optimized shape J(Ω) Vol(Ω) Psw(Ω)
Figure 15 (b) 141.25 0.399 4226

Figure 15 (c) (αc = 0.8) 151.72 0.397 3365
Figure 15 (d) (αc = 0.6) 164.08 0.398 2528
Figure 15 (e) (αc = 0.5) 177.05 0.400 2106

Table 2. Values of the compliance, the volume and the mechanical constraint Psw(Ω) for
the optimized designs obtained in the 2d cantilever example of Section 5.3.1.

Let us now evaluate the first-order algorithm of Section 4.3.3 in the present context. At first, we appraise
the convergence of the approximations P iN and DiN for P(Ω) and DΩ respectively, in the case where Ω is the
initial shape Ω0 depicted on Figure 15 (a). To this end, we calculate the relative errors

err(P,N, i) =
|P iN − P 0

200|
P 0

200

and err(D, N, i) =
||DiN −D0

200||L2(∂Ω\Γ0)

||D0
200||L2(∂Ω\Γ0)

,

as functions of the size N of the subdivision. The results are reported on Figure 16.
Now, starting again from Ω∗, we solve Problem (5.9), with the parameter αc = 0.9, approximating Psw(Ω)

and DΩ by the quantities P 1
25 and D1

25. The optimized shapes are represented on Figure 17, and they are
almost identical. The difference in the computational times needed to achieve them is however significant:
while more than a week of calculation are needed when Psw(Ω) and DΩ are approximated by P 0

200 and D0
200,

less than a day is necessary when the first-order quantities P 1
25 and D1

25 are used instead.
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(a) (b) (c)

(d) (e)

Figure 15. Optimized two-dimensional cantilever beams under the self-weight manufactur-
ing compliance constraint Psw(Ω), in the setting of Section 5.3.1: (a) initial shape Ω0, (b)
optimized shape Ω∗ for Problem (5.3) (i.e. without additive manufacturing constraints), and
optimized shapes for Problem (5.9) using the parameter (c) αc = 0.80; (d) αc = 0.60; (e)
αc = 0.50.

5.3.2. Two-dimensional bridge.

We now turn to the classical two-dimensional bridge example, as illustrated on Figure 18 (top, left): in a
working domain with size 2× 1, a bridge is anchored at its lower-right corner, and the vertical displacement
is prevented at its lower-left corner. A vertical load f = (0,−1) is applied at the middle of the lower side.
The build direction of the machine tool during the construction process is oriented from the bottom to the
top of the shape.

Starting from the initial shape in Figure 18 (top, right), we first solve the compliance minimization
problem under volume constraint (5.3) with αv = 0.3, and the resulting shape Ω∗ is represented on Figure
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Figure 16. Behavior of the errors (left) err(P,N, i) and (right) err(D, N, i) as the number
N of layers increases in the two-dimensional cantilever example of Section 5.3.1.

Figure 17. Optimized shapes for Problem (5.9) in the two-dimensional cantilever example
of Section 5.3.1, when Psw(Ω) and DΩ are approximated by (left) P 0

200 and D0
200; (right) P 1

25

and D1
25.

18 (bottom). Notice the two overhanging bars at the bottom of Ω∗, which are consequences of the fact that
the initial shape has some holes in these regions.

We then incorporate our mechanical constraint Psw(Ω) into the problem, i.e. we solve (5.9) with αv = 0.3,
and for various values of αc. To this end, we rely at first on the 0th-order algorithm of Section 4.3.1 using
N = 100 layers for the subdivision of the height interval (0, H); the results are reported on Figure 20 (left
column).

In a second time, we conduct the exact same experiment, using the 1st-order algorithm of Section 4.3.3
for approximating Psw(Ω) and DΩ, in combination with an adaptive subdivision {hi}i=0,...,N of (0, H), which
satisfies the following rules:

(5.10)

• The maximum distance between two consecutive points hi, hi+1 of the subdivision is H/10;
• Every value of the height h where `h contains one point where the normal vector is ±ed (up

to a tolerance) is added to the set {hi}i=0,...,N ;
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Figure 18. (Top, left) setting of the two-dimensional bridge test-case, (top, right) initial
shape and (bottom) optimized shape Ω∗ for Problem (5.3).

see Figure 19 for an example of such a subdivision. In practice, such a subdivision is computed at each
iteration of the optimization algorithm with at least one layer every time the total volume is increased by
20% and one layer each time the normal boundary is close to minus the built direction.

Figure 19. Illustration of a subdivision of the height interval (0, H) (red lines) adapted to
a shape Ω (in black) according to the rules (5.10).

The resulting optimized shapes are presented on Figure 20 (right column), and the values of the various
shape functionals involved in the calculation are reported in Table 3.

Notice that the overhanging features in these optimized shapes are greatly reduced as the threshold αc
becomes stricter, but they do not completely disappear. This point is a shortcoming of the mechanical
formulation of overhang constraints by means of the functional Psw(Ω); it will be discussed extensively in
the next sections, together with possible remedies.

5.3.3. Two-dimensional MBB beam.
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(a) (b)

(c) (d)

(e) (f)

Figure 20. Optimized shapes in the two-dimensional bridge test case of Section 5.3.2 (left
column) no acceleration procedure is used, and (a) αc = 0.7, (c) αc = 0.5 and (e) αc = 0.3;
(right column) the acceleration procedure is used and (b) αc = 0.7, (d) αc = 0.5 and (f)
αc = 0.3.

Optimized shape J(Ω) Vol(Ω) Psw(Ω)
Figure 18 (top, right) 43.70 0.3 5786

Figure 20 (a) 45.61 0.3 4034
Figure 20 (b) 45.29 0.3 4050
Figure 20 (c) 47.33 0.3 2810
Figure 20 (d) 47.44 0.3 2850
Figure 20 (e) 57.18 0.3 1727
Figure 20 (f) 58.77 0.3 1736

Table 3. Values of the structural compliance, the volume and the manufacturing constraint
Psw(Ω) for the optimized designs obtained in the 2d bridge example of Section 5.3.2.
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Our third example in this section is the same two-dimensional MBB beam as that presented in Section
5.2.2; see Figure 9 for the details of the test-case. We solve the compliance minimization problem under both
volume and self-weight manufacturing compliance constraints (5.9) using the 0th-order algorithm of Section
4.3.1 with N = 100 layers, with αv = 0.3 and different values for the parameter αc; the results are represented
on Figure 21 (b)-(d). The values of the shape functionals involved in the optimization problem are reported
in Table 4. Increasing values of αc result in structures which are more rigid from a manufacturing point of
view (i.e. with lower values of Psw(Ω)) and more compliant from a structural perspective (i.e. with higher
values of J(Ω)).

(a)

(b)

(c)

(d)

Figure 21. Optimized shapes for the two-dimensional MBB Beam example of Section 5.3.3:
(a) optimized shape Ω∗ for Problem (5.3) (i.e. without additive manufacturing constraints),
and optimized shapes for Problem (5.9) using parameters (b) αc = 0.50, (c) αc = 0.30, and
(d) αc = 0.10.

Let us observe, as in the two-dimensional bridge example of Section 5.3.2, that the optimized shapes
still contain overhangs, which are concentrated on their upper regions, although the values of the mechanical
constraint Psw(Ω) are exactly the required ones (see Table 4). This suggests a flaw in the idea of penalizing the
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Optimized shape J(Ω) Vol(Ω) Psw(Ω)
Figure 21 (a) 68.57 0.899 7920

Figure 21 (b) (αc = 0.50) 71.38 0.900 3945
Figure 21 (c) (αc = 0.30) 74.41 0.900 2363
Figure 21 (d) (αc = 0.10) 84.59 0.900 791

Table 4. Values of the compliance, the volume and the mechanical constraint Psw(Ω) for
the optimized designs obtained in the 2d MBB Beam example of Section 5.3.3.

overhang features of shapes owing to the functional Psw(Ω), which may be accounted for by two independent
phenomena:

(1) As mentioned in Remark 4.1, the fact that each layer is assumed to be deposited instantaneously
has an impact on the values of the self-weights cΩh

given by (4.2): the rigidity of completely flat
overhangs (as those appearing in figures 21 (b)-(d)) is actually overestimated; roughly speaking,
our modeling only involves the intermediate stages of the construction process where each layer is
completely assembled, and where these flat regions are thereby connected to the lower structure.
Hence, all the situations where these regions are hanging over void (for instance, at the moments
when they are only half-constructed, and when the self-weight would take large values) are missed.

(2) Secondly, considering a uniform self-weight loading for each intermediate shape Ωh leads to a con-
centration of the shape gradient of J(Ω) at regions closer to Γ0. Intuitively, this comes from the fact
that such regions appear in a greater number of intermediate shapes, which is reflected on the shape
derivative of Psw(Ω); see Theorem 4.1. Thus, the algorithm favours the elimination of the overhangs
located in these regions, while upper parts are comparatively less influenced by this requirement.

One remedy for the former issue would consist in using a more precise, ‘pixel by pixel’ model of the
construction process introduced in Section 4.1: one could indeed consider the trajectory of the machine
tool during the assembly of each layer of the shape, and take as ‘intermediate shapes’ several snapshots
in the assembly of each layer. Unfortunately, beyond difficult modeling issues, relying on this idea would
cause the computational cost (which is already significant) of the resulting constraint functional to increase
dramatically. Therefore, this proposition is not examined in the present article.

A second remedy amounts to change the mechanical problem (4.1) characterizing the behavior of the
intermediate shapes. More precisely, as proposed in Section 4.4, we consider fictitious body forces applied on
the upper region of these shapes, thus better penalizing thin horizontal patterns in the intermediate shapes
Ωh. This is the purpose of the next section.

Last but not least, a third remedy consists in combining both informations from the geometric constraints
of Section 3 and the mechanical constraint Psw(Ω). This possibility is examined in Section 5.5 below.

5.3.4. Use of the modified manufacturing compliance Puw(Ω) in the two-dimensional bridge and MBB Beam
examples.

We now take on the two-dimensional bridge and MBB Beam examples of Sections 5.3.2 and 5.3.3, replacing
the self-weight manufacturing compliance Psw(Ω) with the upper-weight manufacturing compliance Puw(Ω)
in the formulation (5.9) of the optimization problem, with the expectation that it shows a better ability
when it comes to removing overhanging features.

The thickness δ of the regions where g is applied in the definition (4.13) of the body force gh is of the
order of the mesh size: δ = ∆x.

In Figure 22, the optimized two-dimensional bridges obtained by using the upper-weight manufactur-
ing compliance Puw(Ω) are represented, and the details about the various shapes are reported in Table 5.
This modified constraint functional obviously shows a great efficiency in the reduction of overhangs. Note
nevertheless that the volume constraint is not precisely satisfied in the case of Figure 22 (e) because the
initialization does not sastify it and the algorithm cannot succeed to become feasible.
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(a) (b)

(c) (d)

(e)

Figure 22. Optimized two-dimensional bridges using the upper-weight manufacturing com-
pliance Puw(Ω), and the parameters αv = 0.3 and (a) αc = 0.7, (b) αc = 0.5, (c) αc = 0.3,
(d) αc = 0.2, and (e) αc = 0.1.

Optimization design J(Ω) Vol(Ω) Puw(Ω)
Figure 18 (right) 43.70 0.3 1.27

Figure 22 (a) 48.89 0.3 0.81
Figure 22 (b) 47.31 0.3 0.63
Figure 22 (c) 49.18 0.3 0.38
Figure 22 (d) 50.26 0.3 0.25
Figure 22 (e) 70.11 0.31 0.12

Table 5. Values of the structural compliance, the volume and the upper-weight manufac-
turing compliance Puw(Ω) for the optimized designs obtained in the 2d bridge example of
Section 5.3.4.

In Figure 23 we show the optimized shapes after the proposed substitution, in the two-dimensional MBB
Beam example, for different values of αc (and again αv = 0.3). The values of the involved functionals and
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the convergence diagrams are shown in Table 6 and Figure 24 correspondingly. Note that, if some objective
functions seem to increase at the beginning, it is because the volume constraint is not yet satisfied (it is
ensured only at convergence).

One can observe that the algorithm tends to add more features oriented along the build direction and to
connect them together by creating small archs, which have optimal rigidity for self-weight loadings. Again,
the results are much more satisfying than those obtained by using the functional Psw(Ω) when it comes to
removing overhanging features.

(a)

(b)

(c)

(d)

Figure 23. Optimized shapes for the two-dimensional MBB Beam example of Section 5.3.3,
solving Problem (5.9) with the upper-weight manufacturing compliance Puw(Ω) and param-
eters (a) αc = 0.30, (b) αc = 0.10, (c) αc = 0.05, and (d) αc = 0.03.

5.4. Evaluation of the modified mechanical constraint functional Puw(Ω).

In the next subsections, we present several uses of the upper-weight manufacturing compliance Puw(Ω).
27



Optimized shape J(Ω) Vol(Ω) Puw(Ω)
Figure 23 (a) 68.57 0.899 60.00

Figure 23 (b) (αc = 0.30) 74.96 0.900 18.00
Figure 23 (c) (αc = 0.10) 89.42 0.899 5.93
Figure 23 (d) (αc = 0.05) 98.90 0.900 2.99

Table 6. Values of the compliance, the volume and the upper-weight manufacturing com-
pliance Puw(Ω) for the optimized designs obtained in the 2d MBB Beam example of Section
5.3.3.

(a) (b)

(c)

Figure 24. Convergence histories associated to the two-dimensional MBB Beam optimiza-
tion example of Section 5.3.3, leading to the optimized shapes in Figure 23: (a) structural
compliance J(Ω), (b) volume Vol(Ω), and (c) upper-weight manufacturing compliance
Puw(Ω).

5.4.1. Three-dimensional cantilever beam.

Our first three-dimensional example is a cantilever beam with size 0.5 × 0.5 × 1, clamped at its bottom
side and subjected to a unit load f = (1, 0, 0) applied at the middle of its upper side; see Figure 25. The
shape is assembled from bottom to top, and so Γ0 and ΓD coincide. Due to the symmetry of the mechanical
problem, the calculations are performed on only half the computational domain D. The associated Cartesian
grid G is composed of 20× 40× 80 elements.
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Figure 25. Setting of the three-dimensional cantilever test case.

Starting with a full domain initialization, we solve the compliance minimization problem under volume
constraint (5.3) for αv = 0.075, which yields the optimized shape Ω∗ displayed on Figure 26 (a).

The shape Ω∗ presents four overhanging bars; so as to obtain a three-dimensional cantilever without such
features, we start the optimization anew, adding a constraint on the upper-weight manufacturing compliance,
i.e. we solve:

(5.11)

min
Ω

J(Ω)

s.t. Vol(Ω) ≤ αvVol(D),
Puw(Ω) ≤ αcPuw(Ω∗),

for the values αv = 0.075 and αc = 0.90, then αc = 0.70. Again, the 0th-order procedure is used for
the calculations of Puw(Ω) and its derivative, with N = 40 evenly distributed layers. This results in the
optimized shapes displayed on Figures 26 (b) and (c), where the overhanging bars have disappeared. Table 7
and Figure 27 supply information about the values of the involved criteria, as well as their evolution during
the optimization. Note that the upper-weight manufacturing compliance is much smaller than the final use
compliance because of different orders of magnitude of the applied loads.

Optimized design J(Ω) Vol(Ω) Puw(Ω)
Figure 26 (a) 1918 0.0093 8.33e-06

Figure 26 (b) (αc = 0.90) 1982 0.0093 7.20e-06
Figure 26 (c) (αc = 0.70) 2047 0.0093 5.78e-06

Table 7. Values of the compliance, the volume and the upper-weight manufacturing com-
pliance Puw(Ω) for the optimized designs obtained in the 3d cantilever test case of Section
5.4.1.

5.4.2. Three-dimensional bridge.

The next example is a three-dimensional version of the bridge example of Section 5.3.2, as depicted in
Figure 28: the dimensions of the working domain D are 6×1×1. The structure is clamped at its lower-right
corners, while at its lower-left corners, the vertical displacement is prevented. A uniform load f = (0, 0,−1)
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(a)

(b)

(c)

Figure 26. Optimized three-dimensional cantilever in the test-case of Section 5.4.1, solving
Problem (5.11) (a) without additive manufacturing constraints, (b) using αc = 0.90, and (c)
using αc = 0.70.

is applied on the upper side of the structure. From the manufacturing point of view, the shape is constructed
from top to bottom, i.e. Γ0 coincides with the upper side of D (i.e. the deck of the bridge). Due to the double
symmetry of the mechanical problem, only one quarter of D is meshed and the cubic grid G is composed of
90× 15× 30 elements.

We start by minimizing the structural compliance J(Ω) of the bridge under volume constraint, taking the
full working domain D as initial shape; i.e. we solve (5.3) with αv = 0.10. Figure 29 (left column) shows
the resulting optimized shape Ω∗, which presents several overhangs of significant structural importance.
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(a) (b)

(c)

Figure 27. Convergence histories for the optimized three-dimensional cantilever beams of
Figure 26: (a) structural compliance J(Ω), (b) volume Vol(Ω), and (c) upper-weight manu-
facturing compliance Puw(Ω).

1

1
6

f

Figure 28. Setting of the three-dimensional bridge test-case.

We then add a constraint on the upper-weight manufacturing compliance Puw(Ω), but instead of solving
(5.11) we rather consider the following optimization problem:

(5.12)

min
Ω

Vol(Ω),

s.t. J(Ω) ≤ J(Ω∗),
Puw(Ω) ≤ αcPuw(Ω∗),31



where we look for a shape having at least the same rigidity as Ω∗, but which is also more rigid from a
manufacturing perspective (it is therefore expected that the volume Vol(Ω) is greater than Vol(Ω∗)). Figures
29 (right column) and 30 (left column) show the optimized shapes for αc = 0.70 and αc = 0.10 respectively.
For αc = 0.70 only slight changes are observed: the upper bar becomes thinner and the central bars become
thicker and are relocated closer to Γ0. For αc = 0.10 the changes are drastic and the same trend as in the
two-dimensional MBB beam is observed. Table 8 and Figure 31 contain the values and the evolution history
of the involved functionals. Interestingly, the shape of Figure 29 (right column) is better compared to that of
Figure 29 (left column) with respect to all criteria (i.e. volume, structural and manufacturing compliances),
indicating the existence of several local minimizers for Problem (5.3).

Observe however that the resulting shapes still contain (small) overhangs (see the upper regions of the
shapes in Figures 29 and 30). These suggest that the upper-weight manufacturing compliance constraint
Puw(Ω) is a valuable tool in preventing overhanging features, but that it still suffers from the assumption of
instantaneous layer deposition described in Remark 4.1.

Optimized shape J(Ω) Vol(Ω) Puw(Ω)
Figure 29 (left) 7724800 0.150 4.542e-03

Figure 29 (right) (αc = 0.7) 7697520 0.149 2.967e-03
Figure 30 (left) (αc = 0.1) 7575730 0.170 0.424e-03

Table 8. Values of the compliance, the volume and the upper-weight manufacturing com-
pliance Puw(Ω) for the optimized three-dimensional bridges of figures 29 and 30.

One last observation concerns the purely three-dimensional phenomenon examplified on Figure 30 (right
column): for decreasing values of αc the optimized shapes show, at each level, sufficient support from the
lower structure to enable their manufacturability. However, there is no information about where this support
comes from. More precisely, the shape could be self-supporting assuming that the printing direction of each
layer is directed along the x-axis, but not when it is printed along the y-axis, as in the example proposed in
Figure 32. This effect is another shortcoming of our simplified modeling of the construction process, which
does not take into account the printing path of each individual layer; see Remark 4.1. Notice that it similarly
plagues the purely geometric constraints introduced in Section 3.

5.5. Mixing geometric and mechanical criteria.

As we have mentioned in Section 5.3.3, mixing geometric and mechanical criteria is a possible remedy to
the artifacts caused by the assumption of an instantaneous assembly of each layer during the construction
process. A first idea in this direction consists in introducing a new version of the system (4.1) or (4.14)
involving a volume or surface load related to the orientation of the structural boundary.

A second possibility is to combine the geometric functionals of Section 3 with the mechanical functionals
of Section 4; in this spirit, we may now solve, for instance, the optimization problem:

(5.13)
min

Ω
(1− αg)

J(Ω)

J(Ω∗)
+ αg

Pa(Ω)

Pa(Ω∗)
,

s.t. Vol(Ω) ≤ αvVol(D),
Puw(Ω) ≤ αcPuw(Ω∗),

where αv, αc and αg are in [0, 1]. Both strategies are quite similar in essence. We have implemented both
and the obtained results follow a similar logic. For brevity, we present only the second method in this work.

Remark 5.2. The choice of an initial shape for the optimization problem (5.13) is crucial in applications.
The natural idea is to start from a rather arbitrary initial shape (as in the previous examples), which gives
more freedom to the algorithm. As we have explained in Section 5.2.2, doing so may however increase the
risk that the optimization process fall into a local minimum.

Another idea is to take as initial shape for (5.13) the already optimized shape for Problem (5.11) or (5.12).
This may facilitate the optimization process if there are no horizontal features of critical importance for the

32



Figure 29. Optimized designs for the three-dimensional bridge example of Section 5.4.2,
(left) without manufacturing constraints, (right) solving Problem (5.12) with αc = 0.7.

overall structural performance. Else, having less freedom to change the loading path, it may be difficult for
the algorithm to find a compromise between the two criteria. Therefore, we believe that the choice of an
adequate initial shape for problem (5.13) is case dependent.
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Figure 30. (Left) Different views of the optimized shape for the three-dimensional bridge
example of Section 5.4.2, solving Problem (5.12) with αc = 0.1; (right) another view on
the three-dimensional bridges for Problem (5.12) with (top) no manufacturing constraint,
(middle) αc = 0.7 and (bottom) αc = 0.1.
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(a) (b)

(c)

Figure 31. Convergence histories for the three-dimensional bridges of Figures 29 (right)
and 30; (a) structural compliance J(Ω), (b) volume Vol(Ω), and (c) upper-weight manufac-
turing compliance Puw(Ω).

Figure 32. Example of a feature which is self-supporting when each layer is assembled
following the x direction, but not when it is assembled following the y direction.

5.5.1. Two-dimensional MBB beam.

Let us consider again the two-dimensional MBB beam example of Section 5.3.3. Starting from the opti-
mized shape of Figure 23 (c), we aim to improve the angle between the structural boundary and the (vertical)
build direction by solving the optimization problem (5.13), with a threshold value ν = 45°. In Figure 33 we
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show the results for different values of the weight αg. As is examplified in Table 9, larger values of αg results
in smaller values of Pa(Ω), at the expense of a deteriorated structural compliance J(Ω).

(a)

(b)

(c)

(d)

Figure 33. Optimized two-dimensional MBB Beams resulting from the mixed shape opti-
mization problem (5.13) in Section 5.5.1, with the parameters: (a) αg = 0, αc = 0.05, (b)
αg = 0.10, αc = 0.05, (c) αg = 0.30, αc = 0.05, and (d) αg = 0.50, αc = 0.05.

Optimized shape J(Ω) Vol(Ω) Puw(Ω) Pa(Ω) Iterations for Problem (5.13)
Figure 33 (a) 98.90 0.900 2.99 0.105 -
Figure 33 (b) 100.36 0.900 2.98 0.076 16
Figure 33 (c) 116.73 0.900 2.76 0.043 18
Figure 33 (d) 121.79 0.899 2.91 0.038 20

Table 9. Values of the various shape functionals involved in the resolution of Problem
(5.13) in the context of the two-dimensional MBB Beam of Section 5.5.1.
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Remark 5.3. From the results in Figure 33, one may get the erroneous impression that the two vertical bars
at the centre are disconnected from the structure. In fact, what we actually plot in all the above results is the
0 isovalue of the level set function associated to the shape. Thus, thin features of the size of the computational
mesh G may look disconnected. However, recall that the Finite Element resolution of the linearized elasticity
systems (2.1) relies on the ‘ersatz material’ approximation, whereby the mechanical properties of the elements
intersected by the structural boundary are endowed intermediate values between those of the ‘bulk’ material
occupying Ω and the material simulating void. To make this point clearer, in Figure 34 we plot both the 0
isovalue of the level set function and the corresponding distribution of the Young’s modulus for the shape of
Figure 33 (d). One observes that the Young’s modulus takes intermediate values at the regions that appear
disconnected (and so, they retain some rigidity).

Figure 34. (Top) negative subdomain of the level set function associated to the optimized
shape in Figure 33, (d), and (bottom) the distribution of the Young’s modulus in the com-
putational domain D.

5.5.2. Three-dimensional bridge.

We now consider the three-dimensional bridge test-case of section 5.4.2, whose details are reported on
Figure 28. We consider the following optimization problem:

(5.14)
min

Ω
(1− αg)

Vol(Ω)

Vol(Ω∗)
+ αg

Pa(Ω)

Pa(Ω∗)
,

s.t. J(Ω) ≤ J(Ω∗)
Puw(Ω) ≤ αcPuw(Ω∗),

where the parameters αc and αg are in [0, 1], and the reference shape Ω∗ is the optimized shape for Problem
(5.3), depicted in Figure 29 (left). Due to the existence of some nearly flat overhanging parts in the results
of section 5.4.2 close to the anchor points, we initialize Problem (5.14) with the full computational domain
D for this example.

The optimized shape associated to the parameters αc = 0.70, αg = 0.10 is represented on Figure 35. The
shape differs significantly from that of Figure 29 (right column), where no angle penalization was used. It is
also interesting to note that the manufacturing compliance of the shape has been significantly reduced, at
the expense of a very slight volume increase (see Table 10).

Still starting from the full domain D, Figure 36 (left and right columns) depicts the optimized shapes
for the parameters αc = 0.10, αg = 0.10 and αc = 0.10, αg = 0.90 respectively. From Table 11, where the
values of the shape functionals of interest are reported, it is interesting to note that the choice αc = 0.10,
αg = 0.10 leads to a design that performs worse than that of Figure 30, both in terms of manufacturing
compliance and angle violation, but which has a much smaller volume, once more validating the intuition
that the problem has many local minimizers. Moreover, we observe that a severe penalization of the regions

37



Figure 35. Optimized shape for the three-dimensional bridge example for the combined
geometrically and mechanically constrained Problem (5.14) setting αc = 0.70, αg = 0.10.

Optimized shape J(Ω) Vol(Ω) Puw(Ω) Pa(Ω) Iterations
Figure 29 (right column) 7697520 0.149 2.967e-03 0.0235 84

Figure 35 7719590 0.151 0.958e-03 0.0176 44

Table 10. Values of the compliance, the volume, the upper-weight manufacturing compli-
ance Puw(Ω) and the geometric constraint Pa(Ω) for the optimized 3d bridges of figures 29
(right column) and 35.

violating the imposed threshold angle lead to significant changes of the shape. In Figure 36 (right column)
we see that the previous nearly flat overhangs do not appear anymore and the new structural system uses
significantly greater volume to abide by the compliance criterion (see Table 11).
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